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Witten zeta-functions were introduced as partition functions of quantum gauge theories and 

are expressed as 
1 

(w(s; G) = ~ (di1111t,)s, (1.1) 

where '1/J runs over all finite dimensional irreducible representations of a connected compact 

semisimple Lie group G [20, 21], Some of these zeta-functions are explicitly given as the 

following multiple Dirichlet series: 

00 1 
~ - = ((s), 
L m" 
m=l 

oo 2s 

L m 8 n8 (m + n)"' 
ni.n=l 

(1.2) 

(1.3) 

(1.4) 

In [2-6, 8-10, 13] we consider multivariable analog of the above zeta-functions and call them 

zeta-functions of root systems and studied their special values at integers and established value 
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relations among them. For example, (1.3) is generalized as 

(1.5) 

and a special value is given as 

2835 
(1.6) 

where 3A0 is given by multiple analog of Bernoulli rnunbers. Then the next question arises nat

urally: What about functional relations? In the case of Euler-Zagier multiple zeta-functions, 

only harmonic products are known as functional relations on the whole space: For s1, s2 E IC, 

(1.7) 

If we admit the restriction of the domain, we also have another type of functional relation [7, 16]. 

As for the multiple zeta-fuuctions of root systems, it is known that there are some functional 

relations. One of such relations is given in [5, 17, 19]. For k12, k13 EN and s23 EC, 

(1.8) 

In particular, for k12 = k13 = s23 = 3, we have 

(1 - 1 + 1)(2 (3, 3, 3; A2 ) = -40((0)((9) - 12((2)((7). (1.9) 

Our main purpose is to generalize this formula, that is, we understand the left-hand side by a 

group theoretic interpretation and the right-hand side by the Poincare polynomials. For the 

details, see the forthcoming paper [14]. 

2 Zeta-Functions of Root Systems 

2.1 Root Systems 

Let V be an r dimensional real vector space with inner product (·, ·) and Li C V be a root 

system. Let a-a be the reflection with respect to the hyperplane Ha orthogonal to a E li. and 

W be the Wey! group, which is generated by all reflections a-a. Let av be the coroot of a, 

which is equal to 2a/ (a, a) and Li+ be the set of all positive roots. Let { a 1, ... , ar} be the 

fundamental roots of li., which consists of a basis such that a = c1 n1 + · · · + CrCYr E Li+ with 
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all c; 2 0. Let P++ = E£) 2:2':1.\,; be the set of all strictly dominant weights, where {>-1, , , . , .\,,,} 
is a dual basis of {a{', ... , a1}. For the geometric meaning of these symbols, see the following 

example [1]. 

Example 1. A2 case: 

Example 2. 

2.2 Zeta-Functions of Root Systems 

Definition 1 (Zeta-functions of root systems [3], rnultivariable Lerch analog). For a root 

system LJ. and for s = (s°')°'E"'-+ E Cl"'-+I and y E V, define 

(2.1) 

Example 3. We obtain the corresponding zeta-functions by formally replacing a{' and a{ by 

m and n appearing in positive coroots. For example, in the root systems of rank 2, we have 

00 e21ri(my1 +ny2) 

(2(s, y; A2) = L rns1ns2 (m + n)s3' (2.2) 
rn,n=l 

co e21ri(my1+nm) 

(2(s,y;C2)= L ms1ns2(rn+n)s3(m+2n)"4' (2.3) 
ni,n=l 

co e2,ri(my1 +ny2) 
(2(s,y:G2)= '°' ( ) ( ) ( ) ( ) . (2.4) ' L m 81 ns2 rn + n s3 rn + 2n 34 rn + 3n 8 5 2m + 3n 8 6 

ni,n=l 
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Here and hereafter if the root system Li is of type Xr, we write (r(s,y;Xr) instead of 

(r(s,y; Li) for short. 

3 Special Zeta-Values (Review) 

We extends= (sa)aEL'.+ to (sa)aEL'. by Sa= S-a and define (ws)a = Sw-'a· Then we have 

the following. 

Theorem 1 (value relations [3, 5]). Fors= k = (ka)uEL'.+ E :Z~/ 1, we have 

L ( IT (-ll")(r(w-1k,w-1y;Li) = (-l)IL'.+lp(k,y;Li)( IT (2::t'), (3.1) 
wEW r:,EL'.+nwL'._ aEL'.+ 

where P(k, y; Li) is a multiple periodic Bernoulli function, which will be defined below. 

Theorem 2 (special values [3,5]). Fork= (kr:,)aEL'.+ E (2:Z:,, 1 )IL'.+I satisfying w- 1k = k for 

allwEW, 

Example 4. 

((2) = -1 ! (21ri)2 = 7r2. 
2 6 2! 6 
00 1 

(2((2,4,4,2),0;C2) = L 2 4( + )4( -t 2 )2 rnnm n rn-n 
m,n=l 

= (-1) 4 53 ((21ri) 2 )
2 ((21ri) 4 )

2 

222! 1513512000 2! 4! 

4 Multiple Periodic Bernoulli Functions (Review) 

(3.3) 

53 12 

6810804000 1r . 

Let 1/ be the set of all bases V C Li+ and V* = {µ,¥},BEV be the dual basis of yv = 

{/3v}/3EV· Let Qv = EB:~1 :Za; be the coroot lattice and L(Vv) = E£) 13 Ev;z/Jv. Note that 

IQv /L(Vv)I < oo. Fix a certain</> E V and define a multiple generalizatio11 of the fractional 

part of real numbers as 

( 4.1) 
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Definition 2 (generating functions [3, 5]). Fort= (ta)aEL'. 1 , 

Definition 3 (multiple periodic Bernoulli functions [3, 5]). 

F(t,y;t:.) = L 
kEZ~"Q' 1 

Remark. The A1 case reduces to the classical generating function: 

5 Functional Relations 

(4.2) 

( 4.4) 

Let I be a subset of {1, ... , r}. We will sec that this determines which variables are complex. 

Let l:.r be the subroot system oft:. with the fundamental roots { a;};EJ and W 1 be the minimal 

coset representatives of W/W1 with the Wey! group W1 of l:.1, that is, W = W1W1. 

Theorem 3 (functional relations). Fors= (sa)aEL'.+ with Sa EC (a E t:.1+) and Sa = ka E 

Z2: 2 (a El:.+\ t:.1+), we have 

L ( IT (-l)''')(,.(w-1s,w-1y;t:.) 
wEW' aEL'.+nwL'._ 

(5.1) 

where P(k, y, .\; I; t:.) is a multiple periodic Bernoulli function associated with I, which will be 

defined below. 

It should be noted that generally, the right-hand side consists of sum of several zeta-functions 

of lower rank. 

Example 5. In the root system of type A2 , we choose I = {2}, which we express as the 

following diagram 

(5.2) 
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where the circled node belongs to I. Then we have 

where j = max{[k12/2], [k1:i/2]} and bo, ... ,bj are certain real numbers. It should be noted 

that the right-hand side consists of sum of several Riemann zeta-functions. 

To define a multiple periodic Bernoulli function associated with I, we need some definitions. 

Let~ be the set of all bases of the form V = V 1 U {Cl'.; Ii EI} with V 1 = {,1, ... ,rd} c 
Cl.+\ CJ.I+ and Pvf be the projection defined by 

Pvt ( v) = v - L µ~ (, v, v) (5.4) 
"/EVr 

for v E V. 

Then we obtain the following: 

Theorem and Definition 4 (generating function). For t1 = (ta)aE"'+ \"'r+ and>. E P1 , 

(.5.5) 

In particular, if I = 0, F(t 1 , y, >.; I; ti.) reduces to the generating function for value relations: 

Remark. In the proof of this theorem, we use the results in [12]. 
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6 Examples 

6.1 Ar Case 

We use the following realization of the root system of type Ar: 

~+ = { e; - ej / 1 :S: i < j <::'. r + l} C ]Rr+l, 

Then the zeta-function of type Ar is expressed as 

We choose I= {2, ... , r} and re= {l} as in the following Dynkin diagram. 

( ~)----------{2 0 --') ',------0-----------0-----------0----------0a r) 
Then we have the following theorem: 

Theorem 5 (generating function). Put te,-e, = t, for 2 :S: i :S: r + l. 

F( ( tih:Si<;r+l, (yj )i<::j :<;r, ( mi h.-:;i<;r; {2, ... , r}; Ar) 

r+l j-1 t r+l t 

(6.1) 

(6.2) 

(6.3) 

=LIT i II i 
j=2 i=2 ti - tj + 2n0(mi + · · · + mJ-1) ,.=j+l f; - tj - 2n0(mj + · · · + m;_1) 

( "(~ ~ ))tjexp(tj{yi}) x exp 21rv-l ~ mi(Yi - Y1) + ~ miYi e'·J _ 1 , 
i=2 i=j 

Theorem 6 (multiple periodic Bernoulli function). 

where 

P( ( k;)2:<;i<;r+l, (yj )i :<;j<::r, ( mih:<;i<::r; {2, ... , r }; Ar) 
r+l r+l j-1 r 

= k2! · · · k,+1! L(IJ r5kii"O) exp(21rJ=I(L m;(Yi - Y1) + L m;y;)) 
j=2 ;;7 i=2 i=j 

X ( L 
l2, •·,lr+l 20 

l2+ ·+lr+1=kj 

(6.4) 

(6.6) 
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with 
(i < j) 

(i > j). 

Theorem 7. For (s;.i)iSi<jSr+l with S1j = k1j {2 ~ j ~ r + 1), we have 

r j 

L (TI (-1 )kl,i+l) (>( (s(l •·i+l)pq)1:;p<qSr+ 1, (Y2 - Yl, · · ·, Yj+ 1 - YI, Yj+l, · •·,Yr); Ar) 
j=O i=l 

j=2 l2 , .. . ,lr+ l ~o 
!2+·-+l,-+1 =k1,j 

(6.7) 

(6.8) 

Remark. It should be noted that this is a special case. Generally, (r(s,y;Xr)'s are not nec

essarily described in terms of (r-1(s,y;Xr-i), It depends on the pair (Xr,I). We need more 

general multiple zeta-functions, which may not be classified as zeta-functions of root systems. 

Remark. Other special cases are (Er, {2, ... ,r}), (Cr, {2, ... ,r}). 

(6.9) 

(3(k12, k13, k14, s23, s24, s34; A3) + (-ll12 +k13 (3(s23, k12, s24, k13, s34, k14; A3) 

+ (-l)k12 (3(k12, s23, s24, k13, k14, S34; A3) + (-l)k,2+••13 +k,4 (3(s23, s24, k12, s34, k13, k14; A3) 

[k12/2] 

= 2 L L ( _ 1 l12 el:3 +l~3 - 1) e14 +z:4 - 1) 
J2=0 l3 ,l4 2:0 

13+!4=k12-2]2 

x ((2j2)(2(s23 + k13 + b, s24 + k11 + l4, s34; A2) 

[k13/2] 

+ 2 L L (-1l1,+l4 el2 +1~2 -1) el4 +1~4 _ 1) 
j3=O l2 ,l4 ~0 

l2+l4 =k13-'2J3 

(6.10) 
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6.2 Various Expressions 

In particular, if k12 = k13 = k14 = s23 = s24 = s34 = 2, 

4(:, (2, 2, 2, 2, 2, 2; A:3) = 2((2){2(2 ( 4, 4, 2; A2 ) + ( 2 ( 4, 2, 4; A2)} 

- 6(2(6, 4, 2; A2) - 6(2(6, 2, 4; A2) - 8(2(5, 5, 2; A2) 

+ 4(2(5, 2, 5; A2) - 6(2(4, G, 2; A2). 

On the other hand, we obtained already in [2, Eq. (4.28)] 

4(3(2, 2,2, 2, 2, 2; A0 ) = 8((2) {(2(4,4, 2: A2) + ( 2(3, 5, 2; A2)} 

- 12(2(6, 4, 2; A2) + 12(2(5, 5, 2; A2) - 6(2(4, 6, 2; A2 ). 

(6.11) 

(6.12) 

Remark. These two expressions are transformed into each other by use of partial fraction 

decompositions. 

Remark. (Open Problem) However in general Ar cases, we have two different expressions of 

the right-hand side and we do not know whether these two expressions are transformed into 

each other by use of partial fraction decompositions. Thus these expressions may give new 

value relations. 

6.3 Er Case 

Theorem 8 (generating function for Br case with JC= {1}). We use the following realization: 

(6.13) 

= t II Li II Li 
. . .L-L+21rv'=I(m·+···+m:_1) .. L-L·-21rv'=I(m·+···+m·_1 ) 
1=22Si<1' J ' J 1<iSr' J J '· 

X II t+i 
t+·-t ·-21r CI(m·+···+rn· 1 +2(m·+···+m 1)+m) 2SiSj ' -.1 v-~ ., 1- ·1 r- r 

XII t~ 
j<iSr i+; - Lj - 21rv'=I(mj + · · · + mi-1 + 2(mi + · · · + mr-1) + mr) 

t1 x------~~----------
t1 - 2Lj - 2nv'=I(2(mj + · · · + mr-1) + mr) 
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X II t+; . II . t+; 
2 ~i<j t+; - t+J - 2n-H(mi + · · · + mj-1) j<i~r t+, - t+j + 2n-H(mj + · · · + m;_ 1 ) 

t1 x------=c-----------
t1 - 2t+.i + 2n-H(2(mj + · · · + mr-1) + mr) 

j-1 r-1 
X exp( 2n-0(L m;(y; - yi) + L m,(Yi. - 2y1) + mr(Yr - Y1))) t+J e;~;t~j:yi}) 

i=2 i=j 

Note that by expanding this expression, we see that we obtain functional relations among 

(r(·;Br) and (r-1(·;Br-il similar to those in the case of type Ar obtained in Theorem 7. 

6.4 Xr with III = 1 Case 

In the case III = 1, we will see that the sum of some (r( ·; Xr) is expressed in terms of Lerch 

zeta-functions. Let </>(u, s) be the Lerch zeta-function defined by 

00 2n,/=Iun 
q;(u,s) = ~ _c __ 

~ ns 
n=l 

(6.14) 

Theorem 9. Let Sa= ka E Z:0:2 for a E f:.+ \ {a;} and Sa; EC Let lkl = LaE"'-+\{«d ku. 

Let X; = {v = {(q,/L~)} IV E °'Y[,q E Qv /L(Vv)} C IQ. 

L ( II (-1)-ka)(r(w-ls,O;f:.) 
wEW 1 o:E.6.w~l 
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where bhJ E IQ) is given by 

7 A Remarkable Theorem 

It is natural that from functional relations we obtain value relations; we have only to sub

stitute integers into variables. However it is remarkable that the converse holds, that is, 

the generating function for I = 0 knows "everything." The following theorem tells that 

F(t1, y, .\ I; bi.) for general I can be deduced from the case I= 0. 

Theorem 10 (Remarkable Theorem). Let IC {1, ... , r}. For A E PI++, we have 

(7.1) 

8 Poincare Polynomials and Special Zeta-Values 

Fork= (kn)aE6.+ E (Z:::, 1 )16.+I satisfying w- 1k = k for all w E W 1 , the left-hand side of 

(5.1) is 

L ( II (-l)k")<Aw- 1k,O;Ei)=(I: II (-ll'")(r(k,O;Ei). (8.1) 
wEW 1 aE6.+nw6._ wEW 1 aE6.+nw6. 

From this expression, we notice that the coefficient of (r(k, O; El) coincides with the special 

value W 1 ( ( ( -1 l" )c:xE6.+) of the Poincare polynomial for W 1 , where the Poincare polynomials 

due to Macdonald are defined as follows [15]: For indeterrninates u = ('ua),,E6'+ and for 

XcW 
X(u) = L II (8.2) 

Since generally it is very difficult to calculate special values of these Poincare polynomials, 

we need their simple descriptions. 

8.1 Poincare polynomials 

It is known [15] that if u" = u for all a E El+, 

1 W(u) 
W (u) = W1(u)' (8.3) 
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with 
r d rr u'-1 

W(u)= --, 
u-1 

i=l 

(8.4) 

where d; and d~ are the degrees of the Weyl groups HI and W1, and these degrees are given 

as in the following table. 

Type {di, ... , dr} Type { d1, ... , dr} 

Ar 2, 3, 4, ... , r + 1 E7 2,6,8,10,12,14,18 

Br,C,. 2,4, ... , 2r Es 2,8,12,14,18,20,24,30 

Dr 2,4, ... ,2r - 2,r F4 2,6,8,12 

E5 2,5,6,8,9, 12 G2 2,6 

From these facts, we see that if u°' = 1t for all a E l:..+, 

(8.5) 

8.2 Case 1 (all even) 

Consider the case 1ta = (-ll" = 1 for all a El:..+. Then by l'Hopital's rule, we obtain 

w1(1) = 1wr1 = II=1 d; E Z:0:1• 
niEI d; 

(8.6) 

Example 8 (A2 with I = {2} ). In this case, l:,. is of type A2 and hence d1 = 2, d2 = 3 and 

l:..1 is of type A 1 and hence d; = 2. Put s;j = k;j = 2m (even). Then the left-hand side of 

( 5 .1) is directly calculated as 

1 · (2(k12, s23, k13; A2) + (-ll12 (2(k12, k13, s23; A2) + (-l)k12 +k13 (2(s23, k13, k12; A2) 

= (1 + (-ll12 + (-ll12+k13 )(2 (2m, 2m, 2m; A2 ) (8.7) 

= 3 · (2(2m, 2m, 2m; A2). 

On the other hand this coefficient is calculated via Poincare polynomials as 

WI (l) = d~~2 = 3. 
I 

(8.8) 

8.3 Case 2 (all odd) 

Consider the case 1ta = (-l)k" = -1 for all a El:..+. Let K = {i j l:::; i :S r,d; E 2Z}, 

Kr = {i Ii E !,di E 2Z}. Then 

(IKI = IK1I) 

(IKI 'F IK1I), 
(8.9) 
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The following is a table of several examples where W 1 ( -1) survives. 

Type of 6 Type of 61 

2 • 4 • • • 2rn/2 • 4 • • • 2m = 1 

2 · 4/2 · 2 = 2 

2 • 4 · • • 4rn/2 • 4 • • • (4m - 2) • 2m = 2 

2 · 6 · 8 · 12/2 · 4 · 6 · 4 = 6 

Example 9 (A2 with I= {2}). In this case, 11 is of type A2 and 61 is of type A1 as in the 

previous example. Put S;J = kij = 2n + 1 (odd). Then the left-hand side of (5.1) is directly 

calculated as 

1 · (2(k12, s23, k13; A2) + (-l)k12 (2(k12, k1:1, s23; A2) + (-l)k12 +k13 (2(s23, k13, k12; A2) 

= (1 + (-l)k12 + (-l)k12 +k13 )(2(2rn, 2m, 2m; A2 ) (8.10) 

= 1 · (2(2rn, 2m, 2m; A2). 

On the other hand this coefficient is obtained from the above table as 

(8.11) 

8.4 Case 3 (Mixture) 

Let i\.1 be the set of all long roots and i\.2 , that of all short roots. Assume kce are odd for 

a E 61 and k.a are even for (3 E 62, aud hence Ucx = -1 for a E 61 and Uf3 = 1 for /3 E i\.2 . 

Lemma 11. Let u = (u, 1). Then we have 

WI (u) = W(u, 1) = IWJIW(61)(u) 
W1(u, 1) IW1n.1IW(61 n 61 )(u)' 

The following is a table of some examples, where W 1 ( -1, 1) survives. 

Type of 6 Type of 6 1 

B2k+1 B2k 

C2k+1 C2k 

G2 A1 

2 · 2 · 4 .. · 4k/2 · 2 · 4 .. · (4k - 2) · 2k = 2 

2 · 2 · 4 · · · 4k /2 · 2 · 4 · · · ( 4k -- 2) · 2k = 2 

2 · 2/2 = 2 

(8.12) 

Example 10. Let 11 be of type G2, and L\.1 be of type A1 . Let p = u = v be even and 

s = q = r, odd. Then the left-hand side of (5.1) is directly calculated as 

(2(P, s, q, r, u, v; G2) + (-l)P(2(P, q, s, r, v, u; G2) + (-1)P+q(2(v, q, r, s,p, u; G2) 

+ (-l)P+q+v(2(v, r, q, s, u,p; G2) + (-1)1'+q+r+v(2(u, r, s, q, v,p; G2) 

+ (-l)p+q+r+u+v(2(u,s,r,q,p,v;G2) 

= 2(2(P, q, q, q,p,p; G2). 

(8.13) 
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On the other hand this coefficient is obtained from the above table as 

(8.14) 

This recovers the result in [13]. 
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