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THE UNIQUE EXTENSIONS OF TWO PARAMETRIC 
FAMILIES OF DIOPHANTINE TRIPLES 

MIHAi CIPU, YASUTSUGU FUJITA, AND MAURICE MIGNOTTE 

ABSTRACT. This note gives a summary of the paper [5]. For a nonzero integer 
n, a set of rn positive integers is called a D(n)-m-tuple if the product of any 
two distinct elements increased by n is a perfect square. Let A, K be positive 
integers and E E {-2, -1, 1, 2}. The main theorem of this note asserts that 
each of the D(c:2 )-triples {K, A2 K + 2c:A, (A+ 1) 2 K + 2c(A + l)} has unique 
extension to a D(c:2 )-quadruple. 

1. MAIN THEOREM 

Let n be a nonzero integer. A set {a1, ... , am} of m distinct positive integers is 
called a D( n )-m-tuple if aiaj +n is a perfect square for all i, j with 1 :S: i < j :=::; m. 
In the case where n = 1, it is also called a Diophantine m-tuple. The first example 
of a Diophantinc quadruple, viz., {1, 3, 8,120}, was found by Fermat. Euler 
generalized it to get the Diophantine quadruple { a, b, a+ b + 2r, 4r(r + a)(r + b)}, 
where { a, b} is an arbitrary Diophantine pair with r = ✓ ab + l. Thus, any 
Diophantine pair can be extended to a Diophantine quadruple. Note that the 
second largest element a + b + 2r in the quadruple is known to be the smallest 
among all the possible elements c > max{ a, b} extending a fixed Diophantine pair 
{ a, b} into a Diophantine triple ( cf. [16, Lemma 4]). 

While there exist infinitely many Diophantine quadruples, a folklore conjecture 
states that there exists no Diophantine quintuple. Very recently, He, Togbe and 
Ziegler announced that they settled this conjecture ( cf. [15]). 

There is a stronger conjecture than the folklore one, which is still open. Arkin, 
Hoggatt and Strauss (cf. [1]), and independently Gibbs (cf. [12]), found that for 
any Diophantine triple { a, b, c} with r = ✓ ab + 1, s = ✓ ac + 1 and t = ✓be+ 1, 
the set { a, b, c, d+} is always a Diophantine quadruple, where d+ = a + b + c + 
2(abc + rst). Such a quadruple is called regular, and it is conjectured that any 
Diophantine quadruple is regular (cf. [1], [12]). Note that the largest element 
d+ in the quadruple is known to be the smallest among all the possible elements 
d > max{ a, b, c} extending a fixed Diophantine triple { a, b, c} into a Diophantine 
quadruple (cf. [7, Proposition 1]). 

In 1969, Baker and Davenport showed that if {1, 3, 8, d} is a Diophantine 
quadruple, then d = 120, which is d+ in the above notation. Thus, their re­
sult supports the validity of the stronger conjecture. There are various kinds of 
generalizations of this result. For example, it is shown by He and Togbe that if 
{ K, A 2 K + 2A, (A+ 1) 2 K + 2( A+ 1), d} is a Diophantine quadruple with positive 
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integers K and A satisfying either A <::: 10 or A 2 52330, then d = d+ ( cf. [13], 
[14]). 

The case where n = 4 can be discussed analogously to the case where n = 1. 
There are conjectures saying that there exists no D(4)-quintuple and that if 
{a,b,c,d} is a D(4)-quadruple with r = ✓ab+4, s = ✓ac+4 and t = ✓bc+4, 
then d = d+, where d+ = a+ b + c + (abc + rst)/2. Such a quadruple is called 
also regular. Moreover, it is shown by Filipin, He and Togbe in [10] that if 
{K,A2K +4A, (A+ 1)2 +4(A+ 1),d} is a D(4)-quadruple with positive integers 
Kand A satisfying A<::: 22 and A 2 51767, then d = d+· 

Other generalizations and exhaustive references can be seen on Dujella's web­
page ([8]). 

Our main theorem below generalizes the above results on the extensibilities of 
both families of D(l)- and D(4)-triples. 

Main Theorem. (cf. [5, Theoren 1]) Let A, K be positive integers. If{K,A2K+ 
21:A, (A+ 1)2 K + 21:(A + 1), d} is a D(1:2)-quadruple with c E { -2, -1, 1, 2}, then 
it is regular, in other words, we have 

(1.1) d = d+ = c 2 (2A2 + 2A) 2 K 3 + c-1 (16A3 + 24A2 + 8A)K2 

+ (20A2 + 20A + 4)K + 1:(SA + 4). 

Note that it suffices to show the theorem for c E { ±2}, since for any D(l)-triple 
{k, A2k±2A, (A+ 1) 2k±2(A+ 1)}, the set {K, A2 K ±4A, (A+ 1) 2 K ±4(A+ 1)} is 
a D(4)-triple with K = 2k, which is obtained from our triple {K, A2 K +21:A, (A+ 
1) 2K + 21:(A + 1)} by substituting c = ±2. 

The key to proving Main Theorem is to optimize Rickert 's theorem ( cf. [19]) 
on simultaneous rational approximations to irrationals with consideration for the 
peculiarities of the two parametric families. 

Main Theorem has the following immediate corollary. 

Corollary 1. (cf. [5, Corollary 2]) Let T E {1, 2}. Let {a, b, c, d} be a D(T2)­
quadruple with a < b < c and c = a + b + 2r, where r = ✓ ab + T 2 . If r = ± T 
(mod a), then d = d+. In particular, if a has either of the forms 4T, pe and 2pe 
with p an odd prime and e a non-negative integer, then d = d+. 

The proof of Corollary 1 will be given at the end of this note. The remaining 
part of this note will be devoted to proving Main Theorem on the assumption 
that I c = -21, since the case c = 2 can be treated similarly. 

2. APPLICATION OF LAURENT'S THEOREM 

Let a= K, b = A2 K - 4A and c =(A+ 1) 2 K - 4(A + 1). Then, r = AK - 2, 
s =(A+ l)K - 2 and t = A(A + l)K - 2(2A + 1). Assume that {a,b,c,d} is 
a D(4)-quadruple with d > d+. Let x, y and z be positive integers satisfying 
ad + 4 = x 2 , bd + 4 = y2 and cd + 4 = z 2 . Eliminating d from these equalities 
leads us to the following system of Pellian equations: 

(2.1) 

(2.2) 

(2.3) 

ay2-bx2 =4(a-b), 

az2 - cx2 = 4(a - c), 

bz2 - cy2 = 4(b - c). 
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As is well-known, any positive solution to each of Pellian equations (2.1) to (2.3) 
can be expressed as a linear recurrence sequence whose initial term has only 
finitely may possibilities. More precisely, e.g., all positive solutions to (2.2) and 
(2.3) are respectively described as z = Vm and z = Wn, where 

1 
Vo= zo, V1 = 2(szo + C.To), 'Vm+2 = SVm+l - 'Vm, 

1 
Wo = z1, W1 = 2(tz1 + cy1), Wn+2 = twn+l - Wn, 

for some integers m, n and some solutions (z0 ,xo), (z1 ,y1) (called fundamental 
solutions) to (2.2), (2.3), respectively, with 

(2.4) lzol < a-1/4c3/4, lz1! < b-1/4c3/4 

(cf. [6, Lemma 1]). Considering the congruence Vm = Wn (mod 2c) together with 
inequalities (2.4), we see that m = n = 0 (mod 2), xo = YI = 2 and zo = z1 = ±2 
( cf. [5, Lemma 9]). Then, a similar argument gives the fundamental solutions to 
(2.1), (2.3) and the attached sequences {u~}, {u;'} with y = u~ = u;' explicitly 
( cf. [5, Lemma 10]). Finally, we deduce that any positive solutions to (2.1), (2.2) 
can be expressed as x = V21 = W2rn for some integers l, m ( note that we replaced 
l, m by 21, 2m since l = m = 0 (mod 2) can be proved), where 

Vo= 2, Vi = r + a, ½+2 = rVi+I - Vi, 
Wo = 2, W1 = s ± a, Wm+2 = sWrn+l - Wm, 

The standard technique (see, e.g., [2]) allows us to transform the equation 
Vii = l¥2m into the estimates 

(2.5) 0 <A:= 2llog,B- 2mloga + logx < a 1- 4m, 

where 

s + Jae 
a=---

2 

Putting v := l - m, which can be shown to be positive, we may rewrite A as 

(2.6) A= log(,B2vx) - 2mlog(a/,B). 

Since a and ,B arc similar in size, we obtain the following strong lower bound for 
m. 

Lemma 2. (cf. [5, Lemma 17]) m > (A- l)vlog,B. 

Proof. By (2.5) and (2.6), we have mlog(a/,B) > vlog,B. Since the mean value 
theorem tells us that log(a/,B) = J'(~)(s - r) for some~ E lR with r < ~ < s 
(where J(u) := log((u + ✓u2 - 4)/2)), s - r = a and 

/ ) 1 1 1 
f (~ = ~ < ✓r2 - 4 = ~' 

we obtain log(a/,B) < Ja1b < 1/(A- l). □ 

Now we appeal to Laurent's theorem on linear forms m two logarithms of 
algebraic numbers. 
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Lemma 3. ( cf. [17, Theorem 2]) Let 'Yl and ')'2 be m'Ultiplicatively independent 
algebraic numbers with l'YI I ::,: 1 and b2 I ::,: 1. Let bI and b2 be positive integers. 
Consider the linear form in two logarithms: 

where log ')'1, log ')'2 are any determinations of the logarithms of 'YI, ')'2 respectively. 
Let p and µ be real numbers with p > 1 and 1/3 <'.'.: µ <'.'.: 1. Set 

1 + 2µ- µ 2 
er= 

2 
>- = crlogp. 

Let aI, a2 be real numbers such that 

a;::,: max{ 1, p I log')';I - log l'Yil + 2Dh('Y;)} (i = 1, 2), 

aia2::,: >-2 , 

where D = [Q('YI,'Y2): Q] / [R('Y1,'Y2): R]. Leth be a real number such that 

{ ( ( b1 b2 ) ) D log 2 } h::,: max D log a
2 

+ ai + log A+ 1.75 + 0.06, A, --2- . 

Then we have 

where 

C = >-~er ( ~ + ½ 

C' = ✓Ccrw0_ 
>,3µ 

Proposition 4. (cf. [5, Proposition 28]) Let a= K, b = A 2 K - 4A, c =(A+ 
1 )2 K - 4(A + 1) with positive integers A, K. Suppose that { a, b, c, d} is a D( 4)­
quadruple with d > 2 not given by (1.1). Then, we have A<'.'.: 2800. 

Proof. Applying Lemma 3 to A with b1 = 2m, b2 = 1, 'YI = a/ {:J and ')'2 = /32,,X, 
we obtain 

(2.7) 
m, 

( ) < 69.88, 
40v + 0.058 log /3 

which together with Lemma 2 yields A <'.'.: 2800. □ 
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3. APPLICATION OF RICKERT'S THEOREM 

Consider equations (2.2) and (2.3). Put N = (A2 + A)K/2 - 2A, 01 

JI+ 2A/N and 02 = JI - 2/N. 

Lemma 5. ( cf. [5, Lemma 26]) 

max { 101 - (A: l)x I, 102 - (A ;zl)y I} < 2(A + 1) (A+ 1 +;) z-2. 

Proof. Use the equalities 

and the fact that~' ,/b1c are similar in size to x/z, y/z, respectively, in view 
of equations (2.2), (2.3). D 

The following is a version of Rickert's theorem (cf. [19]). 

Theorem 6. ( cf. [5, Theorem 5]) Let A, K be integers satisfying A ?: 2 and K ?: 
240.24(A+l). Put N = (A2 +A)K/2-2A. Then the numbers 01 =JI+ 2A/N 
and 02 = JI - 2/N satisfy 

max { 101 - : 1 1, 102 - p: I} > (2.838 • 1028 (A + l)N)-1 q->. 

for all integers P1, P2, q with q > 0, where 

>. = l + log(20(A + l)N) < 2_ 
1 ( 0.669N 2 ) og 4A(A+l) 

Note that in [10], where the family with c = 2 is considered, in order to apply 
a version of Rickcrt's theorem ([10, Theorem 3]) with >. < 2 it is necessary to 
assume K > 0.64A(A + l )3 , which is in general much stronger than the assumption 
K?: 240.24(A+l) in Theorem 6. Such an improvement comes from the following 
facts: 

• N = 0 (mod A); 
• N + 2A = N - 2 = 0 ( mod ( A + l)). 

These divisibility properties largely reduce the denominators of coefficients of 
a Pade approximation to 01(x) and 02(x) valued at x = l/N, where 01(x) = 
✓1 + 2Ax and 02(x) = ✓1- 2x. 

Proposition 7. ( cf. [5, Proposition 27]) On the assumptions in Proposition 4, if 
A?: Ao, then K < 240.24(A + 1) + Ko, where 

(Ao, Ko) E {(1326, 0), (454, 1000), (3, 23000), (2, 210000)}. 

Proof. Suppose that K?: 240.24(A+ 1). Applying Lemma 5 and Theorem 6 with 
P1 = A(A + l)x, P2 = (A+ l)y, q = Az, we have 

(3.1) z 2->- < 2c-1 A>.(A + l)(A + 1 + 2K-1 ), 

where c-1 = 2.838 • 1028 (A + l)N. Since >. < 2, the assertion follows from 
inequality (3.1) with the inequality 

(3.2) logz > 2mlog((A + l)K - 4), 

which is obtained from z = V2m in the same way as [10, Lemma 5]. D 
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4. PROOFS OF MAIN THEOREM AND COROLLARY 1 

Since Propositions 4 and 7 give absolute upper bounds for K and A, it remains 
to apply the reduction lemma ([9, Lemma 5 a)]) due to Dujella and Petho based 
on [2, Lemma]. However, since the reduction method is expensive, we will apply 
it after making the bounds smaller. 

Lemma 8. ( cf. [5, Lemma 29]) Suppose that V21 = W2m for some integers l and 
m with m ~ 2. If v = l - m, then v ~ 11. 

Proof. Note that m can be expressed as 

m = I µlogf3+0.5logxj 
l log(a/fJ) · 

It can be checked by a computer that inequalities (2.5) do not hold for each v 
with 1 :::; v :::; 10 and for each (K, A) in the ranges obtained from Propositions 4 
and 7. □ 

Proposition 9. ( cf. [5, Proposition 30]) On the assumptions in Proposition 4, 
we have A:::; 2796 and K < 240.24(A + 1) + 740. 

Proof. Inequality (2. 7) with v ~ 11 implies A :::; 2796. The other inequality 
K < 240.24(A + 1) + 740 follows from (3.1), (3.2) and Lemma 2 with v ~ 11. □ 

Proof of Main Theorem ( in the case where E = -2). Applying Matveev's theorem 
( cf. [18]) to the linear form A in three logarithms, one can obtain m < 3.4 • 1016 . 

Starting with this upper bound, we can reduce m by applying the reduction 
method for each K and A in the ranges obtained in Proposition 9 to get a con­
tradiction. D 

Proof of Corollary 1. Note that it always holds r 2 = T 2 (mod a), which proves 
the last assertion. Assume that r = ± T (mod a) and put r = ka ± T. Then, 
b = k 2 a ± 2Tk and c = (k + 1)2a ± 2T(k + 1). Substituting K = a, A = k and 
E = ±T, we see that the assertion follows from Main Theorem. □ 
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