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THE UNIQUE EXTENSIONS OF TWO PARAMETRIC 
FAMILIES OF DIOPHANTINE TRIPLES 

MIHAi CIPU, YASUTSUGU FUJITA, AND MAURICE MIGNOTTE 

ABSTRACT. This note gives a summary of the paper [5]. For a nonzero integer 
n, a set of rn positive integers is called a D(n)-m-tuple if the product of any 
two distinct elements increased by n is a perfect square. Let A, K be positive 
integers and E E {-2, -1, 1, 2}. The main theorem of this note asserts that 
each of the D(c:2 )-triples {K, A2 K + 2c:A, (A+ 1) 2 K + 2c(A + l)} has unique 
extension to a D(c:2 )-quadruple. 

1. MAIN THEOREM 

Let n be a nonzero integer. A set {a1, ... , am} of m distinct positive integers is 
called a D( n )-m-tuple if aiaj +n is a perfect square for all i, j with 1 :S: i < j :=::; m. 
In the case where n = 1, it is also called a Diophantine m-tuple. The first example 
of a Diophantinc quadruple, viz., {1, 3, 8,120}, was found by Fermat. Euler 
generalized it to get the Diophantine quadruple { a, b, a+ b + 2r, 4r(r + a)(r + b)}, 
where { a, b} is an arbitrary Diophantine pair with r = ✓ ab + l. Thus, any 
Diophantine pair can be extended to a Diophantine quadruple. Note that the 
second largest element a + b + 2r in the quadruple is known to be the smallest 
among all the possible elements c > max{ a, b} extending a fixed Diophantine pair 
{ a, b} into a Diophantine triple ( cf. [16, Lemma 4]). 

While there exist infinitely many Diophantine quadruples, a folklore conjecture 
states that there exists no Diophantine quintuple. Very recently, He, Togbe and 
Ziegler announced that they settled this conjecture ( cf. [15]). 

There is a stronger conjecture than the folklore one, which is still open. Arkin, 
Hoggatt and Strauss (cf. [1]), and independently Gibbs (cf. [12]), found that for 
any Diophantine triple { a, b, c} with r = ✓ ab + 1, s = ✓ ac + 1 and t = ✓be+ 1, 
the set { a, b, c, d+} is always a Diophantine quadruple, where d+ = a + b + c + 
2(abc + rst). Such a quadruple is called regular, and it is conjectured that any 
Diophantine quadruple is regular (cf. [1], [12]). Note that the largest element 
d+ in the quadruple is known to be the smallest among all the possible elements 
d > max{ a, b, c} extending a fixed Diophantine triple { a, b, c} into a Diophantine 
quadruple (cf. [7, Proposition 1]). 

In 1969, Baker and Davenport showed that if {1, 3, 8, d} is a Diophantine 
quadruple, then d = 120, which is d+ in the above notation. Thus, their re
sult supports the validity of the stronger conjecture. There are various kinds of 
generalizations of this result. For example, it is shown by He and Togbe that if 
{ K, A 2 K + 2A, (A+ 1) 2 K + 2( A+ 1), d} is a Diophantine quadruple with positive 
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integers K and A satisfying either A <::: 10 or A 2 52330, then d = d+ ( cf. [13], 
[14]). 

The case where n = 4 can be discussed analogously to the case where n = 1. 
There are conjectures saying that there exists no D(4)-quintuple and that if 
{a,b,c,d} is a D(4)-quadruple with r = ✓ab+4, s = ✓ac+4 and t = ✓bc+4, 
then d = d+, where d+ = a+ b + c + (abc + rst)/2. Such a quadruple is called 
also regular. Moreover, it is shown by Filipin, He and Togbe in [10] that if 
{K,A2K +4A, (A+ 1)2 +4(A+ 1),d} is a D(4)-quadruple with positive integers 
Kand A satisfying A<::: 22 and A 2 51767, then d = d+· 

Other generalizations and exhaustive references can be seen on Dujella's web
page ([8]). 

Our main theorem below generalizes the above results on the extensibilities of 
both families of D(l)- and D(4)-triples. 

Main Theorem. (cf. [5, Theoren 1]) Let A, K be positive integers. If{K,A2K+ 
21:A, (A+ 1)2 K + 21:(A + 1), d} is a D(1:2)-quadruple with c E { -2, -1, 1, 2}, then 
it is regular, in other words, we have 

(1.1) d = d+ = c 2 (2A2 + 2A) 2 K 3 + c-1 (16A3 + 24A2 + 8A)K2 

+ (20A2 + 20A + 4)K + 1:(SA + 4). 

Note that it suffices to show the theorem for c E { ±2}, since for any D(l)-triple 
{k, A2k±2A, (A+ 1) 2k±2(A+ 1)}, the set {K, A2 K ±4A, (A+ 1) 2 K ±4(A+ 1)} is 
a D(4)-triple with K = 2k, which is obtained from our triple {K, A2 K +21:A, (A+ 
1) 2K + 21:(A + 1)} by substituting c = ±2. 

The key to proving Main Theorem is to optimize Rickert 's theorem ( cf. [19]) 
on simultaneous rational approximations to irrationals with consideration for the 
peculiarities of the two parametric families. 

Main Theorem has the following immediate corollary. 

Corollary 1. (cf. [5, Corollary 2]) Let T E {1, 2}. Let {a, b, c, d} be a D(T2)
quadruple with a < b < c and c = a + b + 2r, where r = ✓ ab + T 2 . If r = ± T 
(mod a), then d = d+. In particular, if a has either of the forms 4T, pe and 2pe 
with p an odd prime and e a non-negative integer, then d = d+. 

The proof of Corollary 1 will be given at the end of this note. The remaining 
part of this note will be devoted to proving Main Theorem on the assumption 
that I c = -21, since the case c = 2 can be treated similarly. 

2. APPLICATION OF LAURENT'S THEOREM 

Let a= K, b = A2 K - 4A and c =(A+ 1) 2 K - 4(A + 1). Then, r = AK - 2, 
s =(A+ l)K - 2 and t = A(A + l)K - 2(2A + 1). Assume that {a,b,c,d} is 
a D(4)-quadruple with d > d+. Let x, y and z be positive integers satisfying 
ad + 4 = x 2 , bd + 4 = y2 and cd + 4 = z 2 . Eliminating d from these equalities 
leads us to the following system of Pellian equations: 

(2.1) 

(2.2) 

(2.3) 

ay2-bx2 =4(a-b), 

az2 - cx2 = 4(a - c), 

bz2 - cy2 = 4(b - c). 
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As is well-known, any positive solution to each of Pellian equations (2.1) to (2.3) 
can be expressed as a linear recurrence sequence whose initial term has only 
finitely may possibilities. More precisely, e.g., all positive solutions to (2.2) and 
(2.3) are respectively described as z = Vm and z = Wn, where 

1 
Vo= zo, V1 = 2(szo + C.To), 'Vm+2 = SVm+l - 'Vm, 

1 
Wo = z1, W1 = 2(tz1 + cy1), Wn+2 = twn+l - Wn, 

for some integers m, n and some solutions (z0 ,xo), (z1 ,y1) (called fundamental 
solutions) to (2.2), (2.3), respectively, with 

(2.4) lzol < a-1/4c3/4, lz1! < b-1/4c3/4 

(cf. [6, Lemma 1]). Considering the congruence Vm = Wn (mod 2c) together with 
inequalities (2.4), we see that m = n = 0 (mod 2), xo = YI = 2 and zo = z1 = ±2 
( cf. [5, Lemma 9]). Then, a similar argument gives the fundamental solutions to 
(2.1), (2.3) and the attached sequences {u~}, {u;'} with y = u~ = u;' explicitly 
( cf. [5, Lemma 10]). Finally, we deduce that any positive solutions to (2.1), (2.2) 
can be expressed as x = V21 = W2rn for some integers l, m ( note that we replaced 
l, m by 21, 2m since l = m = 0 (mod 2) can be proved), where 

Vo= 2, Vi = r + a, ½+2 = rVi+I - Vi, 
Wo = 2, W1 = s ± a, Wm+2 = sWrn+l - Wm, 

The standard technique (see, e.g., [2]) allows us to transform the equation 
Vii = l¥2m into the estimates 

(2.5) 0 <A:= 2llog,B- 2mloga + logx < a 1- 4m, 

where 

s + Jae 
a=---

2 

Putting v := l - m, which can be shown to be positive, we may rewrite A as 

(2.6) A= log(,B2vx) - 2mlog(a/,B). 

Since a and ,B arc similar in size, we obtain the following strong lower bound for 
m. 

Lemma 2. (cf. [5, Lemma 17]) m > (A- l)vlog,B. 

Proof. By (2.5) and (2.6), we have mlog(a/,B) > vlog,B. Since the mean value 
theorem tells us that log(a/,B) = J'(~)(s - r) for some~ E lR with r < ~ < s 
(where J(u) := log((u + ✓u2 - 4)/2)), s - r = a and 

/ ) 1 1 1 
f (~ = ~ < ✓r2 - 4 = ~' 

we obtain log(a/,B) < Ja1b < 1/(A- l). □ 

Now we appeal to Laurent's theorem on linear forms m two logarithms of 
algebraic numbers. 
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Lemma 3. ( cf. [17, Theorem 2]) Let 'Yl and ')'2 be m'Ultiplicatively independent 
algebraic numbers with l'YI I ::,: 1 and b2 I ::,: 1. Let bI and b2 be positive integers. 
Consider the linear form in two logarithms: 

where log ')'1, log ')'2 are any determinations of the logarithms of 'YI, ')'2 respectively. 
Let p and µ be real numbers with p > 1 and 1/3 <'.'.: µ <'.'.: 1. Set 

1 + 2µ- µ 2 
er= 

2 
>- = crlogp. 

Let aI, a2 be real numbers such that 

a;::,: max{ 1, p I log')';I - log l'Yil + 2Dh('Y;)} (i = 1, 2), 

aia2::,: >-2 , 

where D = [Q('YI,'Y2): Q] / [R('Y1,'Y2): R]. Leth be a real number such that 

{ ( ( b1 b2 ) ) D log 2 } h::,: max D log a
2 

+ ai + log A+ 1.75 + 0.06, A, --2- . 

Then we have 

where 

C = >-~er ( ~ + ½ 

C' = ✓Ccrw0_ 
>,3µ 

Proposition 4. (cf. [5, Proposition 28]) Let a= K, b = A 2 K - 4A, c =(A+ 
1 )2 K - 4(A + 1) with positive integers A, K. Suppose that { a, b, c, d} is a D( 4)
quadruple with d > 2 not given by (1.1). Then, we have A<'.'.: 2800. 

Proof. Applying Lemma 3 to A with b1 = 2m, b2 = 1, 'YI = a/ {:J and ')'2 = /32,,X, 
we obtain 

(2.7) 
m, 

( ) < 69.88, 
40v + 0.058 log /3 

which together with Lemma 2 yields A <'.'.: 2800. □ 
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3. APPLICATION OF RICKERT'S THEOREM 

Consider equations (2.2) and (2.3). Put N = (A2 + A)K/2 - 2A, 01 

JI+ 2A/N and 02 = JI - 2/N. 

Lemma 5. ( cf. [5, Lemma 26]) 

max { 101 - (A: l)x I, 102 - (A ;zl)y I} < 2(A + 1) (A+ 1 +;) z-2. 

Proof. Use the equalities 

and the fact that~' ,/b1c are similar in size to x/z, y/z, respectively, in view 
of equations (2.2), (2.3). D 

The following is a version of Rickert's theorem (cf. [19]). 

Theorem 6. ( cf. [5, Theorem 5]) Let A, K be integers satisfying A ?: 2 and K ?: 
240.24(A+l). Put N = (A2 +A)K/2-2A. Then the numbers 01 =JI+ 2A/N 
and 02 = JI - 2/N satisfy 

max { 101 - : 1 1, 102 - p: I} > (2.838 • 1028 (A + l)N)-1 q->. 

for all integers P1, P2, q with q > 0, where 

>. = l + log(20(A + l)N) < 2_ 
1 ( 0.669N 2 ) og 4A(A+l) 

Note that in [10], where the family with c = 2 is considered, in order to apply 
a version of Rickcrt's theorem ([10, Theorem 3]) with >. < 2 it is necessary to 
assume K > 0.64A(A + l )3 , which is in general much stronger than the assumption 
K?: 240.24(A+l) in Theorem 6. Such an improvement comes from the following 
facts: 

• N = 0 (mod A); 
• N + 2A = N - 2 = 0 ( mod ( A + l)). 

These divisibility properties largely reduce the denominators of coefficients of 
a Pade approximation to 01(x) and 02(x) valued at x = l/N, where 01(x) = 
✓1 + 2Ax and 02(x) = ✓1- 2x. 

Proposition 7. ( cf. [5, Proposition 27]) On the assumptions in Proposition 4, if 
A?: Ao, then K < 240.24(A + 1) + Ko, where 

(Ao, Ko) E {(1326, 0), (454, 1000), (3, 23000), (2, 210000)}. 

Proof. Suppose that K?: 240.24(A+ 1). Applying Lemma 5 and Theorem 6 with 
P1 = A(A + l)x, P2 = (A+ l)y, q = Az, we have 

(3.1) z 2->- < 2c-1 A>.(A + l)(A + 1 + 2K-1 ), 

where c-1 = 2.838 • 1028 (A + l)N. Since >. < 2, the assertion follows from 
inequality (3.1) with the inequality 

(3.2) logz > 2mlog((A + l)K - 4), 

which is obtained from z = V2m in the same way as [10, Lemma 5]. D 
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4. PROOFS OF MAIN THEOREM AND COROLLARY 1 

Since Propositions 4 and 7 give absolute upper bounds for K and A, it remains 
to apply the reduction lemma ([9, Lemma 5 a)]) due to Dujella and Petho based 
on [2, Lemma]. However, since the reduction method is expensive, we will apply 
it after making the bounds smaller. 

Lemma 8. ( cf. [5, Lemma 29]) Suppose that V21 = W2m for some integers l and 
m with m ~ 2. If v = l - m, then v ~ 11. 

Proof. Note that m can be expressed as 

m = I µlogf3+0.5logxj 
l log(a/fJ) · 

It can be checked by a computer that inequalities (2.5) do not hold for each v 
with 1 :::; v :::; 10 and for each (K, A) in the ranges obtained from Propositions 4 
and 7. □ 

Proposition 9. ( cf. [5, Proposition 30]) On the assumptions in Proposition 4, 
we have A:::; 2796 and K < 240.24(A + 1) + 740. 

Proof. Inequality (2. 7) with v ~ 11 implies A :::; 2796. The other inequality 
K < 240.24(A + 1) + 740 follows from (3.1), (3.2) and Lemma 2 with v ~ 11. □ 

Proof of Main Theorem ( in the case where E = -2). Applying Matveev's theorem 
( cf. [18]) to the linear form A in three logarithms, one can obtain m < 3.4 • 1016 . 

Starting with this upper bound, we can reduce m by applying the reduction 
method for each K and A in the ranges obtained in Proposition 9 to get a con
tradiction. D 

Proof of Corollary 1. Note that it always holds r 2 = T 2 (mod a), which proves 
the last assertion. Assume that r = ± T (mod a) and put r = ka ± T. Then, 
b = k 2 a ± 2Tk and c = (k + 1)2a ± 2T(k + 1). Substituting K = a, A = k and 
E = ±T, we see that the assertion follows from Main Theorem. □ 

REFERENCES 

[l] J. Arkin, V. E. Hoggatt, E. G. Strauss, On Euler's solution of a problm1. of Diophantus, 
Fibonacci Quart. 17 (1979), 333-339. 

[2] A. Baker, H. Davenport, The equations 3x2 -2 = y 2 and 8x2 -7 = z2 , Quart. J. Math. Ox
ford Ser. (2) 20 (1969), 129-137. 

[3] M. Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), 201-219. 
[4] M. Cipu, A. Filipin, Y. Fujita, Bounds for D-iophantine quintuples II, Publ. :vfath. Debrecen 

88 (2016), 59-78. 
[5] M. Cipu, Y. Fujita, M. Mignotte, Two-parameter families of uniquely extendable Diophan

tine triples, to appear in Sci. China Math. 
[6] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 

(2001), 126-150. 
[7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 

(2004), 183-224. 
[8] A. Dujella, Diophantine m-tuples, http://web.math.pmf.unizg.hr/~duje/dtuples.html. 
[9] A. Dujella, A. Petho, A generalization of a theorem of Baker and Davenport, 

Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306. 
[10] A. Filipin, B. He, A. Togbe, On a family of two-parametric D(4)-triples, Glas. Mat. Ser. III 

47 (2012), 31-51. 



47

TWO PARAMETRIC FAMILIES OF DIOPHANTINE TRIPLES 

[11] Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number 
Theory 129 (2009), 1678-1697. 

[12] P. E. Gibbs, Computer Bulletin 17 (1978), 16. 
[13] B. He, A. Togbe, On a family of Diophantine triples {k, A 2 k + 2A, (A+ 1) 2 k + 2(A + l)} 

with two parameters, Acta Math. Hungar. 124 (2009), 99-113. 
[14] B. He, A. Togbe, On a family of Diophantine triples {k, A 2 k + 2A, (A+ l)2k + 2(A + l)} 

with two parameters II, Period. Math. Hungar. 64 (2012), 1-10. 
[15] B. He, A. Togbe, V. Ziegler, There is no Diophantine quintuple, Preprint (2016), arXiv: 

1610.04020vl. 
[16] B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci 

Quart. 16 (1978), 155-165. 
[17] M. Laurent, Linear forms in two logarithms and interpolal-ion determinants II, Acta 

Arith. 133 (2008), 325-348. 
[18] E. M. Matveev, An explicit lower bound.for a homogeneous rational linear.form m logarithms 

of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. English 
transl. in lzv. Math. 64 (2000), 1217-1269. 

[19] J. H. Rickert, Simultaneous rational approximation and related Diophantine equations, 
Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. 

SJMJON 8TOILOW INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY, RESEARCH 
UNIT NR. 5, P.O. Box 1-764, R0-014700 BUCHAREST, ROMANIA 

DEPARTMENT OF MATHEMATICS, COLLEGE OF INDUSTRIAL TECHI\OLOGY, NIHON UNIVER
SITY, 2-11-1 SHIN-EI, NARASHINO, CHIBA, JAPAN 

DEPARTEMENT DE MATHEMATIQUE, UN!VERSITE DE STRASBOURG, 67084 STRASBOURG, 
FRANCE 


