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ABSTRACT. This note gives a summary of the paper [5]. For a nonzero integer
n, a set of m positive integers is called a D(n)-m-tuple if the product of any
two distinct elements increased by n is a perfect square. Let A, K be positive
integers and € € {—2,—1,1,2}. The main theorem of this note asserts that
each of the D(g?)-triples {K, A’K + 2¢A, (A + 1)K + 2¢(A + 1)} has unique
extension to a D(e?)-quadruple.

1. MAIN THEOREM

Let n be a nonzero integer. A set {ai,...,am} of m distinct positive integers is
called a D(n)-m-tuple if a;a;+n is a perfect square for all ¢, j with 1 <14 < j < m.
In the case where n = 1, it is also called a Diophantine m-tuple. The first example
of a Diophantine quadruple, viz., {1,3,8,120}, was found by Fermat. Euler
generalized it to get the Diophantine quadruple {a, b, a+b+2r,4r(r +a)(r +b)},
where {a,b} is an arbitrary Diophantine pair with » = v/ab+ 1. Thus, any
Diophantine pair can be extended to a Diophantine quadruple. Note that the
second largest element a + b + 2r in the quadruple is known to be the smallest
among all the possible elements ¢ > max{a, b} extending a fixed Diophantine pair
{a, b} into a Diophantine triple (cf. [16, Lemma 4]).

While there exist infinitely many Diophantine quadruples, a folklore conjecture
states that there exists no Diophantine quintuple. Very recently, He, Toghé and
Ziegler announced that they settled this conjecture (cf. [15]).

There is a stronger conjecture than the folklore one, which is still open. Arkin,
Hoggatt and Strauss (cf. [1]), and independently Gibbs (cf. [12]), found that for
any Diophantine triple {a,b,c} with r = Vab+ 1, s = vac+ 1 and t = Vbc + 1,
the set {a,b,c,d+} is always a Diophantine quadruple, where d4 = a+b+c+
2(abc + rst). Such a quadruple is called regular, and it is conjectured that any
Diophantine quadruple is regular (cf. [1], [12]). Note that the largest element
dy in the quadruple is known to be the smallest among all the possible elements
d > max{a,b, c} extending a fixed Diophantine triple {a, b, c} into a Diophantine
quadruple (cf. [7, Proposition 1]).

In 1969, Baker and Davenport showed that if {1,3,8,d} is a Diophantine
quadruple, then d = 120, which is d; in the above notation. Thus, their re-
sult supports the validity of the stronger conjecture. There are various kinds of
generalizations of this result. For example, it is shown by He and Togbé that if
{K,A’K +2A,(A+1)2K +2(A+1),d} is a Diophantine quadruple with positive
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integers K and A satisfying either A < 10 or A > 52330, then d = dy (cf. [13],
[14]).

The case where n = 4 can be discussed analogously to the case where n = 1.
There are conjectures saying that there exists no D(4)-quintuple and that if
{a,b,c,d} is a D(4)-quadruple with r = vab+4, s = vac+ 4 and t = V/bc + 4,
then d = d, where dy = a+ b+ ¢+ (abc + rst)/2. Such a quadruple is called
also reqular. Moreover, it is shown by Filipin, He and Togbé in [10] that if
{K,A’K +4A, (A+1)2+4(A+1),d} is a D(4)-quadruple with positive integers
K and A satisfying A < 22 and A > 51767, then d = d.

Other generalizations and exhaustive references can be seen on Dujella’s web-
page ([8]).

Our main theorem below generalizes the above results on the extensibilities of
both families of D(1)- and D(4)-triples.

Main Theorem. (cf. [5, Theoren 1)) Let A, K be positive integers. If {K, A2K +
2eA, (A+1)2K +2¢(A+1),d} is a D(€?)-quadruple with € € {—2,—1,1,2}, then
it is regqular, in other words, we have

(1.1) d=d; =e 2242 + 24)°K3 + 71 (16 A3 + 24A% + 8A)K?
+ (2042 + 20A + 4)K + €(8A + 4).

Note that it suffices to show the theorem for € € {£2}, since for any D(1)-triple
{k, A%k+2A, (A+1)2k+£2(A+1)}, theset {K, A2K +4A, (A+1)2K +4(A+1)} is
a D(4)-triple with K = 2k, which is obtained from our triple { K, A?K +2¢A, (A+
1)2K + 2¢(A + 1)} by substituting e = £2.

The key to proving Main Theorem is to optimize Rickert’s theorem (cf. [19])
on simultaneous rational approximations to irrationals with consideration for the
peculiarities of the two parametric families.

Main Theorem has the following immediate corollary.

Corollary 1. (cf. [5, Corollary 2]) Let 7 € {1,2}. Let {a,b,c,d} be a D(7?)-
quadruple with a < b < c and c = a+ b+ 2r, wherer = Vab+72. Ifr = &7
(mod a), then d = dy. In particular, if a has either of the forms 47, p® and 2p°
with p an odd prime and e a non-negative integer, then d = d.

The proof of Corollary 1 will be given at the end of this note. The remaining
part of this note will be devoted to proving Main Theorem on the assumption
that H, since the case € = 2 can be treated similarly.

2. APPLICATION OF LAURENT’S THEOREM

Leta= K, b= A?’K —4A and ¢ = (A+1)?K — 4(A+1). Then, r = AK — 2,
s=(A+ 1)K —-2andt=A(A+1)K —2(2A+1). Assume that {a,b,c,d} is
a D(4)-quadruple with d > dy. Let z, y and z be positive integers satisfying
ad +4 = 2%, bd + 4 = y? and cd + 4 = 2%. Eliminating d from these equalities
leads us to the following system of Pellian equations:

(2.1) ay® — bx? = 4(a - b),
(2.2) az® — cx? = 4(a - ¢),
(2.3) bz? — cy? = 4(b—c).
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As is well-known, any positive solution to each of Pellian equations (2.1) to (2.3)
can be expressed as a linear recurrence sequence whose initial term has only
finitely may possibilities. More precisely, e.g., all positive solutions to (2.2) and
(2.3) are respectively described as z = vy, and z = wy,, where

1
Vg = 29, V1 = —2—(szo + ¢x0), Umt2 = SUm+t1 — Um,

1
wo = 21, w1 = =(tz1 + cy1), Wpto = tWpt1 — Wy,
2

for some integers m, n and some solutions (zg,xo), (21,y1) (called fundamental
solutions) to (2.2), (2.3), respectively, with

(2.4) lz0| < a V44, |z < b7 H4AS/A

(cf. [6, Lemma 1]). Considering the congruence vy, = wy, (mod 2¢) together with
inequalities (2.4), we see that m =n =0 (mod 2), zg = y1 = 2 and 29 = 21 = +2
(cf. [5, Lemma 9]). Then, a similar argument gives the fundamental solutions to
(2.1), (2.3) and the attached sequences {uy,}, {v)} with y = u;, = u] explicitly
(cf. [5, Lemma 10]). Finally, we deduce that any positive solutions to (2.1), (2.2)
can be expressed as x = Vo = Way, for some integers [, m (note that we replaced
I, m by 2l, 2m since [ = m = 0 (mod 2) can be proved), where

Ww=2 Vi=r+a, Vijo=rV 1, -V,
Wo=2, Wy =s+a, Whio=sWpi1— Wn.

The standard technique (see, e.g., [2]) allows us to transform the equation
Vo = Wap, into the estimates
(2.5) 0 < A:=2llogB —2mloga +logy < al™4m™,

where

a:f_iQ__@ B =

4+ Vab _ Vbe+ ac
2 T Vbt vab

Putting v := [ — m, which can be shown to be positive, we may rewrite A as
(2.6) A = log(B*x) — 2mlog(a/B).

Since o and [ are similar in size, we obtain the following strong lower bound for
m.

Lemma 2. (cf. [5, Lemma 17]) m > (A — 1)rlog 3.

Proof. By (2.5) and (2.6), we have mlog(a/8) > vlog . Since the mean value
theorem tells us that log(a/B) = f'(€)(s — ) for some £ € R with r < £ < s

(where f(u) := log((u + vVu? —4)/2)), s —r = a and

ooy 1 1 1
o= V1 V-1 Vab
we obtain log(a/f) < \/a/b < 1/(A—1). O

Now we appeal to Laurent’s theorem on linear forms in two logarithms of
algebraic numbers.
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Lemma 3. (cf. [17, Theorem 2|) Let v and v2 be multiplicatively independent
algebraic numbers with |y1| > 1 and |y2| > 1. Let by and by be positive integers.
Consider the linear form in two logarithms:

A = balogys — b1 log 1,

where logy1, log v are any determinations of the logarithms of 1,2 respectively.
Let p and p be real numbers with p > 1 and 1/3 < u < 1. Set

1+2u—p?
T

Let a1, as be real numbers such that

A =ologp.

ai =2 max{1, p|logvy|—log|v|+2Dh(y)} (i=1,2),

aray > A%,
where D = [Q(1,72) : Q] / [R(71,72) : R]. Let h be a real number such that
Dlog?2 }

b
h > max {D <log (a—l + Z—2> +log A + 1.75) +0.06, A,
2 1

Then we have

A\ 2 A ) A\ 2
log|4] > C h+; ajas + Vwl h—i—; +log| C h+; ajas | ,

where
142u— u?
== L N=ologp,
2
= 14+4/14+ 1 0=14/1+ ! + !
w= agz ) VT 4?2 "2
h 1
H=—-+4-
/\+0"
2
oo M w+1 w2+ 8Aw5/491/4 +é i_}_ 1\ \w
T Mo\ 6 2 9 3,/a1a2H1/2 3 \a1 as) H ’
Cowb
,:
C o

Proposition 4. (cf. [5, Proposition 28]) Let a = K, b = A’K — 44, c = (A +
1)2K — 4(A + 1) with positive integers A, K. Suppose that {a,b,c,d} is a D(4)-
quadruple with d > 2 not given by (1.1). Then, we have A < 2800.

Proof. Applying Lemma 3 to A with by = 2m, by =1, 71 = o/f and 5 = %y,
we obtain

(2.7) uk

(40v + 0.058) log 8
which together with Lemma 2 yields A < 2800. O

< 69.88,
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3. APPLICATION OF RICKERT’S THEOREM
Consider equations (2.2) and (2.3). Put N = (A% + A)K/2 — 24, 6, =

VI1+24/N and 6, = /1 - 2/N.

Lemma 5. (cf. [5, Lemma 26))
max { A+
z

Proof. Use the equalities

a A+1 /b
91:(A+1)\/; f=20200/2,

and the fact that \/a/c, \/b/c are similar in size to z/z, y/z, respectively, in view
of equations (2.2), (2.3). O

(A+1)y

2 -2

b

The following is a version of Rickert’s theorem (cf. [19]).

Theorem 6. (cf. [5, Theorem 5]) Let A, K be integers satisfying A > 2 and K >
240.24(A+1). Put N = (A4 A)K/2—2A. Then the numbers 61 = /1 + 2A/N

and 0y = /1 —2/N satisfy
max { , |02 - 12
q

for all integers p1, pa, q¢ with ¢ > 0, where
log(20(A + 1)N)

0.669N2
log (4A(A+1)>

Note that in [10], where the family with e = 2 is considered, in order to apply
a version of Rickert’s theorem ({10, Theorem 3]) with A < 2 it is necessary to
assume K > 0.64A4(A+1)3, which is in general much stronger than the assumption

K > 240.24(A+1) in Theorem 6. Such an improvement comes from the following
facts:

e N =0 (mod A);

e N+2A=N—-2=0 (mod (4 +1)).
These divisibility properties largely reduce the denominators of coefficients of
a Padé approximation to 6;(x) and 6(x) valued at z = 1/N, where 6;(z) =

V14 2Az and 63(z) = V1 — 2z.

Proposition 7. (cf. [5, Proposition 27]) On the assumptions in Proposition 4, if
A > Ao, then K < 240.24(A + 1) + Ky, where

(Ao, Ko) € {(1326,0), (454,1000), (3, 23000), (2, 210000)}.

Proof. Suppose that K > 240.24(A+1). Applying Lemma 5 and Theorem 6 with
p1=A(A+ 1)z, po = (A+ 1)y, g = Az, we have

(3.1) 227 <207 T AMA+ )(A+ 142K 7Y,

where C~1 = 2.838 - 10%2(A + 1)N. Since A < 2, the assertion follows from
inequality (3.1) with the inequality

(3.2) log z > 2mlog((A + 1)K —4),

which is obtained from z = vy, in the same way as [10, Lemma 5]. O

6, - 2
q

} > (2.838-10%%(A+ 1)N) ' g™

A=1+ < 2.
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4. PROOFS OF MAIN THEOREM AND COROLLARY 1

Since Propositions 4 and 7 give absolute upper bounds for K and A, it remains
to apply the reduction lemma ([9, Lemma 5 a)]) due to Dujella and Pethd based
on [2, Lemma]. However, since the reduction method is expensive, we will apply
it after making the bounds smaller.

Lemma 8. (cf. [5, Lemma 29]) Suppose that Vo = Way, for some integers | and
m withm > 2. If v =1—m, then v > 11.

Proof. Note that m can be expressed as

B [ulogﬁ—l—O.Slong
log(a/B) '
It can be checked by a computer that inequalities (2.5) do not hold for each v

with 1 < v <10 and for each (K, A) in the ranges obtained from Propositions 4
and 7. 0

Proposition 9. (cf. [5, Proposition 30]) On the assumptions in Proposition 4,
we have A < 2796 and K < 240.24(A + 1) + 740.

Proof. Inequality (2.7) with v > 11 implies A < 2796. The other inequality
K < 240.24(A+ 1) + 740 follows from (3.1), (3.2) and Lemma 2 with » > 11. O

Proof of Main Theorem (in the case where e = —2). Applying Matveev’s theorem
(cf. [18]) to the linear form A in three logarithms, one can obtain m < 3.4 -106.
Starting with this upper bound, we can reduce m by applying the reduction
method for each K and A in the ranges obtained in Proposition 9 to get a con-
tradiction. g

Proof of Corollary 1. Note that it always holds r2 = 72 (mod a), which proves

the last assertion. Assume that » = £7 (mod @) and put » = ka £ 7. Then,
b= k%a+ 27k and ¢ = (k + 1)%a £+ 27(k + 1). Substituting K = a, A = k and
€ = %7, we see that the assertion follows from Main Theorem. O
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