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On discrete universality of Hurwitz zeta functions 

1 Introduction 

3e.iE '1§ lt (Hidehiko Mishou) 

l01' '~ ~ ::k $ 

In 1910s, Bohr initiated the investigation of value distribution of the Riemann zeta function 

00 1 ( 1 )-1 
( ( 8 ) = L n s = IT 1 - ps for o· > 1, 

n=l p 

where s = CY + 'it denotes a complex variable and the symbol p denotes a prime number as 

usual. First he [2] showed that the set 

is dense in the set (C of all complex numbers. Later Bohr and Courant [3] showed that for any 

fixed 1 /2 < <:Yo < 1 the set 

{((<:Yo+ it) E <C It E IR} 

is dense in <C. In 1975, Voronin [13] extended this denseness result to the infinite dimensional 

space, that is, the functional space and obtained the remarkable universality theorem. To 

state it in modern form which was established by Bagchi [1], we define a probability measure 

on JR. Let µ be the Lebesgue measure on the set lR of all real numbers. For T > 0 define 

1 
vr(···)=Tµ{TE[O,T] :---}, 

where in place of dots we write some conditions satisfied by a real number T. 

1 
Theorem 1 (Voronin, [13]). Let K be a compact subset in the strip 2 < CY < 1 with connected 

complement and f ( s) be a non-vanishing and continuous function on K which ·is analytic in 

the interior of K. Then for any small positive number E we have 

liminf Vy (max 1((8 + iT) - f (s) I < E) > 0. 
T-+oo sEK 

This theorem asserts roughly that any analytic function can be approximated uniformly 

by suitable vertical translation of ( ( 8). 

These results have been developed into various directions by several mathematicians. Here 

we will describe one of such derivative studies, discrete value distribution of zeta functions. 
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The first result in this direction was obtained by Voronin [12]. He showed that for any fixed 

8 > 0, ½ < O"o '.':'.'. 1 and N EN, the set 

is dense in C,N. This means that the multi-dimensional denseness result of the Riemann zeta 

function holds for the arithmetic progression {8n In EN}. In 1980, Reich [11] established the 

discrete universality theorem for Dedekind zeta functions with respect to arithmetic progres

sions. Later, Dubickas and Laurincikas [4] established the discrete universality theorem for 

the Riemann zeta function with respect to the sequence {8n'1 In EN}, where 1J is a positive 

real number with 17 < l. 

In the following, we treat only one sequence r of real numbers which is deeply related to 

the Riemann zeta function ((s) itself. As usual, p = /3 + i, denotes a non-trivial zero of ((s). 

For x > l, E. Landau [10] established the following formula. 

T L xP = --A(x) + O(logT), 
27f 

p=fJ+h 
O<-yS:T 

where A(.r) is the extended von Mangoldt function 

A(x) = ' - ' { 
logp (x = pk k > 1) 

0 (otherwise), 

(1) 

and the error term depends on x. Now we assume the Riemann hypothesis, which asserts 

that 

/3 = ! 
2 

for all non-trivial zeros p. Combining (1), (2) and the zero density estimate 

1 
N(T) :=HP= /3 + i--y I O < --y :':'.'. T} = 27f TlogT + O(T), 

we have 

as T ➔ oo, 

(2) 

for any x > l and a positive constant 8. This implies that the set r of all positive imaginary 

parts of non-trivial zeros of the Riemann zeta function is uniformly distributed modulo 1. 

From this, we could show that the set 

is dense in C for any positive number 8. Recently, Garunkstis and Laurincikas [6] obtained 

the next result 
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Theorem 2 (Garunkstis and Laurincikas [6]). Suppose that the Riemann hypothesis holds. 

Let O < 11 :S: 12 :S: · · · be the positive imaginary parts of non-trivial zeros of ((s). Let a set 

K and a function f(s) be as in Theorem 1. Then for any small positive number E we have 

liminf-1-~ {1 :S: k :S: NI max l((s + i,k) - f(s)I < E} > 0. 
N--+oo N + 1 sEK 

They proved this theorem using the explicit version of Landau's formula (1) due to Gonek 

[8] and [9]. From more stronger formula due to Fujii [5], the author established the following 

joint discrete universality theorem for Dirichlet L-functious. 

Theorem 3 (Mishou, Falanga Conference in 2016, Lithuania). Assume that the Riemann 

hypothesis holds. Let ,5 be a positive constant satisfying o :S: 1. Let x1, · · · , Xr be pairwise 

non-equivalent Dirichlet characters. For each 1 :S: j :S: r, let Kj be a compact s·ubset in 

½ < a < 1 with connected complement and fj ( s) be a non-vanishing and continuous function 

on Kj which is analytic in the interior of Kj. Then for any small positive number E we have 

liminf-(1 )~{o<,:s:TI maxmaxlL(s+io,,xj)-fj(s)l<E}>o. 
T--+oo NT lS;SrsEKj 

For a real number a: with O < a: :S: 1, the Huriwitz zeta function is defined by 

oo l 

((s, a:) = L (m + o:)s 
m=O 

for a > 1. Now we state our main result, which is the discrete universality theorem for 

Hurwitz zeta functions. 

Theorem 4. Assume that the Riemann hypothesis holds. Leto be a positive constant satis

fying ,5 :S: 1. Let O < a: < 1 be a real number which is rational without 1 /2 or transcendental. 

Let K be a compact subset in ½ < a < 1 with connected complement and f ( s) be a contin·uous 

function on K which is analytic in the interior of K. Then for any small positive number E 

we have 

2 Outline of the proof of Theorem 4 

In this section we sketch the proof of Theorem 4. First we consider the case that a: is a 

rational number ~ without 1/2. Then the Hurwitz zeta function is represented as a sum of 

Dirichlet £-functions 
a qs 

((s, q) = rp(q) L x(a)L(s, x). 
x (mod q) 

From this expression and Theorem 3 we could easily obtain the discrete universality for ( ( s, ! ) . 
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Next we consider the case that a is a real transcendental number. In this case, the set of 

Dirichlet exponents {log(m + a) I m :;,, O} of ((s, a) is linearly independent over Q. Also, as 

we stated in §1, the set 

r = {positive imaginary parts of non-trivial zeros of ((s)} 

is uniformly distributed modulo 1. From these two properties, we have the following lemma. 

Lemma 1. Leto be a positive real number. For any NE N, the set 

{(_bloga _blog(l+a) _blog(N+a)) m,N+11 r} "f, ----"(, ... , ----"( Em. "( E 
21r 21r 21r 

is uniformly distributed in [0, l]N+l modulo 1. Namely, for T > 0, 0 < T/ < 1, a sequence 

{0m} of real numbers with O::; 0m < 1 define a subset AN,r,(T) of r by 

{ 111 
blog(m + a) II AN,r,(T) = 0 < 1 < T - 27r 'Y - 0m ::; T/ (0::; m::; N)}, 

where llxll = minna Ix - nl. Then we have 

(3) 

Here we remark that Lemma 1 holds for all positive o. l\'ext we prepare the derrneness 

lemma obtained by Gonek [7]. 

Lemma 2. Let a set K and a function f(s) be as in Theorem 4- For any E > 0, there exists 

a sequence {0m} with O::; 0m < 1 and No> 0 such that if N > No we have 

where e(x) = e2rrix. 

max 
sE]( 

f(s) _ ~ e(0m) 
L (m+a)"' 

m'.5cN 

< E, 

Lemma 3. Assume that o be a positive real number with o::; 1. For T > 0 and z > 0, define 

a s·abset Bz(T) off by 

Bz(T) = {o < 1 <TI max ((s+io,,a)- ~ ( \ +o < C}. (4) 
sEK L m +as ', 

m.~z 

For any E > 0 and any E1 > 0, there e:rists zo > 0 such that if z > zo we have 

, UBz(T) , 
lnn --(-) > 1 - c . 

T-HX) NT 
(5) 

This lemma implies that for almost all I the attached Hurwitz zeta function ((s + io1 , a) 

is uniformly approximated by truncated Dirichlet polynomials. To prove Lemma 3, we need 

the following explict version of Landau formula due to Fujii [5]. 
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Lemma 4 (Fujii [5]). Assume that the Riemann hypothesis holds. For x > l and T > To, we 

have 

+ O(xlog(2x)) + 0 (1ogxrnin ( x, (:))) + 0 ( x 10:!;T) 
+o x2 loglogT -log(2x)· " +O(xlog(2.r)loglog(3.r)), ( 

1+ 1 logT ) 
log log 1 

where (x) is the distance from x to the near-test prime power other than x itself and 

M(x, T) = ~ J,T xit log(_!_) dt. 
271" 1 27r 

To prove Lemma 3, we consider the second mean sum 

2 

I:= L fl ((s + ib,, a) - L (m + !)s+io')' dudt. 
O<"(<T . . K mScz 

Applying the approximate functional equation of the Hurwitz zeta function and Lemma 4, we 

have 

(6) 

where a1 = minsu< ~s > ½- This implies Lemma 3. Here we remark that to obtain estimate 

( 6), we need the restriction 6 :S 1. If 6 > 1, the error terms arise from Lemma 4 become too 

large. 

As in the proof of Lemma 3, we could obtain the next lemma. 

Lemma 5. Suppose that 6 be a positive real number with 6 :S 1. Let K be a compact subset 

of the strip ½ < a < l. Let a1 > ½ satisfying K C {s E (C I a > ai}. Let E > 0. Then 

there exists a large positive integer N1 = N1 ( K, a1, E) depending on K, a1 and E satisfying the 

following: 

Fix any positive integer N > N1. For any T > 0, 0 < 71 < 1 and a sequence { 0m} of real 

numbers with O :S Bm < 1, define a subset AN,,1(T) ofr as in Lemma 1. For any z > N define 

a subset CN,ry(T) of AN,ri(T) by 

Then for all T sufficiently large we have 

(7) 
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Now we prove Theorem 4. Let a set K and a function f(s) be as in Theorem 4. Let 

E > 0. Lemma 2 implies that there exist a large positive integer No and a sequence { 0m} of 

real numbers with O :S 0m ::=; 1 such that for any N > No we have 

.f( ) L e(0m) 
rnax s - ---- < E. 
sEK (m + a) 8 

mSN 

(8) 

Now we fix N > max{No, Ni} satisfying 

where CK is the 0-constant in Lemma 5. By the definition of the subset AN,1J(T) in Lemma 

1 and the continuity of Dirichlet polynomials, we can choose a sufficiently small positive real 

number 7) such that 

(9) 

holds for all I E AN,7/(T). In Lemma 3, we take E1 = ¼(277)N+l and fix z > max{zo, N}. From 

(5) and (7), we have, 

~(Bz(T) n CN,1J(T)) > !(2 )N+l _ !(2 )N+l = !(2 )N+l 
N (T) 2 7/ 4 7/ 4 7/ 

This means that Bz(T) n CN,'1(T) has a positive lower density. For all I E Bz(T) n CN,,,(T), 

we have (9), (4) in Lemma 3 and 

Combining these estimates and (8), we obtain Theorem 4. □ 

3 A Conjecture 

In Theorem 3 and Theorem 4, the restriction 

arises from the technical reason. On the other hand, as we stated in §1, the denseness result 

of the set 

{((cr+io1 ) E <C I er> 1, 1 E f} 

holds for any positive 0. Therefore it is expected that these universality theorems also hold 

for o > 1. Especially, if the discrete universality theorem of ((s) holds for o = 2, we have an 

interesting result on value-distribution of multiple zeta functions. 
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Let u and v be complex variables. The Euler - Zagier double sum is defined by 

00 00 1 
Z2(u, v) = ~ ~ ( ) LLmu m+nv 

m=l n=l 

for 3tu > l and 3tv > l and is meromorphically continued to the whole complex space (('.2 . The 

function Z2 ( u, v) is one of the most classical multiple zeta functions. The study of multiple 

zeta functions have been extensively developed by many mathematicians on zeta-values and 

analytic continuation. Meanwhile, there are a few results on value distribution of the multiple 

zeta functions. By the definition of ((s) and ( 2 (zi,v), we have the relation 

Now we assume that the Riemann hypothesis holds. If we put u = v = p = ½ + i,, we have 

This relation predicts the next conjecture 

Conjecture 1. The set 

{Zeta2 (p,p) EC I ((p) = o} 

is dense in C 

References 

[1] B. Bagchi, The statistical behavior and universality properties of the Riemann zeta

function and other allied Dirichlet series, Ph. D. Thesis. Calcutta, Indian Statistical 

Institute, 1981. 

[2] H. Bohr, Uber das Verhalten von ((s) in der Halbebene a > 1, Nachr. Akad. Wiss. 

Gottingen II Math. Phys. Kl., 409-428, 1911. 

[3] H. Bohr and R. Courant, Neue Anwendunyen der Theorie der Diophantischen auf die 

Riemannsche Zetafunktion, J. Reine Angew. Math., 144, 249-274, 1914. 

[4] Dubickas and Laurincikas, Distribution modulo l and the discrete universality of the 

Riemann zeta-function, Abh. Math. Semin. Univ. Hambg. 86, 79-87, 2016. 

[5] A. Fujii, On a Theorem of Landau, Proc. Japan Acad., 65, Ser. A, 51-54, 1989. 

[6] Garunkstis and Laurincikas, The Riemann hypothesis and universality of the Riemann 

zeta-function, preprint. 



55

[7] S. M. Gonek, Analytic properties of zeta and L-functions , Thesis, Univ. of Michigan, 

1979. 

[8] S. M. Gonek, A formula of Landau and mean val?tes of ((s), Topics in analytic number 

theory, Austin, TX, 92-97, 1982. 

[9] S. M. Gonek, An explicit formula of Landau and its applications th the theory of the zeta 

function, Contemp. Math. 143, 395-413, 1993. 

[10] E. Landau, Uber die Nullstellen der Zetafunktion, Math. Ann. 71, 548-564, 1911. 

[11] A. Reich, Werteverteilung von Zetafunktionen, Arch. Math. 34, 440-4til, 1980. 

[12] S. M. Voronin On the distribution of nonzero values of the Riemann ( - function, Proc. 

Steklov Inst. Math. 128, 153-175, 1972. 

[13] S. M. Voronin, Theorem on the universality of the Riemann zeta function, lzv. Acad. 

Nauk. SSSR Ser. Mat. 39, 475-486 (in Russian); Math. USSR lzv. 9(1975), 443-453. 

TOKYO DENKI UNIVERSITY, 

5 SENJU-ASAHI-CHO, ADACHI-KU, TOKYO, 120-8551, JAPAN 

E-mail address: h_mishou@mail.dendai.ac.jp 


