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COMPLETE ASYMPTOTIC EXPANSIONS FOR THE TRANSFORMED 
LERCH ZETA-FUNCTIONS VIA THE LAPLACE-MELLIN AND 
RIEMANN-LIOUVILLE OPERATORS (PRE-ANNOUNCEMENT) 
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ABSTRACT. This is a pre-announcement version of the forthcoming paper [21]. 
For a complex variable s, and any real parameters a and ..\ with a > 0, the Lerch 

zeta-function q;(s, a,..\) is defined by the Dirichlet series I:;;::0 e(..\l)(a + l)-s (Res> 1), 
and its meromorphic continuation over the whole s-plane, where e(..\) = e21ri>., and the 
domain of the parameter a can be extended to the whole sector I arg zl < 7r through 
the procedure in [13]. It is the principal aim of the present article to treat asymp­
totic aspects of the transformed functions obtained by applying the Laplace-Mellin and 
Riemann-Liouville operators (in terms of the variables), which are denoted by .CM~;r 
and R.C~;'f respectively, to a slight modification, q;*(s, a,..\), of q;(s, a,..\). For any in E :Z, 

let (q;*J('"l(s, a,..\) denote the mth derivative with respect to s if m ::> 0, and the lmlth 
primitive defined with its initial point at s + oo if m < 0. We shall then show that 
complete asymptotic expansions exist, if a> 1, for .CM~; 7 (q;*)(ml(s + T,a,..\) and for 
R.C~:f (q;*)(m) (s + T, a,..\) (Theorems 1--4), as well as for their severa.l iterated variants 
(Th~orems 5-10), when the pivotal parameter z of the transforms tends to both O and oo 
through appropriate sectors. Most of our results include any vertical ha.If-lines in their 
respective regions of validity; this allows us to deduce complete asymptotic expansions for 
the relevant transforms through arbitrary vertical half-lines, upon taking (s, z) = (a, it) 
with any a E IR, when t-> ±oo (Corollaries 2.1, 4.1, 6.1 and 8.1). 

1. INTRODUCTION 

Throughout the present article, s is a complex variable, z a complex parameter, a and 
>. real parameters with a > 0, and the notation e(z) = e2rriz is frequently used. The Lerch 
zeta-function </>(s, a,>.) is defined by the Dirichlct series 

00 

(1.1) </>(s, a,>.) = L e(>.l)(a + l)-s (Res> 1), 
l=O 

and its meromorphic continuation over the whole s-plane ( cf. [24 ][25]); this reduces if 
>. E Z to the Hurwitz zeta-function ((s, a), and so ((s, 1) = ((s) is the Riemann zeta­
function. 

Let I'(s) denote the gamma function, a and /3 be complex numbers with Rea > 0 
and Re/3 > 0, J(z) a function holomorphic in the sector I argzj < w, and write X+ = 
max(O, X) for any X ER We introduce here the Laplace-Mellin and Riemann-Liouville 
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(or Erdelyi-Kober) transforms of f(z), given by 

(1.2) 
1 {00 

.CM~;rf(T) = I'(a) lo J(zT)To:-le-r dT 

and 

(1.3) -n rcx,f3J( ) - I'(a + /3) {oo f'( -) n·-1(1 )(J-ld 
/'1.,J..,z;r T-I'(a)I'(,@)lo ,Z1T -T+ T 

with the normafomtion gamma multiples, provided that the integrals converge; the factor 
Ta-l is inserted to secure the convergence of the integrals as T -+ o+, while e-r and 
(1 - T)~-l have effects to extract the portions of j(T) corresponding to T = O(z). Let 
,5(,\) denote the symbol which equals 1 or O according to ,\ E ;z; or otherwise. We further 
introduce a slight modification, </>*(s, a,,\), of q;(s, z, ,\), defined as 

(1.4) { 

1-s 
• b(>.)z 1-s ((s, z) - _z_ 

<f>(s,z,A)=q;(s,z,,\)- 5 1 = s-1 
- q;(s,z,,\) 

if,\ E Z, 

otherwise, 

by which the only possible singularity at s = l can be removed. Let j(ml(s), for any 
entire function f(s), denote its mth derivative if m = 0, 1, 2, ... , while its lmlth primitive 
if m = -1, -2, ... , defined inductively by 

(1.5) lml(s) = /' lm+ll(w)dw = - ro+oo fm+ll(s + z)dz 
ls+oo lo 

(m = -1, -2, ... ), 

provided that the integral converges, where the paths of integrations arc the horizontal 
line segments. 

It is the principal aim of the present paper to treat asymptotic aspects of the Laplace­
Mellin and Riemann-Liouville transforms of the modified Lerch zeta-function, given by 

(1.6) £Ma (,1.*)(m) (s + T a ,\) = -- (,1.*)(m) (s + ZT a A)Ta-le-r dT 1 1·00 

z;r '+' ' ' I'( a) . 0 '+' , , • ' 

(1.7) 'D ra,/3(,1.*)(m)( ') - I'(cy + /3) r''(,i.*)(m)( ') a-1(1 )/3-ld ,...,1..,z;r '+' s + T, a, A - I'(a)I'(/3) lo '+' s + ZT, a, A T - T + ,T, 

for any m E Z, where the conditions a > l and I arg zl ::; 7f /2 are required in (1.6) for 
convergence of the integral. We shall show that complete asymptotic expansions exist, if 
a> l, for (1.6) and (1.7) (Theorems 1-4), and for their iterated variants (Theorems 5-
10), when the pivotal parameter z of the transforms tends to both O and oo through 
appropriate sectors. Most of our results include any vertical half-lines in their region of 
validity; this allows us to deduce the complete asymptotic expansions through any vertical 
half-lines, upon taking (s, z) = (a, it) with any a E JR, as t-+ ±oo (Corollaries 2.1, 4.1, 
6.1 and 8.1). 

We give here a brief overview of history of research related to asymptotic aspects of 
the integral transforms of zeta-functions. The study of Laplace transforms for the mean 
square of ((s) seems to be initiated by Hardy-Littlewood [6], who obtained the asymptotic 
relation, as C -+ o+, 
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say, in connection with the research of asymptotic behaviour of the upper-truncated mean 
square of ((s), in the form j~T 1((1/2 + d)l2dt as T------) +oo. Wilton [26] then refined the 
result above to 

1 1 log 2n - ,o ( 1 3; 2 l) L'.1;2(c) = - log- - ---- + 0 - log -
C C C VE C 

as c------) o+, where 10 is the 0th Euler-Stieljes constant (cf. [4, p.34, 1.12(17)]). The last 
O-term was, in fact, replaced by a complete asymptotic expansion by Kober [22], who 
showed, for any integer N 2". 1, 

N-1 
1 1 log 2n - ,o "' n ( 1 2 1 ) L'.1;2(c:) = - log- - ---- + ao + L., c an+ b,, log-+ c,, log -
c c E c E 

n=l 

as c------) o+, with some constants a0 , a,,, bn and Cn (n = 1, 2, ... ). It was finally succeeded, 
through rather elementary arguments, by Atkinson [2], among other things, in dropping 
the terms with log2 (1/s) in the asymptotic series above, i.e. Cn = 0, and in improving the 
error term to O{sN log(l/s)}. 

It can be said that many of the recent developments into this direction have been 
made, to a greater or less extent, in the spirit of Atkinson's influential work [3] on the 

error term, E(T), of the upper-truncated mean square ft 1((1/2 + it)l 2dt as T------) +oo. 
A more general weighted mean square 

was treated in the late 1990's by Jutila [9], who made a detailed study of L'.p(s), especially 
on the critical line p = 1/2, while obtaining its asymptotic formula ass ------) 0, and applied 
it to re-derive the classical (so-called) Atkinson's formula for E(T). A further study 
of L'.p(s) has been carried out by Kacinskaite-Laurincikas [10]. On the other hand, the 
lower-truncated Mellin transform 

(k = l, 2, ... ), 

was explored by Ivic-Jutila-Motohashi [8], who applied it to investigate the higher power 
moments, in particular the eighth power moment, of ((s). A research subsequent to [8] 
was due to Ivie [7], while Laurincikas [23] made a detailed study of the case k = l, i.e. the 
mean square case, of Mk,p(s). 

As for the relevant asymptotic results on allied zeta-functions, the Laplace transform 

where L(s, x) denotes the £-function attached to a primitive Dirichlet character x modulo 
q 2". 2, was treated in the same paper by Kober [22], who established, for any integer 
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N 21, 

L1;2(E, x) = cp(q) ·~log~+ cp(q) ( 10 +log"~- + 2), log~)~ 
q E E q \ Lill ;i;; JJ - l. / /:, 

N-1 

+ ao,x + ~ En ( an,x + bn,x log ~ + Cn,x log2 ~) + 0 ( EN log2 ~) 

as E -, o+, with some constants au,x, an,x, bn,x and Cn,x (n = 1, 2, ... ). Here cp(q) 
denotes Euler's totient function, p runs through all prime divisors of q, and the implied 
O-constant may depend on q and N. Next let a, b, µ and v be arbitrary real parameters, 
and 1/Jz2 ( s; a, b; µ, v; z) denote the generalized Epstein ,,;eta-function, defined for Im z > 0 
by 

(1.10) 
~' e((a + m)Jt + (b + n)v) 

1/Jv(s;a,b;µ,v;z) = ~ I (b ) 12 a+m+ +nz s 
rn,n=-::x;, 

(Res>l), 

and its meromorphic continuation over the whole s-plane, where the possibly emerging 
singular term 0-2s is to be excluded; the particular case (a, b) E Z 2 and (µ, v) = (0, 0) 
reduces to the classical Epstein zeta-function (v(s; z). The author [19] has shown that 
complete asymptotic expansions exist for (v(s; z) when y = Im z _, +oo, and also for the 
Laplace-Mellin transform £MY;y(v(s;x+iy) when Y _, +oo. The method developed in 
[19] could be extended to show in his subsequent paper [20] that similar expansions still 
exist for 1/Jv(s; a, b; µ, v; z) when y-, +oo, as well as for the Riemann-Liouville transform 
R,C~·~(z2(s; x + iy) when Y-, +oo. 

The article is organized as follows. Various complete asymptotic expansions for the 
transforms (1.6) and (1.7) are presented in the next section, and those for their iter­
ated variants in Section 3, together with their applications. The details of the proofs of 
Theorems 1-10 and their corollaries will be given in the forthcoming paper [21]. 

2. STATEMENT OF RESULTS (1) 

We first introduce the Hadamard type operators with the initial point at oo, defined 
for any (r,s) E <C 2 by 

1 1(0+) 
(2.1) I:;, sf(s) = ( ){ ( ) } .f(s + z)zr- 1dz, 

· I'r er -1 00 

provided that the integral converges. Here the path of integration is a contour which 
starts from oo, proceeds along the real axis to a small E > 0, encircles the origin counter­
clockwise, and returns to oo along the real axis; arg z varies from 0 to 27f along the 
contour. Then the auxiliary zeta-function rp~(s, a,>.) is defined, for any (r, s) E <C 2 and 
for any a,>. E lR with a> 1, by 

(2.2) 

which is crucial in describing our assertions on (1.6), (1.7) and their iterated variants. 
Further, let ( s )n = I'( s + n) / I'(s) for any n E Z denote the rising factorial of s, and write 

r(al,···,ctm) = n:=II'(a1,) 
{31 , · · · , f3n TIZ= J I' (f3k) 

for complex numbers a,, and f3k (h = 1, ... , m; k = 1, ... , n). 
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We now state our results on the Laplace-Mellin transform (1.6) with respect to s. The 
following Theorems 1 and 2 assert the asymptotic expansions as z --, 0 and as z --, oo, 
respectively, for .CM~;.,(cp*)(ml(s + T, a, A), through the sector I argzj < Jr. 

Theorem 1. Let a and s be any complex numbers with Re a > 0, a and A any real 
parameters with a > l, and m any integer. Then for any integer N 2". 0 the formula 

(2.3) rMa (,/,*)(ml( ') _ ( l)m ~ (-lt(a)n ,,/,* ( ') n 
J.., z;T 'f' s + T, a,/\ - - ~ ' 'f'-n-rn s, a,/\ z n. 

n=O 

+ R;·;,, N(s, a, A; z) 

holds in the sector I arg z I < 7r. Here R;·;,, N( s, a, A; z) is the remainder term expressed by 
a certain Mellin-Barnes type integral, a~d satisfies the estimate 

(2.4) 

as z--, 0 through I arg zl :s; 7r - T/ with any small T/ > 0, where the constant implied in the 
O-symbol depends at most on Res, a, A, a, rn, N and T/. 

Theorem 2. Lets, a, >., a and rn be as in Theorem 1. Then for any integer N 2". 0 the 
formula 

(2.5) rM°' (,1..*)(ml( ') _ (-l)m ~ (-lr(a)n ,1..• (. ') -o:-n 
J.., z;T 'f' s + T, a,/\ - ~ ' '+'o:+n-rn s, a,/\ z n. 

n=O 

+ R;·_-:n,t,r(s, a, A; z) 

holds in the sector I arg zl < Jr. Here R;·~n N(s, a, A; z) is the remainder term expressed by 
a certain Mellin-Barnes type integral, a·~id satisfies the estimate 

(2.6) 

as z --, oo through I arg zl :s; 1r - T) with any small T) > 0, where the constant implied in 
the O-symbol depends at most on Res, a, A, er, m, N and T). 

We write sgn(X) = X/IXI for any real X cl 0. Then the case (s, z) = (a, it) with 
a, t E lR; of Theorem 2 yields the following asymptotic expansion as t--, ±oo through any 
vertical half-lines. 

Corollary 2.1. Lets, a, A, a and rn be as in Theorem 1, and a any real number. Then 
for any integer N 2". 0 the asymptotic expansion 

(2.7) £Mf.,-(cp*/rnl(a + iT, a,>.) 

= (-1r S= (-l)}a)n <p~+n-rn(a, a, A)(csgn(tlrri/21tl)-a-n + O(ltl- Reo:-N) 

n=D 

holds as t --, ±oo, where the constant implied in the O-symbol depends at most on a, a, 
A, a, rn and N. 

We proceed to state our results on the Riemann-Liouville transform ( 1. 7) with respect 
to the variable s. The following Theorems 3 and 4 assert complete asymptotic expansions 
as z --, 0 and as z --, oo, respectively, for R£~;'f(cp*)(ml(s + T, a,>.), through the sector 
I argzj < Jr. 
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Theorem 3. Let a, f3 and s be any complex numbers with Re a > 0 and Re f3 > 0, a and 
,\ any real parameters with a > 1, and m any integer. Then for any integer N ::,, 0 the 
formula 

(2.8) R.ca.,/3(,+,*)(m)( ') _ ( l)m '~ (-lt(a)n ,+,* ( ') n 
z;T 'I-' s + T, a, A - - L...., ( (3) , '1-'-n-m s, a, A z 

n=O a+ nn. 

+ R!,;,m,N(s, a,,\; z) 

holds in the sector I arg z I < 7f. Here R!·,;,m,N( s, a,,\; z) is the remainder term expressed 
by a certain Mellin-Barnes type integral, and satisfies the estimate 

(2.9) R2,+ (s a ,\· z) = O{(I Irnsl + l)max(O,l2-ResJ)lzlN} 
a,/3,rn,l\T ' ' 1 ' 

as z --. 0 through I arg zl ~ 7f -1] with any small r1 > 0, where the constant implied in the 
O-symbol depends at most on Res, a,,\, a, (3, m, N and T/. 

We write c( z) = sgn( arg z) for any complex z in the sectors O < I arg z I < 7f. 

Theorem 4. Let a, /3, s, a, ,\ and m be as in Theorem 3. The for any integers Nj ::,, 0 
(j = 1, 2) the formula 

(2.10) 'R,£,~;'f(cp*)(m)(s + T, a, A) 

= (-lyn r(a; f])e-c(z)1rin{ 11 (-lr(a~~(l - /J)n 

X 4>:+n-m(s, a, >-)(e-<(z)1riz)-a.-n + Ri::,/3,m,Ni (s, a,,\; z)} 
+ (-l)m I' (a: /3) e<(z)1ri/3 { 11 (-l)n(/3~~(1 - a)n 

X </>;+n-m (s + z, a, ,\)z-13-n + R;::,/3,m,N2 ( s, a,,\; z)} 
holds in the sectors O < I arg zl < 7f. Here R},';;,,/3,m,N; ( s, a,,\; z) (j = 1, 2) are the remain­
der terms expressed by certain Mellin-Barnes type integrals, respectively, and satisfy the 
estimates 

(2.11) 

and 

(2.12) R2,- (s, a,,\; z) = O{(I Im(s + z)I + 1iaiax(O,l2-Re(s+z)J)lzl-Re/3-N2} 2,a.,/3,m,N2 

both as z --. oo through 1J ~ I arg zl ~ 7f - 1J with any small 1] > 0. Her·e the constant 
implied in the O-symbol in (2.11) depends at most on Res, a, >-, a, /3, m, N1 and T/, while 
that in (2.12) at most on Res, Re z, a, >-, a, (3, m, N2 and 1J. 

The case ( s, z) = ( a, it) with a, t E JR. of Theorem 4 asserts the following asymptotic 
expansion as t --. ±oo through any vertical half-lines. 
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Corollary 4.1. Let a, ,(J, a, ,\ be as in Theor,em 2 and a- any real n11:mber'. Then for any 
integers N1 2". 0 (j = 1, 2) the asymptotic expansion 

( ., l'J\ 
"'· 0/ 

= (-lrr(a; /3)e-sgn(t)rriu{%1 (-lt(a~~(l -/3)n 

X <f>:+n-m(a-, a, ,\)(e-sgn(t)rri/2\t\)-u-n + O(lt\-Reu-N1 )} 

+ (-irr(a + /3)esgn(t)rri/3{~1 (-lt((/3)n(l - a)n 
a ~ n! 

n=O 

X <f>;+n-m(a- + it, a, ,\)(esgn(t),ri/2\t\)-;3-n + O(\t\max(O,l2-crj)-Re/3-N2 )} 

holds as t ----+ ±oo, where the constants implied in the 0-symbols depend at most on a-, a, 
(3, m and N1 (j = 1, 2). 

3. STATEMENT OF RESULTS (2) 

In this section, we state our results on the iterated transforms. For this, let Kv(Z) 
denote the modified Bessel function of the third kind, defined by 

1100 
{ z 1 } Kv(Z) = 2 0 

exp - 2 ( u + ;:) u-v-ldu 

for any v EC and for \argZ\ < n/2 (cf. [5, p.82, 7.12(23)]), where the domain of Z is 
extended to I arg ZI < 7r by rotating appropriately the path of integration. We can then 
show the following expression. 

Proposition 1. For any f ( T) holomorphic in I arg TI < 7r, we have 

(3.1) £M~;72 LM~2 ;7 J(Ti) = I'(a{I'(,/3) 100 
f(ZT)T(a+PJ/ 2 - 1 Kn-f3(2r,)dT, 

provided that the integral converges. 

We proceed to state our results on the iteration of two Laplace-Mellin transforms. The 
following Theorems 5 and 6 assert complete asymptotic expansions as z ----+ 0 and z ----+ oo, 
respectively, for £Mi;72 £M~2 ;7 , (</>*)(ml(s + T1, a,,\), through the sector I arg z\ < n. 

Theorem 5. Let a, /3, ,\, a and m be as in Theorem 2. Then for any integer N 2". 0, the 
formula 

(3.2) £M~;72 LM~2 ;71 (</>*Jtml(s + T1, a,>-) 

_ ( l)m ~ (-lt(a)n(/3Jn '* ( ,\) n R3,+ ( ,\· ) 
- - L....,, n! <P-n-rn s, a, Z + a,/3,rn,N s, a, , z 

n=O 

holds in the sector \argz\ < 7r. Here R!,trn,N(s,a,>.;z) is the remainder term expressed 
by a certain Mellin-Barnes type integral, and satisfies the estimate 

(3.3) R!•,tm,N(s, a,,\; z) = O{(I Ims\ + l)max(O,l2-Re.sj)\z\N} 
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as z --, 0 through I arg z I :S 7f - rJ with any small TJ > 0, where the constant implied in the 
O-symbol depends at most on Res, a, ,\, a, (3, m, N and TJ. 

Theorem 6. Let a, {3, ,\, a and m be as in Theorem 2, and a - f3 (!_ Z. Then for any 
integer N 2 0, upon setting N' = N - LRe(fJ - c~)J, the formula 

(3.4) £M~;T2£M~2 ;T, (</>*)(ml(s + Ti, a,,\) 
N-1 

( I)mr((J-a) ~ (a)n J.* ( ,\) -a-n 
= - (3 ~ (l + a - fJ)nn! '1-'o:+n-m s, a, Z 

N'-1 

( 1 )mr (a - (3) ~ (f3)n J.* ( ') -/3-n + - L., ( (3) 1 '1-'f]+n-m s, a, A z 
a n=O 1 - a+ nn. 

+ R!•.~,m,N(s, a,,\; z) 

holds in the sector I arg zl < 7f. Here R!,~,m,N(s, a,,\; z) is the remainder term expressed 
by a certain Mellin-Barnes type integral, and satisfies the estimate 

(3.5) R!·.~,m,N(s,a,,\;z) = O{(IImsl + 1rax(O,l2-ResJ)lzl-Rea-N} 

as z --, oo through I arg zl :S 7f - TJ with any small TJ > 0, where the constant implied in 
the O-symbol depends at most on Res, a, ,\, a, {3, m, N and T/· 

The case ( s, z) = ( CT, it) with CT, t E lR of Theorem 6 yields the following asymptotic 
expansion as t --, ±oo through any vertical half-lines. 

Corollary 6.1. Let CT be arbitrary, a, {3, m, a, ,\ as in Theorem 6, and suppose that 
a - f3 ~ Z. Then for any integer N 2 0, upon setting N' = N - l Re((J - a) J, the 
asymptotic expansion 

holds as t --, ±oo, where the constant implied in the O-symbol depends at most on a, a, 
,\, a, {3, m and N. 

We next proceed to state our results on the iteration of the Laplace-Mellin and Riemann­
Liouville transforms. For this, let U(,\; v; Z) be Kummer's confluent hypergeometric func­
tion of the second kind, defined by 

1 1(0+) 
U(,\; v; Z) = I'(,\){e(,\) _ l} 

00 
e-zww.\- 1 (1 + wt-.\- 1dw 

for any (,\, 1J) E (C2 and for I arg ZI < 1r/2 (cf. [4, p.237, 6.11.2(9)]), where the domain of 
Z is extended to I arg ZI < 1r by rotating appropriately the path of integration. We can 
then show the following expression. 
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Proposition 2. For any f(T) holomorphic in I argT/ < 1r, we have 

provided that the integral converges. 

The following Theorems 7 and 8 assert complete asymptotic expansions as z ___, 0 and 
z ___, oo, respectively, for R£~)2 £M~2 ;T, ( </J*)(m) ( s+T1 , a,>-), through the sector I arg zl < 1r. 

Theorem 7. Lets, a, A, o:, /3, and m be as in Theorem 2, and I E (C arbitrary with 
Re')'> 0. Then for any integer N;::,, 0, upon seting N' = N - LRe(/3-o:)J, the formula 

(3.8) R£~)2 £M~2 ;Ti (</J*t"l(s + T1, a,>-) 

( ) rn ~ (-l)"(o:)n(/3)n /4* ( ') n R4 + ( \ ) 
= -1 ~ (J3+1')n '+'-n-ms,a,/\Z + ·a',f3,'Y,m,Ns,a,/\;Z 

holds in the sector I arg zi < 1r. Here R~,t'Y,m,N( s, a,,\; z) is the remainder term expressed 
by a certain Mellin-Barnes type integral, and satisfies the estimate 

(3.9) 

as z ___, 0 through I arg z/ :::=; 1r - TJ with any small T/ > 0, where the constant implied in the 
0-symbol depends at most on Res, a, ,\, a, /3, 1 , m, N and T/. 

Theorem 8. Lets, a, ,\, o:, (3, 1 and m be as in Theorem 7, and suppose that a - (3 (j. Z. 
Then for any integer N ;::,, 0, upon setting N' = N - L Rc(/3 - o:) J, the formula 

(3.10) R£~}.2 £M~m (</J*)(m)(s + T1, a,,\) 

= (-l)"'I'(/3 + 1', (3- o:) I: (-l)"(o:)n(l - (3- 1 + o:)n 
/3,/3+')'-0: n=O (l-/3+0:)nn! 

X <P~+n-m(s, a, ,\)z-a-n 

holds in the sector I arg z/ < Jr. Here R!·,(3,-y,m,N(s, a,,\; z) is the remainder term expressed 
by a certain Mellin-Barnes type integral, and satis.fi.es the estimate 

(3.11) 

as z ___, oo through I arg zl :::=; 7r - T/ with any small T/ > 0, where the constant implied in 
the 0-symbol depends at most on Res, a,,\, o:, (3, 1 , m, N and T/-

The case (s, z) = (a, it) with a, t E lR of Theorem 8 yields the following asymptotic 
expansion as t ___, ±oo through any vertical half-lines. 
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Corollary 8.1. Let (Y E lR be arbitrary, a, >-, a, /3, 1 and m as in Theorem 8. Then for 
any integer N 2". 0, upon setting N' = N - l Re(/3 - a)J, the asymptot'ic expansion 

(3.12) 

= ( - 1 r I' (/3 + r' /3 - a) 
/3, /3 + r - a 

X ~(-l)"(o:)n(l-/J-,+o:)n.-1,• ( ,\)( sgn(t),ri/21tl)-a-n 
L (1 - /3 + a)nn! '1-'a+n-m s, a, e 
n=O 

+ ( - l) m I' (·8 + 1, a - /3) 
a,, 

N'-1 
X ~ (-1)"(/J)n(l - ,)n /4* (s a ,\)(esgn(t),ri/21tl)-f3-n 

L (1 - a + /J)nn! '1-'f3+n-m ' ' 
n=O 

+ O(ltl-Rea-N) 

holds as t -> ±oo, where the constant implied in the 0-symbol depends at most on (Y, a, 
>-, a, /3, 1 , m and N. 

We next proceed to state our results on the iteration of two Riemann-Liouville trans­
forms. For this, let 2Fi ( >-;t; Z) be Gaul3' hypergeometric function defined by 

F (,\' µ.: z) = ~ (>-)n(11,)n zn 
21v L()' 

n=O I/ n'Tl· 

for any (,\, µ, v) E C2 x (CC\ {0, -1, -2, ... } ) and for IZI < 1 (cf. [4, p.56, 2.1.1(2)]), 
where the domain of Z is extended to I arg(l - Z) I < 7r by Euler's integral formula for 
2F1 ( \J'; Z) (cf. [4, p.59, 2.1.3(10)]). We can then show the following expression. 

Proposition 3. For any f ( T) holomorphic in I arg TI < r. /2, we have 

(3.13) R[,"f:6 RC'•13 f(T) = r(a + /3.'' + 6) (1 f(zT)T"f- 1 (1 - T)/3+6-l 
z,T2 T2,T1 1 a,,, /3 + 6 Jo 

F (r + b - a,/3_ l )d 
X 2 1 /J + () , - T T, 

provided that the integral converges. 

The following Theorems 9 and 10 assert complete asymptotic expansions as z -> 0 and 
z -> oo, respectively, for R£"1:~2 R£~;~1 ( </>*)(m) ( s + T1 , a,>-), through the sector I arg zl < 
7r /2. 
Theorem 9. Let s, a, >-, a, /3, 1 and m be as in Theorem 8, and 6 E (C arbitrary with 
Re 6 > 0. Then for any integer N 2". 0 the formula 

(3.14) R£J:~2 R£~/(T1 ( q'i*)(ml( s + T1, a,.\) 

_ ( l)m ~ (-l)"(o:)nh)n /4* ( ,\) n R5,+ ( ,\· ) 
- - L (a+/J)nh+b)nn!'f'-n-m s,a, z + a,/3,,,6,m,N s,a, ,z 

n=O 

holds in the sector I arg zl < 7r /2. Here R~·.t"f,&,m,N(s, a,,\; z) is the remainder term ex­
pressed by a certain Mellin-Barnes type integral, and satisfies the estimate 

(3.15) R5,+ (s, a,,\; z) = O{(I Im sl + 1rax(O,l2-ResJ) lzlN} a,/3,"f,6,m,N 
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as z -----+ 0 through I arg zj -S: 7r /2 - T/ with any small T} > 0, where the constant implied in 
the 0-symbol depends at most on Res, a, >., a, ,13, 1 , 5, m, N and T). 

Theorem 
a- 1 ~ Z. 

(3.16) 

10. Let s, a, ..\, a, (3, 1 , 5 and m be as in Theorem 8, and suppose that 
Then for any integer N ~ 0, upon setting N' = N - l Rc(/3 - a) J, the formula 

R,[,"il' R[,'",{3 (,1,*)(m)(s + T1. a >.) 
Z,T2 T2,T1 If' , ' 

= (-1rr(o: + /3,r- O:,r + 5) 
/3,r,, + 5 - a 

~ (a),,(l - /J)n(l + a - r - 5)n ,,* ( .\) -cx-n 
X L.,; (1 ) I '+'cx+n-m s, a, Z 

n=O + 0: - I nn. 

+(-1rr( a+/3,0:-1,1+5) 
a, a+ /3 - 1 , 1 + 5 - /3 

N'-1 
~ (/J)n(l - a - /3 + r)n(l + /3 - r - 5)n ,1,• .( ') -!3-n 

X L.,; (1 ) I '+'fJ+n-m s, a,/\ Z -a+r nn. 
n=O 

+ R~.f3,"!,o,m,N(s, a,.\; z) 

holds in the sector jargzj < 1r/2. Here R~·.f3,"!,o,m,N(s,a,.\;z) is the remainder term ex­
pressed by a certain Mellin-Barnes type integral, and satisfies the estimate 

(3.17) R5,- (s,a,.\;z) = O{(IImsl + 1rax(O,l2-Resj)lzl-Rccx-N} et,{3,"f,O,m,N 

as z-----+ oo through I arg zj ,S: 7r /2 - T/ with any small T} > 0, where the constant implied in 
the 0-symbol depends at most on Res, a, >., a, /3, 1 , 5, m, N and T/· 

Remark. Theorem 10, in fact, fails to imply the complete asymptotic expansion for 
RC},.,12 R£~~~1 (cp*)(m)(O' + iT1 , a,>.) as t -----+ ±oo, since any vertical half-lines are not in­
cluded in the region, I arg zj < 1r /2, of its validity. It is still an open problem to deduce 
complete asymptotic expansions for R£7}, R£~~fT1 (cp*)(ml(a + iT1 , a,.\) through any verti­
cal half-lines s = O' + it as t -----+ ±oo. One plausible clue to the solution seems to introduce 
a further class of auxiliary zeta-functions, such as R£~:} cp; ( s + iT, a, .\), and to investigate 
their analytic properties. ' 
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