
76

Transcendence of zeros of certain weakly 
holomorphic modular forms 

J-1f1,1*~*~~t~r1~JB ?tn ilm~ 
Seiichi Hanamoto 

Graduate School of Mathematics, 
Kyushu University 

1 Introduction 

The Eisenstein series Ek(z) is perhaps the easiest example of modular forms. 
In 1970, F.K.C. Rankin and Swinnerton-Dyer [10] showed that all zeros of 
the Eisenstein series Ek(z) in the standard fundamental domain for SL2 (Z) 
lie on the arc for all weight k 2'. 4. Simlar results for other modular forms 
were proved [9, 11, 12]. 

In 2008, Duke and Jenkins [2] constructed a canonical basis fk,m for the 
space of weakly holomorphic modular forms for level 1. Let Cl be the Ra­
manujan Cl function and j be weight O modular function which is known 
simply as the j-function. The basis fk,m is defined by 

where k = 12£ + k', k' E {O, 4, 6, 8, 10, 14} and F1,D(x) is a manic polynomial 
in x of degree D = £ + m. The basis Am have the following form 

They considered fk,m as a two-parameter family of weakly holomorphic mod­
ular forms that is a canonical basis for the space and proved almost all of the 
basis elements have all of their zeros on a lower boundary of the standard 
fundamental domain for SL2 (Z). We consider the locations of the zeros for 
weakly holomorphic modular forms 9k,m of level 1 defined by 

where aj ER 

€+m 

9k,m(z) = fk,m(z) + L ajfk-12j,m(z)Ll(z)3, 
j=l 
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2 Definitions and statements of results 

Let k E 2Z, N be a prime number or 1, and f 0 (N) = { ( ~ 3) E SL2 (Z)lc = 0 
(mod N) }. Put lHI = {x + iy I x, y E lR and y > 0}, and q = e21Tiz for z E lHI. 

A holomorphic function f on lHI is a weakly holomorphic modular form 
of weight k with respect to r O ( N) if f satisfies the following two conditions: 

( az + b) k • f cz + d = ( cz + d) f ( z) for any ( ~ 3) E r O ( N). 

with a(n0)-/- 0 and b(n1) -/- 0. 

We define f is holomorphic if n0 2". 0 and n 1 2: 0, a cusp form if n0 2". 1 
and n 1 2: 1. We denote the space of holomorphic modular form of weight 
k on r 0(N) by Mk(N), the space of weakly holomorphic modular forms by 
M1(N). Put Mk = Mk(l) and Mk = M1(1) in this paper. 

Duke and Jenkins considered an explicit basis of Mk which is indexed 
by the order of the pole at oo in [2]. Let k = 12£ + k' where £ E Z and 
k' E {0, 4, 6, 8, 10, 14}. For any integer m 2: -£, there exists a unique weakly 
holomorphic modular form fk,m E Nfk which has an expansion 

We note that there exists a unique !k,m E M1 with the expansion (1). For 
any f = L a(n)qn E ML we can write 

f = L a(n)fk,-n 
no:S,n::,,C 

when we know first few Fourier coefficients of f. Therefore we see that 

{fk,m}m2-c form a natural basis of 1\1{ 
We define three modular forrns to construct the basis {fk,m}m2-c- Bernoulli 

numbers Bk and ak-I ( n) are each defined by 

ak_i(n) = Ldk-1_ 

din 
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Then the Ramanujan ~ function, Eisenstein series Ek and j function are 
each defined by 

00 00 

n=l n=l 

Ek(z) = l - !k f CTk-1(n)qn (k 2'. 4), Ea= l, 
k n=1 

E (z) 3 

j(z) = ~(z) = q-1 + 744 + L c(n)qn_ 
n~l 

Their weights are each 12, k, 0 and orders at oo are each 1, 0, -1. The 
function f k,m is constructed by 

where Fk,n(x) is a manic polynomial in x of degree D = £ + m. 
For the group SL2 (Z), we use a fundamental domain in the upper half­

plane bounded by the lines ~( z) = -½ and ~( z) = ½, the circles of radius 1 
centered at z = 0. We include the boundary on the left half of this funda­
mental domain. The cusps of this fundamental domain can be taken to be 
at oo. 

1.8 

1.6 

1.4 

1.2 

Figure 1: A fundamental domain for SL2 (Z). 
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The description of the zeros of a weakly holomorphic modular form J E 

ML on lHI is clearly equivalent to the description of the zeros of J on F. Thus, 
for the remainder of this paper, when we speak of a zero z0 off E ML, we 
assume z0 E F. 

We define four constants by 61 = 0.432207, 62 = 0.024975, 63 = 0.004807 
and 64 = 0.257348. Then we define 1 (j) and Ak, by 

2.76009 if k' = 0, 

0.684214 if k' = 4, 

0.950549 if k' = 6, 

0.184724 if k' = 8, 

0.258108 if k' = 10, 

0.075404 if k' = 14. 

We note here 

~ ( e;e) 

~ (x + 0.65i) 
< 61, 

I~ (x + o.65i)I < 62, 

l~(eie)I < 63, 
e-2mn(sin0-O.65) < 64 

and I: 1 Ek, ( e;0 ) El4-k' (x + 0.65i) 
dx :S: Ak', 

~ (x + 0.65i) j (x + 0.65i) - j (ei8 ) 

for 0 E [1.9, 21r /3] and x E [-1/2, 1/2]. Then we have the following theorem. 

Theorem 2.1. Let k = 12£ + k', where£ E Z 20 and k' E {0, 4, 6, 8, 10, 14}. 
Let 

£+m 

9k,m(z) = fk,m(z) + L ajfk-12j,m(z)~(z)J, 

j=l 

where aj E R, m ;::: 0 and£+ m ;::: 1. If { aj };!/I' satisfy 

C+m 

L laj I (36~ + 6';',(j)j Ak,) < 1 - 5;15f Ak', 
j=l 

then all of the zeros of 9k,m in the fundamental domain for SL2 (Z) lie on the 
circle lzl = 1. 
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Besides, we consider transcendence of zeros of 9k,m· We have the following 
theorem. 

Theorem 2.2. Let k = 12€ + k', where t' E Z::,0 and k' E {O, 4, 6, 8, 10, 14}. 
Let 

e+m 

9k,m(z) = fk,m(z) + L a1f"k-121,m(z)6.(z)1, 
j=l 

wherea1 E(Q,m~O andt'+m~ 1. If{a1};!1;1 satisfy 

e+m 

L ia1l(3o~ + of,(j)j Ak,) < 1 - ofoi Ak,, 
j=l 

then all of zeros of 9k,m in the fundamental domain for SL2 (Z) are transcen­

dental or equal to i or p = -½ + 1i. 

3 Sketch of proof of Theorem 2 .1 

Applying the valence formula for k = 12€ + k', there are at most t' + m zeros 
on F - {p, i}. Thus if 9k,m E ML satisfies the hypotheses of Theorem 2.1, 
then to prove Theorem 2.1 it suffices to demonstrate that 9k,m has t' + m 
simple zeros in {ei0 : ~ < e < 2;}. 

An easy argument [4, Proposition 2.1] shows that for any weakly holo­
morphic modular form f of weight k with real coefficients, the quantity 
eikBl2 f(ei0) is real for 0 E [~, 2;]. Thus, we approximate eikB/29k,m(ei0) by 
an elementary function having the required number of zeros on the arc. 

Suppose t' ~ 1 and m ~ 1. Then we set 

e+m 
H(0) = eik0/2e-21rmsin09k,m (ei0) = Ho,m(0) + Lajel2ji0/2.6. (ei0r Hj,m(0), 

j=l 

where Hj,m(0) = e(k-l2J)iB/2e-21rmsinB fk-l 2j,m (ei0). We define the function 

RJ,m(0) for 0 E [~, 2;] by 

( (k-12j)0 ) 
Hj,m(0) = 2cos 2 - 21rmcos0 + RJ,m(0). 
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vVe seek a bound for the function R1,m ( 0). Details for the computation of 
the numerical bounds is given as with [3, 5]. By the argument in [2], 

When 1.9 S 0 S 21r /3, we have 

e-1rm(2sin0-tan(0/2)) 1½ 
IR (0)1 < ------ + e-21rm(sin0-0.65) IG·(x + 0.65i ei0)1 dx 

J,m - (2cos(0/2))k _l 1 ' ' 
2 

where 
G( ) = D.e-1(z) Ek,(z)E14-k'(T) 

J T, z D.1+1'-j(T) j(T) - j(z) . 

Looking at the first term, for 0 E [1.9, 21r /3] and m 2: 0, we have 

I 
e-1rm(2sin0-tan(0/2)) I 

< 1. 
(2 cos(0 /2))k -

Considering the exponential term e-21rm(sin°-O·65), it is bounded above by 
0.257348 for 0 E [1.9, 21r /3]. We set 64 = 0.257348. 

1 

We next seek a bound for J_!1 1Gj(x+0.65i,ei0 )!dx. This integral is 
2 

equal to 

1½ D. (ei0) €-j I 1 I Ek' (ei0) E14-k' (x + 0.65i) 
j (x + 0.65i) - j ( ei8 ) dx. _1 D. (x + 0.65i) D. (x + 0.65i) 

2 

First, we consider 

D. (x + 0.65i) 

We have 

£-j 

0.002591 s ID. ( ei0 ) I s 0.004801. 

We set 83 = 0.004807. We compute that 

0.011122 s ID. (x + o.65i)I s 0.024975. 
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We set 52 = 0.024975. Putting this together, we have, for f ;=.:: j, 

L}. (x + 0.65i) 

We set 51 = 0.432207. 
Next, we consider 

1½ 1 Ek' ( ei0 ) E14-k' (x + 0.65i) 
_1 I'.}. (x + 0.65i) j (x + 0.65i) - j (ei0) dx. 

2 

We will break our path of integration into small pieces, and consider j ( T) in 
relation to j (z) on each. We can bound the quotient by 

where 

1½ 1 Ek' ( ei0 ) E14-k' (x + 0.65i) 
dx ~ Ak', 

_1 I'.}. (x + 0.65i) j (x + 0.65i) - j (ei0) 
2 

2.76009 if k' = 0, 

0.684214 if k' = 4, 

Ak' = 
0.950549 if k' = 6, 

0.184724 if k' = 8, 

0.258108 if k' = 10, 

0.075404 if k' = 14. 

Putting all of these pieces together, we see that 

for 1 ~ j ~ /!, and 

for 1 ~ j ~ m. 
Similarly, for 0 E [n /2, 1.9), we can bound 1Rj,m(0)1- We note that the 

bound of IRjH,m(0)1 for 1.9 ~ e ~ 2; is larger than for ~ ~ e < 1.9 since 
IRHt,m(0)1 > 1 for 1.9 ~ 0 ~ 2;. Therefore we also use the bound of 
/RjH,m(0)1 for 1.9 ~ 0 ~ 2; when ~ ~ 0 < 1.9. 
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IH(0) - 2cos (kJ - 21rmcos0) I is bounded above by 

e 
IRo,m(0)1 + L laJI (2 + IRJ,m(0)1) 1,6. (ei0 ) lj 

j=l 
m 

+ L laJ+zl (2 + IRJ+e,m(0)1) 1,6. (ei0 ) IJH 
j=l 

e+m 

< 1 + JfJfAk' + L iaJI (35§ + Jf,,J(j)Ak,). 
j=l 

Now suppose 

e+m 

L iaJl(3J~ + 6,7','(j)j Ak,) < 1 - 5~n5f Ak'· 
j=l 

Then we have 

IH(0)-2cos(~ -21rmcoso)I <2. 

This inequality is enough to prove the theorem. To see this, note that as 0 
increases from 1r /2 to 21r /3, the quantity 

k0 
- - 21rm cos 0 
2 

increases from 1r (3£ + k'/4) to 1r (3£ + k'/3 + D), where D = £ + m, hitting 
D + 1 distinct consecutive integer multiples of 1r ( this is independent of the 
choice of k'). A short computation shows that if D 2'. 1£1, then the quantity 
kJ - 21rm cos 0 is strictly increasing on this interval. Thus, there arc exactly 
D + 1 values of 0 in the interval [1r /2, 21r /3] where the function 

2 cos ( k: -21rm cos 0) 
has absolute value 2, alternating between +2 and -2 as 0 increases. Then 
real-valued function H(0) must have at least D distinct zeros as 0 moves 
through the interval (1r/2, 21r/3). This accounts for all D nontrivial zeros of 

9k,m· 
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4 Proof of Theorem 2.2 

For the proof of Theorem 2.2, we use the following lemma of Schneider. 

Lemma 4.1. /8, Corollary 3.4} If z E IHI andj(z) is algebraic, then either z is 
transcendental or z is imaginary quadratic, i. e. Q( z) is a degree 2 extension 
of Q, with z tf_ JR.. 

We can prove Theorem 2.2 as with [6]. We have the following lemma. 

Lemma 4.2. /6, Lemma 2.2} Let a, b, c E Z such that a> 0, gcd(a, b, c) = 1, 
and D = b2 - 4ac < 0. If z E IHI is a root of the polynomial ax2 +bx+ c, 
then the lattice [1, z] is a proper fractional ideal of the order '.D = [l, az] of 
K = Q(-/J5). Moreover, 

if D = 0 

if D = l 
(mod 4), 

(mod 4). 

We find that the order '.D does not depend on z, but instead on the 
discriminant D of the reduced integer polynomial that has z as a root. Recall, 
if A is a lattice of C we define j(A) = j(z), where z E IHI and J\. = [1, z]. The 
choice of z E IHI is well defined. By Lemma 4.2, we see that we can map a point 
z E IHI to the proper fractional ideal J\. = [1, z] of '.D, where j([l, z]) = j(z). 

The following lemma follows from [1, Theorem 11.1 and Proposition 13.2], 
and is the last result we need before the proof of Theorem 2.2. 

Lemma 4.3. /6, Lemma 2.3} If 2t. is a proper fractional ideal of an order '.D 
of an imaginary quadratic field K, then j(2t.) is an algebraic over Q. If >B is 
any other proper fractional ideal of '.D, then K(j(2t)) = K(j(>B)) and j(2t.) 
and j(>B) are conjugate over K. Furthermore, the degree of j(2t.) is the class 
number of '.D. 

Let gk,m(z) satisfy the assumption of Theorem 2.2. Then we can write 

e+m 

gk,m(z) = fk,m(z) + L ajfk-l2j,m(z)~(z)j 
j=l 

~(z)" Ek' (z )A,L(j(z) ), 

where Fk,L(j(z)) is a monic polynomial in j(z) of degree L = £ + rn with 
rational number coefficients. By Kohnen [7], the only possible zeros of Ek'(z) 
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are i and p. Also, we see from the valence formula that ,6. ( z) is never zero 
on lHI. Thus, the only zeros of 9k,m(z) in F other than 'i, p arc the zeros of 
Fk,L(j(z)). 

Suppose zo E F such that Fk,L(j(zo)) = 0. Since Fk,L(x) is a polynomial 
with rational number coefficients, j(z0 ) is algebraic. Thus from Lemma 4.1, 
z0 is either transcendental or imaginary quadratic. 

If z0 is imaginary quadratic, then z0 is a root of a polynomial P( x) = ax2 + 
bx+ c, where gcd(a, b, c) = 1, a> 0, and the discriminant D0 = b2 - 4ac < 0. 
Let K = (Q)( %a). 

vVe consider the order '.D = [1, az0 ] of K. From Lemma 4.2, the lattice 
[1, z0] is a proper fractional ideal of '.D, and the order '.D has the form 

if D0 = 0 (mod 4), 

if D0 = 1 (mod 4). 

Thus by Lemma 4.3, if 2l is any other proper fractional ideal of '.D, j(z0 ) = 
j([l, zo]) and j(2l) are conjugate. 

We consider the point z1 E (C defined by 

z - -2-{ 
iJ\DoT 

1 - l+if150 if D0 = 0 

if Do= 1 

(mod 4), 

(mod 4). 

Then z1 E F and we have [1, zi] = '.D. Thus by definition [1, z1] is a proper 
fractional ideal of '.D, and so j(z0 ) and j(zi) are conjugate. 

We take an automorphism a of K(j('.D)) such that a(j(z0 )) = j(z1 ). Since 
a acts as the identity on (Q) and Fk,L is a polynomial with rational number 
coefficients, we have that 

0 a(O) 

a(Fk,L(j(zo))) 

Fk,L(a(j(zo))) 

Fk,L (j ( Z1)). 

Thus z1 is also a zero of Fk,L and hence a zero of 9k,m· Since z1 E F, by 
Theorem 2.1 we have that z1 must lie on the arc of the unit circle given by 

e :-< <-. { 
;0 1r 0 21r} 

2 - - 3 
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Suppose D0 = 0 (mod 4), so that D0 = -4n for some positive integer n. 
Then z1 = iyn,, but since z1 must lie on the unit circle we must have n = 1. 
Thus, D0 = -4. Since z0 E IHI, we have by the quadratic formula that 

-b+ 2i 
Zo=---

2a 

But z0 E F, and so ~(z0 ) ~ f. Thus a= l, and so 

b . 
Zo = -- + 'l. 

2 

But again by Theorem 2.1 we have that z0 must lie on the unit circle, so 
b = 0 and z0 = i . 

.If D0 = l (mod 4), then Do = -4n + 1 for some positive integer n. 
Hence, 

-l+iJ4n-l 

2 

and thus izil2 = n. Again, since z1 must lie on the unit circle we must have 
n = 1. Therefore D0 = -3. Since z0 E IHI, we have that 

Zo = 
-b+iJ3 

2a 

by the quadratic formula. And again since z0 E F, we have a = l so that 

b .J3 
Zo = -- +i-. 

2 2 

But again by Theorem 2.1 we have that z0 must lie on the unit circle, so 
b = 1 and z0 = p. Thus, we completed Theorem 2.2. 
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