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Two zeta functions contained in the Poincare series 
(~7 / tJ v*lkt~t= '21~~ n~ 2fm0)~--~ ~~) 

Takumi Noda *t 
Department of Mathematics, College of Engineering, Nihon University, 

Koriyama, Fukushima 963-8642, Japan 

Abstract 
Two zeta-functions associated with the classical Poincare series attached to mod­

ular group are introduced. Integral representations, transformation formulas and 
some functional properties are given. As an application, we obtain two new proofs 
of the Fourier series expansion of the Poincare series attached to SL(2, Z). 
This manuscript is a summarized version of !No 11 and the forthcoming paper I No2J. 

1 Exponential type generating functions 

Let H = {z E (C I Im(z) > O} be the complex upper half plane. Let I'(s) be the Gamma 
function, F( a; y;z) be Kummer's confluent hypergeometric function of the first kind (cf. 
[Erl, 6.5.( 1)1), lv(z) be the Bessel function of the first kind, and lv(z) and Kv(z) be mod­
ified Bessel functions (cf. [Er2, 7.2.1 (2), 7.2.2. (12), (13)]). Throughout this manuscript, 

C(s) and C(s,a) denote the Riemann and the Hurwitz zeta-function respectively, l?,,+) 
denotes integration over a Hankel contour, starting at negative infinity on the real axis, 
encircling the origin with a small radius in the positive direction, and returning to the 

starting point. We write J(0!) an integration taken along a rotated Hankel contour, start-
ooe 

ing at ooei(-2n+B), encircling the origin in the positive direction, and returning to the point 
ooe;e. 

First, we introduce following Dirichlet series: 

r ( . , . ) ·- ~ exp(-2niA/(n+z)) 
Sexp.II S,A,Z .- ~ ( )' . 

n=O n+z 
(I) 
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Here, let z E C\IR, Re(2niA/z) > 0 and 0 < Re(z) S l in (1). Then the power series 
expansion involving the Hurwitz zeta-function 

00 (-2.rriA.yn 
texp.n(s;A;z) = 2 1 t(s+m,z) 

m=O m. 
(2) 

holds for s E (C \ { 1, 0, -1, -2, ... } , and we have 

Theorem 1 ([No2]) Let z EH, 0 < Re(z) S 1 and A > 0, and assume n < e < 3.rr/2. 
Then an integral representation 

. l-s (2.rriA)-s 1.(0+) u(s-1)/2ezu/(2niA) 
~xp.n(s;A;z) = (2mA) I'(s-1)+ . . /(2 ·;..,) K,-1(2/u)du 

nt ooe'H l - ell m 
(3) 

holds for s E (C \ { 1, 0, - I, -2, ... } , which provides a holomorphic continuation to the 
wholes-plane except on s E { 1, 0, -1, -2, ... }. Above integral representation gives the 
functional relation 

~xp.u(s;A ;z) + ( -1 )5 texp.Il (s;-A; I - z) 
00 

= 2nie-nis 2 (n/A )(s-1)/2e2nizn ls-I ( 4niv1rJ:), 
n=I 

(4) 

for s EC\ {1,0,-1,-2, ... }. 

2 I-Bessel zeta-function 

Let e > 0, v E (C and s be a complex variable. Next, we define ]-Bessel zeta-function of 
order v - 1 as follows: 

~ lv-1(2/en) 
Jv-1(s;8):= LJ v+l · 

n=I n5 +-y-
(5) 

By the estimates of the ]-Bessel function, the Dirichlet series above converges absolutely 
in the region Re(s) > 0 when Re( v) > I /2, and converges absolutely in the region Re(s) > 
L3 /2- Re( v)J /2- 1 when Re( v) S I /2. For the specific case, vis an integer, Jv-1 (s; 8) 
converges absolutely in the region Re(s) > (I - v)/2. 

Theorem 2 ([Nol], Theorem 1.1) Let v E (C and e > 0. The ]-Bessel zeta-function has 
an integral representation 

es+ vii I'(-s) (0+) UseBu , -1 
Jv-1(s;8) = . ( ) j --8 F(-s;v;-u )du, (6) 

2nzI' V -oo 1 - e ll 
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which provides a meromorphic continuation to the whole s-plane. Further, the transfor­
mation formula 

v-1 

lv-1(s;8) = e----r~\-s) f (2nin)5F (-s;v; -~) 
I' V n=-oo,n#O 2:rrtn 

holds for Re(s) < -1, and the power series expansion 

oo fJ v2I 

lv-1(s;8) = 2 ( ) ,(s+ 1-m)(-er, 
m=OI' v+m m! 

(7) 

(8) 

holds for s E (['. \ { 0, 1, 2, ... }. The ]-Bessel zeta~function also satisfies the following re­
currence formula: 

(9) 

Remark 1. The power series expressions (2) and (8) are one of the generalizations of 
Ramanujan's formula [Ra! (the binomial type power series): 

00 I'(s+m) 
,(s, 1 +x) = m~O I'(s)m! ,(s+m)(-xr, ( 10) 

for lxl < 1 and s E (['. \ { 1}. An exponential type series was initially studied by Chow la and 
Hawkins !CHI, and Gauss' hypergeometric type and Kummer's confluent hypergeometric 
type series were introduced by Katsurada I Kt I. For related results and generalizations of 
Ramanujan's formula (10), refer to !SC]. 
Remark 2. More general zeta functions twisted by hypergeometric or Bessel functions 
are treated by Kaczorowski and Perelli [KP4]. They derived meromorphic continuations 
of these zeta-functions via the properties of the nonlinear twists obtained in [KP I ]-[KP3]. 

3 Relation to the Poincare series 

Let m E Z>o and H = { z E (['. I Im(z) > 0} be the complex upper half-plane. We denote 
y(z) = (az + b )/ ( cz + d) for y = ( ~ t) E Sl2(Z), and use the notation e(z) = exp(2niz). 
Let k ~ 4 be an integer, and define the m-th Poincare series attached to Sl2 (Z) of weight 
k by 

P/:i(z) := (-1/ 2 e(my(z)( 
{c,d} (cz+d) 

(11) 

Here the summation is taken over y = ( ~ j), a complete system of representation of 

{(0;) ESL2(Z)}\SL2(Z) ~{(c,d) EZ2 lgcd(c,d)= 1, c>0orc=0,d= I}. The 
functional relation of ,exp.u(s;}.,;z) or transformation formula of lv-1(s;8) induce the 
following proposition which leads to the Fourier expansion of P,~(z). 
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Proposition 1 Letµ > 0. The equality 

( 12) 

holds for positive integer k. 

Remark 3. It is easy to see the functional relation (4) is equivalent to (12). To show 
(12) via the transformation formula (7) is rather complicated (see [Nol, Proposition 4.lJ 
). As is well-known, the equality (12), from right side to left side, can be shown by using 
Fourier transform. Our procedure in the proofs of Proposition I differs from these existing 
methods. 

By the definition of P,~(z), we see 

P~(z) = (-lle(mz)+(-1/ 2 
(cd)EZ2 ,c>0 
gcd(c,d) = I 

e(my(z)) 
(cz +d)k · 

(13) 

According to ordinary steps, we rearrange the d-sum into n-sum with finite d-sum modulo 
c, and apply Proposition I with takingµ= m/c2 and replacing z by z +d/c. Thus, we 
achieve the following; 

Theorem 3 (Fourier series expansion of the Poincare series) 

oo k-1 

P,!(z) = (-lle(mz) + (- l)hn 2 (~) 2 

n=I 

00 l (4n ) 2 -Kc(m,n)lk-1 -,/mn e(nz). 
c=l C C 

Here, the Kloosterman sum is defined as follows: 

'°' e (md+c nd), Kc(m,n) = LJ 
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