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On prime vs. prime power pairs 

Yuta Suzuki 

1 Introduction 

In his famous address at the 5th International Congress of Mathematicians, 
Landau [11] listed four problems in prime number theory, which are sometimes 
called Landau's problems. These problems are: 

1. Does the function 1i2 + 1 represent infinitely many primes for integers u? 

2. Does the equation m = p + p' have for any even m > 2 a solution in 
primes? 

3. Does the equation 2 = p - p' have infinitely many solutions in primes? 

4. Does at least one prime exist between n 2 and (n + 1) 2 for any positive 
integer n? 

The present note is related to the first three problems from Landau's list. 
Landau's third problem is well-known as the twin prime problem. Let 

'll(X, h) = ~ A(n)A(n + h), (1) 
n:S;X 

where h is a positive integer and A(n) is the von Mangoldt function. This 
function 1¥ ( X, h) counts the number of twin prime pairs, i.e. prime pairs (p, p') 
satisfying the twin prime equation 

p' = P + h, (2) 

which slightly generalizes the twin prime problem. Although Landau confessed 
that his problems seem unattackable at the state of science at his time, Hardy 
and Littlewood introduced a new method, which is called now the circle method, 
and gave some important attacks against problems 011 prime numbers. By 
applying their method formally, Hardy and Littlewood found an hypothetical 
asymptotic formula 

'll(X, h) = 6(h)X + (Error) (3) 

for even h, where 6 ( h) is the singular series for the twin prime problem defined 
by 

In this note, we call this type of hypothetical asymptotic formula the Hardy­
Littlewood asymptotic formula. Note that the Bateman-Horn conjecture [3] gives 
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a much wider picture on the distribution of prime numbers. Since 6(h) » 1, 
the Hardy-Littlewood asymptotic formula (3) gives a positive answer to the twin 
prime problem. Unfortunately, any rigorous proof of (3) seems quite far from 
our current state of science. However, some average behavior of IJ! (X, h) have 
been obtained by many researchers. As for the twin prime problem, Mikawa 
[13] or Perelli and Pintz [17] obtained the current best result: 

Theorem A (Mikawa [13], Perelli and Pintz [17]). Let X, H, A :=:: 2, and E > 0. 
Assume 

x 113+€ :::: H :::: x. 
Then we have 

w(X, h) = 6(h)X + O(XL-A) 

for all but« HL-A even numbers h E [1,H]. 

Since the original twin prime problem is the case h = 2, we are interested in 
restricting h to some small neighborhood of h = 2. Namely, our goal is to obtain 
the result under the situation "the larger X with the smaller h". In this note, 
we consider this kind of average results for the Hardy-Littlewood asymptotic 
formulas. 

We next consider Landau's first problem. Let 

h(X, h) = L A(nk + h), (4) 
nk~X 

where k 2 2 is a positive integer. This function counts the number of pairs 
(nk, p) satisfying the equation 

(5) 

which generalizes Landau's first problem. Note that if the polynomial Xk + h E 
<Ql[X] is reducible, then the equation (5) has only a finite number of solutions. 
Thus we introduce 

Irrk = { h E N j Xk + h is irreducible over (Ql } . 

As for this equation, the Hardy-Littlewood asymptotic formula is given by 

(6) 

for h E Irrk, where the singular series 6k(h) is given by 

rk(h,p) = j{ x (mod p) j xk + h = 0 (mod p) }j. 
The average result for this problem is obtained recently by [1, 2, 8]. We note 
that as for the "conjugate" equation 

N=p+nk, 
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some results were obtained earlier by [14, 18, 19], and it seems straightforward 
to apply these earlier work to the function IJ!k(X,h) and give the same result 
as in [2] or even better results than those of [1, 8]. We have to mention that 
the interesting method used in [2] is completely different from the earlier work. 
Namely, Baier and Zhao showed that Linnik's dispersion method is sometimes 
applicable to our problem, which is originally attacked by the circle method in 
earlier work. As a result of these work, the current best result is: 

Theorem B (Perelli and Zaccagnini [19]). Let X, H, A 2 2, and E: > 0. Assume 

x1-1/k+£ :::; H:::; x. 

Then we have 
IJ!k(X,h) = 6k(h)x 1!k +o(xl/kL-A) 

for all but« H L-A integers h E [1, H] n Irrk. 

In this note, we consider a kind of mixture of the above two problems. 
Namely, we consider the "prime vs. prime power" pairs (pk, p') satisfying the 
equation 

(7) 

which can be regarded as a mixture of equations (2) and (5). We introduce the 
sets 

lHI~ocal = { h EN I \::Ip: prime, (p- l)lk =} h c=/'. -1 (mod p)}, 

lHik = lHI~ocal n Irrk. 

As for this equation (7), the counting function is given by 

IJ!i;(X, h) = L A(n)A(nk + h), 
n'''.ocX 

and the Hardy-Littlewood asymptotic formula takes the form 

IJ!i;(X, h) = 6'k(h)X 1lk + (Error) 

for h E lHik, where 

15*(h) = II (1 + _1_) II (1- (wk(h,p)- l)p+ 1)' 
k p - 1 (p - 1)2 

p\h pth 

(8) 

wk(h,p) = I { x (mod p) I xk + h = 0 (mod p), (x,p) = 1 }I - (9) 

As for the equation (7), Liu and Zhan [12] obtained a result for the case k = 2, 
and Bauer [4] generalized their result to general k: 

Theorem C (Bauer [4]). Let X, H, A 2 2, and E: > 0. Assume 

xl-1/2k+e :::; H :::; x_ 

Then we have 
IJ!i;(X, h) = <5;;(1i)x 1!k + o(x1/k L-A) 

for all but « H L -A integers h E [l, H] n lHik. 
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We remark that the results in [4, 12] are stated with the conjugate equation 

(10) 

The aim of this note is to improve this result of Bauer. In particular, we have 

Theorem 1. Let X, H, A~ 2, and c: > 0. Assume 

xl-1/k+e ::; H ::; X. 

Then we have 
1JJZ,(X, h) = 6'ic(h)x 1!k + o(x 1!k L-A) 

for all but « H L-A integers h E [1, H] n IH!k. 

As it can be easily predicted, our method is also applicable to the conjugate 
equation (10). Moreover, our method gives a minor variant of the proof of 
Theorem B, i.e. our method is applicable to somewhat broader context than the 
method in [19]. Although our method gives an improvement of Theorem C, it 
has some disadvantage compared with [4, 12, 19]. Briefly speaking, our method 
can not be applied to the restricted counting function. See the last section of 
the preprint [20]. 

Our method is inspired by the work [4, 15, 16, 17]. In particular, the idea of 
Mikawa [15] or its variant of Mikawa and Peneva [16] gives our strategy for the 
treatment of the minor arcs. In these work [15, 16], the minor arc estimates are 
reduced in an efficient way to some Vinogradov-type estimates for sums over 
prime numbers. In our case, we shall reduce the minor arcs estimate for the 
equation (7) to the minor arc estimate for the twin prime equation (2) which 
is given by Mikawa [13] or by Perelli and Pintz [17]. See Sections 6 and 7. We 
also remark that the origin of the technique in this note can be traced back to 
Briidern and Watt [7]. 

Since the details of the proof was given in the preprint [20], we describe our 
method by using the particular case k = 2 as an example in this note. 

2 Notation 

Throughout the letters a, 'T) denote real numbers, X, Y, H, U, V, P, Q, R, A, B, c: 
denote positive real numbers, m, n, d, h, u, N denote integers, p denotes a prime 
number, and L = logX. For any real number a, let e(a) = e21rio_ The arith­
metic function cp( n) denotes the Euler totient function, A( n) denotes the von 
Mangoldt function, µ(n) denotes the Mi:ibius function, and T(n) is the number 
of divisors of n. The letters a, q denote positive integers satisfying ( a, q) = 1 
and the expressions 

I:. , rr 
a (mod q) a (mod q) 

denote a sum and a disjoint sum over all reduced residues a (mod q) respectively. 
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We use the following trigonometric polynomials: 

S1(a) = L A(n)e(na), Vi('T!) = L e(n'T/), 
n:S3X n:S3X 

S2(a) = L A(n)e(n2a), 
n 2 :SX 

We introduce the following complete exponential sums 

* (amk) Ck(a,q) = L e -q- , 
m (mod q) 

for k = 1, 2. Note that if ( a, q) = 1, then the exponential sum C 1 ( q, a) is reduced 
to the Mi:ibius function µ(q). Then we introduce the remainder terms 

and the truncated singular series 

We assume B 2 Bo(A), where Bo(A) is some positive constant depends only 
on A. The implicit constants may depend on A, B, r:;. 

3 The Farey dissection 

As usual, we can deduce Theorem 1 with k = 2 from the following L2-estimate: 

Theorem 2. Let X, H, A, B 2 2, U 2 0, r:: > 0, and P = L 8 . Assume 

x112+s s H s X, 0 s u s X. 

Then for sufficiently large B 2 B 0 (A), we have 

L lw;(x, h) ~ s;(h, P)x 112 !2 « H x L-4A, (ll) 
U<h:SU+H 

where the implicit constant depends on A, B, r::. 

We can assume, without loss of generality, that U and H are positive integers 
and that H S x 4/ 5 , which makes the proof of Theorem 3 simpler. 

By the orthogonality of additive characters we have 



151

for any h :<:: U + H :<:: 2X. We use the Farey dissection given by 

P = LB, Q = H112, R = xp-5, I= [Q-1, 1 + Q-1], 

9-Ra,q = [~q _ qlQ' ~q + qlQ] ' 9-R' _ [~ _ ]._ ~ + ]._] a,q - q qR' q qR ' 

9R = 11 11• 9-R~,q, m =I\ 9-R. 
q'SP a (mod q) 

Then by the integral expression (12), we have 

L lw;(x,h)- e;;(h,P)x112l2 
U<h'SU+H 

« L 11 S1(a)S2(0:)e(-ha)da-6;(h,P)X 1l 2 \
2 

U<h'SU+H 9:n 

+ L I / Si(o:)S2(a)e(-ha)da\
2 + H XL - 5A 

U<hSU+H Jm 
= L + L +HxL-6A, say. 

9:n m 

4 Preliminary lemmas 

We first approximate trigonometric polynomials Sk(a) in a standard way. 

Lemma 1. We have 

sk ( ~ + r1) = c:\~)q) Vi(17) + 0 ( q(l + ir1IX)X1Ik p-16) 

fork= 1, 2. 

Proof. This follows from the Siegel-Walfisz theorem [9, Corollary 5.29]. D 

We next recall some basic facts on the complete exponential sums. For the 
detailed proofs and discussions, see Section 4 and 5 of [5]. 

Lemma 2 ([5, Lerrnna 4.3 (b)]). Suppose that (q1 , q2 ) = 1. Then 

Lemma 3 ([5, Lemma 4.4 (a)]). For any prime p, we have 

where w2(h,p) is given by (9). 
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5 The major arcs 

In this section, we shall evaluate the integral over the major arcs. We have 

{ = L I:* e (- ah) { S1 (~ + 11) S2 (~ + 11) e(-hr7)d17, J:m q$P a (mod q) q }lrl/9/qR q q 

which we denote by 

= L L* e (-a:) la,q(h). 
q$P a (mod q) 

We approximate each integral la,q(h) by decomposing into the following parts: 

la,q(h) = Aa,q(h) + Ba,q(h) + Ca,q(h) + Ia,q(h), 

where 

Aa,q(h)= { S1(~+11)R2(17,a,q)e(-h17)d17, 
}lr119/qR q 

C2(a,q) l --
Ba,q(h) = () R1(17,a,q)Vi(17)e(-h17)dq, 

'P q · 11119/qR 

µ(q)C2(a,q) l --
Ca,q(h) = - ( )2 Vi(11)V2(r7)e(-hry)d17, 

'P q 1/qR<lril$1/2 

µ(q)C2(a, q) ;· --
Ia,q(h) = ( )2 Vi(r1)V2(17)e(-hr7)d17. 

'P q · 1'719/2 

We shall prove the estimates 

Aa,q(h), Ba,q(h), Ca,q(h) « xl/2 p-2 L-2A' 

and the asymptotic formula 

(13) 

L I:* e ( - aqh) Ia,q(h) = s;(h, P)x1! 2 + O(x 1/ 2 L-2A ). (14) 
q$P a (mod q) 

We start with Aa,q(h). By using S1 (a) « X and Lemma 1, we have 

Aa,q(h) « X r IR2(r1,a,q)ld11 « xl/2p-2£~2A_ 
}1'719/qR 

This proves (13) for Aa,q(h). The integral Ba,q(h) can be estimated similarly. 
We next estimate the integral Ca,q(h). Note that for 1''71 S 1/2, we have 

Vi(rJ) « 1771- 1 . Thus we have by the Cauchy-Schwarz inequaliity 

Ca,q(h) « _(l) (1 ld7J12)1/2 ( [1 IVi(11)12dq)l/2 
'P q qR<lrl/9/2 17 Jo 

(qR)l/2 ( 1) 1/2 
« t.p(q) L ;: « x1;2 p-2 L-2A. 

n$X 
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This proves (13) for Ca,q(h). 
Finally we prove the asymptotic formula (14). Clearly 

By the orthogonality of additive characters, we have 

j. Vi (77)V2(77)e(-h17)d77 = x 1! 2 + 0(1). 
1'719/2 

Since Lemma 2 and 3 implies 6 2(h, P) « L 2 , we obtain (14). 
By (13) and (14), we arrive at 

This completes the evaluation of the major arcs. 

6 The minor arcs 

(15) 

The remaining task is to estimate the integral over the minor arcs. As we 
mentioned before, we shall reduce our minor arc estimate to the corresponding 
estimate for the twin prime problem. This minor arc estimate was obtained by 
Mikawa [13] or by Perelli and Pintz [17]. Their result can be stated as: 

Theorem 3. Let O S U S X, H S V « X and assume the above setting. 
Then 

L 11 IS1(a)l2e(ha)da\
2 « VX 2 L~32A 

U<hSU+V m 

for sufficiently large B :::0: Bo(A). 

Since our Farey dissection is given in the same manner as Perelli and Pintz [17] 
used, it is more direct to apply the proof of Perelli and Pintz [17]. Note that 
the admissible range of H obtained in [13, 17] is X 1/3+c S H « X, which is 
much stronger than we need here. 

As for the reduction of our minor arc estimate to Theorem 3, we use the 
idea of Mikawa [15]. First we expand the square and make cancellations along 
n. Then we have 

L = 1 r S1(a)S2(a)S1(,6)S2(,6) L e(-h(a - ,6))dadf3 
m m .Im X<hSX+H 
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By the arithmetic and geometric mean inequality, we have 

Therefore we have 

~ « L L IS1(a)l2IS2($)I2 rnin ( H, Ila~ $II) dad$ 

« .[1
:;2 L IS1(a)l2 IS2(a + $)12 min ( H, l~I) dad$. 

We next expand the square IS2(a + $)1 2, and interchange the order of summa­
tion and integration. Then we have 

L « L L A(m1)A(m2) 
m mi,m~:s;x 

X .[
1
:/

2
2 L IS1(a)l2 min ( H, l~I) e((mr - m~)(a + $))dad$ 

« ,f21x A(m, )A(m,) ll:1', min ( H, l~I) c((ml ml)~)d~I 

X IL IS1(a)l2 e((mr - m~)a)dal. 

We introduce a new variable u = mr - m§. Clearly the range of this variable u 
is restricted by the condition lul ~ X. Then we can rewrite the above sum as 

« L J(u)I(u) 11 IS1(a)l2 e(ua)dal, 
1u1::;x m 

where 

J(u) := L L A(m1)A(m2), 
mi ,m~:s;x 
mi-m~=u 

(16) 

Since the terms for u and -u contribute the same amount, we can rewrite the 
sum (16) as 

« L J(u)I(u) 111s1 (a)l 2 e(ua)da\ . 
o:c:;u:c:;X m 

(17) 

We estimate two coefficients J ( u) and J ( u). Clearly, 

J(O) = L A(m)2 « x 1/ 2 L. (18) 
m 2 :c;x 
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On the other hand, the equation 

can be factorized into 

Therefore we have 
J(u) « T(u)L2 

for u 2 1. For the integral J ( u), we have a trivial estimate: 

Jl/2 ( 1 ) 1 J I(u) « rnin H, - d/3 = + « L. 
-1/2 l/31 l/31:Sl/H 1/H<l/319/2 

On the other hand, the oscillation of e( u/3) gives 

I(u) « H 11· e(uf3)df31 + I! e(u/3/3) d/31 « H 
1/31:Sl/H , 1/H</3'.Sl/2 U 

for u 2 1. Therefore we obtained 

I(u) « rnin ( L, ~) . 

Substituting (18), (19), and (20) into (17), we arrived at 

L « x 1l 2L 21 IS1(a)i2da 
m m 

+ L2 L T(u) rnin (L, ~) jJ 1s1(a)l2 e(ua)dal. 
u:SX m 

By Parseval's identity, we have 

xl/2£2 / IS1(a)j2da«xl/2L2 r11s1(a)j2da«x3/2L3. 
Jm Jo 

Therefore we obtained 

where 

(19) 

(20) 

(21) 
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Now we estimate the sum L,w We first use the Cauchy-Schwarz inequality 
in order to make L2-moment. Then we have 

(22) 

Applying Theorem 3 with U = 0 and V = H, we have 

(23) 

Finally, we estimate the sum L,u. As before, we start with the Cauchy­
Schwarz inequality. Then 

Applying Theorem 3 with V = U, we have 

(24) 

Summing up all of the above estimates, we arrived at 

(25) 
m 

since x 1 / 2 +s :::; H. This completes the estimate for the minor arcs and the 
proof of Theorem 2. 

7 Completion of the proof 

We need to approximate the truncated series 6 2 (h, P) by the full series 6 2(h). 

Lemma 4. Assume X" ::::; H ::::; X. Then we have 

62(h, P) = 62(h) + 0 (L-A) 

for all but « H L-A integers h E [1, HJ n llh 

Proof. This can be proven by the method of Kawada [10, Corollary 1 J. □ 

We can now prove Theorem 1. By Theorem 2 with U = 0, we have 

# { h E [1, HJ n lHb I i'Vi(X, h) - 6 2(h, P)x 112 I > x 112 L-A } 

Hx£-4A 
« X£-2A «HL-A. 
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Therefore we have 

for all but « H L-A integers h E [1, H] n lHb. Now Lemma 4 implies that 

with « H L -A additional exceptions. This completes the proof of Theorem 1 
for the case k = 2. 
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