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A COHOMOLOGICAL INTERPRETATION OF ARCHIMEDEAN ZETA 
INTEGRALS FOR GL3 x GL2 

KENICHI NAMIKAWA 
FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY 

ABSTRACT. This article is a survey on the author's preprint [HNl], where the author con­
structs a p-adic Asai £-functions for irreducible cohomological cuspidal autmorphic repre­
sentations of GL2 over CM fields. 

1. INTRODUCTION 

1. 1. Motivation. This article is a report of the author's talk at the conference "Automorphic 
forms, Automorphic representations, Galois representations, and its related topics" , which 
was held at RIMS, Kyoto university between 25th to 29th, January, 2021. 

The author's talk was based on our preprint [HNI], where authors study a detailed re­
lationship between cup product pairings and zeta integrals for Rankin-Selberg £-functions 
for GL3 x GL2. Namely, this work deduces a rationality results for the critical values of 
Rankin-Selberg £-functions for GL3 x GL2. 

The study of rationality of critical values of Rankin-Selberg £-functions is firstly developed 
by Manin [Man72] and Shimura [Shi76], [Shi77]. Mahnkopf [Mah05] generalized their work 
for GLn+l x GLn(n :;:, 1), based on the generalized modular symbol method by Kazhdan, 
Mazur and Schmidt ([KMS00]). Mahnkopf gives a relation between cup product pairings for 
certain symmetric spaces and zeta integral for Rankin-Selberg £-functions, however he did not 
introduce a notion of periods and his final formula contains unspecified constant. Raghuram 
and Shahidi formulated a notion of Whittaker periods in [RS08, Definition/Proposition 3.3], 
and as a continuation of his work, Raghuram ([Ragl6]) gives a rationality result for Rankin­
Selberg £-functions with respect to their Whittaker periods. However, there still exists an 
unspecified constant p;ll(µ, >..) in Raghuram's rationality statement in [Ragl6, Theoreml.1 
and 2.50]. See [Rag16, (2.49)] for the definition of p~TJ(µ, >..) and its detail. Here we use the 
same notation with [Ragl6]. The analysis of the constant p~TJ(µ, >..) is one of fundamental 
problem in the generalized modular symbol method. B. Sun ([Sunl 7], [KS13] if n = 2) proved 
that the constant p~TJ(µ, >..) is non-zero, however no further property about the constant is 
known so far. One of the motivation of Hara and the author's work in [HNI] is to compare 
Raghuram's rationality result with Deligne's conjecture on rationality of critical values of 
£-functions for Rankin-Selberg motives by giving a precise evaluation of this unspecified 
constant p~'f/(µ, >..). Acutually we prove that p;ll(µ, >..) is given by the product of a r-factor 
and an explicit easy constant. 

There is another motivation in [HNI] which is coming from the construction of p-adic 
Rankin-Selberg £-functions due to Januszewski [Jan]. One of important expected properties 
of p-adic £-functions is Kummer type congruence, which is called as the Manin congruences 
in [Jan]. The Kummer type congruence yields that congruences between different critical 
values, however, the work of [Jan] is based on the rationality results of Mahnkopf [Mah05] and 
Raghuram [Rag16], and hence the interpolation formula in [Jan] still contains an unspecified 
constant p;ll(µ, >..). Since the constants depend on the critical values, the study of Kummer 
type congruence is still difficult problem so far. In [HNI], we give a precise relation between 
cup product pairings with critical values, which makes possible to formulate the congruences 
between critical values with respect to Raghuram-Shahidi's Whittaker periods. 
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1.2. Statement of the main theorem. To state the main result, we introduce some no­
tations in detail. Put ~Q as the set of all places of Q, and denote by oo its unique infinite 

place. For n = 2 or 3, let 1rCn) = ®~EEQ 1rin) denote a cohomological irreducible cuspidal 

automorphic representation of GLn(QA)- Since 1rC2) is cohomological, the archimedean part 

7r~) of 1rC2) is a discrete series representation D,,2 ,z, of GL2(R) of weight Z2 ?: 1, and (the 
archimedean part of) the central character W71"(2) of 1rC2l satisfies W71"(2) 00 (t) = t2,,2 for every 

t E Rx with t > 0. Since 7r(3) is also cohomological, the archimedea~ part 1r~) of 7r(3) is a 
generalized principal series representation of GL3(R) parabolically induced from the direct 
product of a discrete series representation D,,3 ,z3 of GL2(R) (l3 ?: 2, l3 is even) and a char­
acter xt3 : Rx ---+ ex such that xt3 (t) = sgn(t)Oltl~- We always have to assume that the 
inequality (1 :S:) Z2 < b holds, since our method is based upon the modular symbol method 
adopted in [Mah05]. We also normalize the parameter Vn as Vn = -~ + n21 . The for each 
m E Z, L(m + ½, 7r(3) x 1rC2l) is a critical value if and only if 

{
!J. -1 < m < !J. + Z2 - 2 2 - - 2 ' 

L-l.-1<m<!J.+z2-2 
2 - - 2 ' 

(Z2 :S: ~ ), 
(1f < h < b). 

We call these m critical points for 7r(3) and 1rC2). We are interested in algebraicity of the 
critical values L(m + ½, 1rC3) x 1rC2l). 

Our strategy to study the critical values L(m + ½, 7r(3) x 1rC2l) is the generalized modular 
symbol method in [KMS00], [Mah05], [Rag16] and [Jan]. So we introduce a setting on sym­
metric spaces and its cohomology groups. Let Kn be an open compact subgroup of GLn(Z) 

and Yt) the corresponding symmetric space GLn(Q)\GLn(QA)/R;_0SO(n)Kn. Suppose 

that K2 = GL2(Z) and that /(,3 is the mirabolic subgroup of GL3(Z) consisting of matrices 
whose bottom rows are congruent to (0, 0, 1) modulo an ideal IJ1 of Z. We also assume that 
1rC2) has a K2-fixed vector and that 1)1 is minimal among ideals of Z such that 7r(3) has a 
K3-fixed vector. 

Since 7r(n) is cohomological, there exist certain local system .c(nl(C) with coefficient C 
such that 7r(n)_isotypic component of the cuspidal cohomology group H~usp(Yt), .c(nl(C)) is 
non-zero. Let E be a sufficiently large number field so that E contains the field of rationality 
of 1rC2) and 7r(3) in [Clo90, Section 3]. Put bn = 1, 2 for n = 2, 3 respectively. We can define 

cohomology classes TJ;'(2) and T/71"(3) in 1ri:)-isotypic component of H2;;sp(Ytl,.c(nl(E)) for 

n = 2, 3 respectively. Raghuram and Shahidi define their periods !:171"(3) and n;(2) attached to 

7r(3) and 1rC2) in [RS08] as the ratios of T/71"(3) and TJ;'c2) to the images of appropriate cusp forms 

of 7r(3) and 1rC2) under the Eichler-Shimura maps 5(3) and 5(2) respectively. The definition of 
periods !:17l"c3) and n;c2) depends on a normalization of Whittaker functions associated with 
cusp forms. We adapt a suitable normalization of Whittaker functions so that the local zeta 
integrals of the Whittaker functions give local £-factors. In particular, at archimedian place, 
we use an explicit formula of archimedean zeta integrals in [HIM]. It is also necessary to 
write down Eichler-Shimura maps for GLn to clarify the relation between periods and zeta 
integrals. If n = 2, the explicit description is well-known ([Shi71, Section 8]). In [HNl], we 
give an explicit description of Eichler-Shimura map for GL3. See Section 2 for more details 
on these cohomology classes. 

Recall the cohomological interpretation of zeta integrals, which is given in [KMS00] and 
[Mah05]. Let us consider the natural projection 
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Consider GL2 as a subgroup of GL3 via the embedding g H (g 1). Then the branching 

rule for irreducible algebraic representations of GL3 and GL2 induces maps ymm, which is 

indexed by critical points m, from local systems on Y;!; to local systems on Yf;. See [HNl, 
Section 3] for the explicit branching rule and the maps ymm. 

Let J(m, 7r(3), 7r(2l,±) be the cup product of v7nmi *p37]1r(3) and p27J;°c2J" The generalized 

modular symbol method yields J(m, 7r(3), 7r(2l) is described by a certain zeta integrals for 
Rankin-Selberg L-functions. By our detailed construction on Eichler-Shimura maps and the 
branching rule, we found the following explicit formula for I(m, 7r(3), 7r(2l), which is the main 
theorem in [HNl]: 

c5 !_a_ Theorem 1.1. (i) Suppose that (-1) + 2 = ±(-l)m holds. Then we have 

I(m, 71"(3)' 71"(2),±) 

" !_a_-m-1 ( h - 1 ) ( h - 1 ) L(m + l 7r(3) x 7r(2l) = T2(-l)"H2 2 2 2' ± . 
l3 - 2 - m m - l2 + 1 !11rc3J !11rC2J 

Here (~) denotes the binomial coefficient. Furthermore the right-hand side gives an 
element in E. 

(ii) If (-l)c5+~ = ±(-l)m does not hold, then we have J(m,7r(3),7r(2l,±) = 0. 

The above theorem deduced from the evaluation of the unspecified constant p';;}(µ, >.) in 
[Rag16, (2.49)] and hence Theorem 1.1 refines the rationality result in [Rag16, Theorem 
1.1 (2), Theorem 2.50]. The study of p;f/(µ, >.) is done by a detailed analysis of Eichler­
Shimura maps for GL3 and an explicit formula for archimedean Rankin-Selberg zeta integral 
of GL3 x GL2 due to Hirano-Ishii-Miyazaki ([HIM]). In [HNl], we found an appropriate form 
of Eichler-Shimura maps for GL3 for the study of cup product pairings. In this article, we 
briefly explain our description of Eichler-Shimura maps for GL3 in Section 2. 

We are also interested in the motivic nature of periods !11r(3), !1;'c2J in Theorem 1.1. From 

the definition and the usual modular symbol method, it immediately follows that !1;'c2J are 
given by Deligne's periods in [Del79]. By using Theorem 1.1 and assuming the conjectural 
motive attached to 7r(3), we found an explicit relation between !11r(3) and Deligne's periods. 
See Section 3 for the motivic interpretations of the Raghuram-Shahidi's Whittaker periods 
n7r(3). 

1.3. Organization of this article. All the details about Theorem 1.1 can be found in 
[HNl]. Hence, in this article, we focus on Eichler-Shimura maps for GL3, since it is one of 
main ingredients in [HNl] and it might be useful beyond the scope of [HNl]. We describe 
Eichler-Shimura maps in Section 2. The proof of Theorem 1.1 is done by detailed study of 
Eichler-Shimura maps. The detail of the proof can be found in [HNl, Section 7]. We also 
discuss the motivic background of Raghuram-Shahidi's Whittaker periods !11r(3) in Section 3. 
In particular, see Corollary 3.2 for the result. 

1.4. Convention. In this article, if we say L-functions, it implies "complete" L-functions. 
For instance, for a pure motive M, L(s, M) is the product of r-factor of Mand local L-factor 
of Mat finite places. We sometimes write L(s, M) = L00 (s, M)Llin(s, M), where L 00 (s, M) 
denotes the r-factor of Mand Lfin(s, M) denotes the product of local L-factor of M at finite 
places. The similar notion is applied to automorphic L-functions. 

2. EICHLER-SHIMURA MAPS FOR GL3 

Let 7r(3) = ®~EEQ 7r~3) be a cohomological irreducible cuspidal automorphic representa­

tion of GL3(QA)- Recall that 71"~) is a generalized principal series representation, which is 
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parabolic induction from Dv3 ,b and xt3 . In this section, we describe an explicit form of 
Eichler-Shimura map for 7r(3), which we used in [HNl]. 

We prepare some notations. Let A a (commutative) integral domain of characteristic 0. 
For non-negative w E Z, A[z1, z2, z3]w denotes the set of homogeneous polynomials of degree 
w of variables z1, z2, z3 with a coefficient A. 

2.1. Model of representations of 0(3). Set A3 = {(.>.., <5) I .>.. E Z, .>.. 2: 0, <5 E Z/2Z} and 
let A= (.>.., <5) E A3. Define an action T>. of 0(3) on C[z1, z2, z3].x by 

T>. ( u)P(z1, z2, z3) = ( det u)° P((z1, z2, z3)u) 

for each u E 0(3) and P E C[z1, z2, z3].x. Define subspace V>. of C[z1, z2, z3].x to be V>. = 
(zr + z~ + Z§)C[z1, z2, Z3].x-2 for )._ 2: 2 and V>. = 0 otherwise. Since V>. is stable under the 
action T>. of 0(3), we put V>. = C[z1, z2, z3].x/V>. and we also denote by T>. the action of 0(3). 
Then each irreducible representation of 0(3) is classified as T>. for some A E A3. 

We introduce an explicit basis of the representation space vpl. For every µ E Z with 

0 ::::; /L ::::; .>.., let v~i,>. be elements of vpl defined as 

v~i,>. = (±z1 + Hz2tz;-µ mod V>. (double sign in the same order). 

Let M>.(u) E GL2>.+1(C) be the matrix representation of the action of u E 0(3) on vpl with 
respect to the above basis, in particular we have 

( (3) ( ) (3),>. (3) ( ) (3),>. (3) ( ) (3) ,>.) 
T>. U VA T>. U V.X-l . . . T>. U V_A 

(2.1) 
=(vi3),>. vfl_l ... v(3V)M.x(u). 

Note that the minimal O(3)-type of 7r~) is T>. for A= (l3 + 1, <5). Let 

We also note that 7r(3) is cohomological if and only if A E A3°h. 

2.2. Model of finite dimensional representations of GL3. Set w = (wt,w1,w2) with 
w+1 ,w1-,w2 E Zandw+1 ,w-1 2: 0. DefineA[X,Y,Z;A,B,C] + - tobethesetofhomogenous 

WI ,W1 

polynomials of degree wt in variables X, Y, Z and of degree w1 in variables A, B, C. Define 

an action e~) of GL3(A) on A[X, Y, Z; A, B, C] + - as follows: 
WI ,W1 

e~)(g)P(X, Y, Z; A, B, C) = (detg)w2 P((X, Y, Z)g; (A, B, C)tg-1) 

for PE A[X, Y, Z; A, B, C] + - and g E GL3(A). 
WI ,wl 

We also define a differential operator l + - to be 
WI ,wl 

We note that l + - is equivariant with respect to the actions e~) and / 3~(l l O) of GL3(A). 
WI ,Wt W , , 

Hence define £(3) ( w; A) as the kernel of l + - . It is known that £(3) ( w; A) is an irreducible 
WI ,wl 

algebraic representation of GL3(A) when A is a field ([FH13, Section 13.2]). 

Recall that 7r~) has the minimal O(3)-type T).. Then later we will only use the case that 
w = W>. := (1f - 1, 1f - 1, 1f - 1) for even h 2: 2. In this case, assuming that A is a field, 
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then the dimension dimA£(3l(wA;A) of £(3l(wA;A) is give by the following formula: 

dimA£(3l(wA; A)= (~ r 
2.3. Lie algebras. For the construction of Eichler-Shimura isomorphism, we also need to 

write down the adjoint action of 0(3) on differential forms on Yi!). So we have to prepare 
some explicit formulas about Lie algebras of GL3(R). 

Let P3 = g13(R)/Lie(K3) and define P3,C to be its complexification. We consider the 

adjoint action of SO(3) on P3,C· It is immediately checked that P3,c is isomorphic to Tg;o) 
as SO(3)-modules. For i = 2 and 3, the wedge product /\i P3,C is of dimension 10, and we 

readily observe that its C-linear dual/\ i P:i,c is isomorphic to Tg~~ EBTg:o~ as SO(3)-modules 

(here Tj_3),v denotes the contragredient of T;_3l). Furthermore, we have the following lemma: 

Lemma 2.1. Suppose that i = 2 or 3. Then there exist explicit elements w; (-3 ::; j ::; 3) 

in N P:i,c such that 

/\iAd*(u) (wt w~3 ) = (wt . . . w~3 ) tM(3,o)(u)-1 

for each u E SO(3). 

For each g E GL3(R), by lwasawa decomposition, we write g as follows 

(
Y1Y2 Y1X2 X3) 

g = 0 Yl X1 . k 
0 0 1 

Consider x1, x2, x3, Yl, Y2 as a coordinates of Y,K(3l := GL3(Q)\GL3(R)/R x SO(3). Then we 
3,00 

can write down the differential i-form (i = 2,3), which is determined by w; (-3::; j::; 3) as 
follows: 

Lemma 2.2. Set ~2 = dy1, ~1 = dy2, ~o = dx1, ~-1 = dx2 and ~-2 = dx3. For i = 2 and 3, 
define c;i as 

c,2 = (~2,1 ~2,0 ~2,-1 ~2,-2 ~1,0 ~1,-1 ~1,-2 ~0,-1 ~0,-2 ~-1,-2), 

c,3 = ( ~2,1,0 ~2,1,-1 ~2,1,-2 ~2,0,-1 ~2,0,-2 ~2,-1,-2 ~1,0,-1 ~1,0,-2 ~1,-1,-2 ~0,-1,-2) , 

where ~j,j' and ~J,J',J" abbreviate ~j I\ ~J' and ~j I\ ~J' I\ ~J" respectively. Then the differential 

forms ( wt w~3 ) is described on Yi!;00 as c;iQi for 

0 1 0 0 0 1 0 2y1y2 -2y1y2 
0 0 x2+v'=IY2 0 x2-v'=IY2 0 0 2Y1Y2 2Y1Y2 
0 

yCI 
0 0 0 

yCI 
0 -2y1y2 -2y1y2 

0 0 1 0 1 0 0 2yfo2 2y?y2 
x2+v'=IY2 0 x2-5v'=Iy2 0 x2+5v'=Iy2 0 x2-v'=IY2 

Q2= 
8y1y~ 8y1y2 8y1y2 8y1y~ 
0 

yCI 
0 

yCI 
0 

yCI 
0 -Tur 2y~ - 4y~ 

1 0 1 0 1 0 1 
8Y1Y§ - 8Y1Y§ -8Y1Y§ 8YtY§ 

- v'=Ix2-'/1_2 0 3( v'=Ix2+y2) 0 3(v'=Ix2-y2) 0 v'=Ix2+'/1_2 
8ytY~ 8Y1Y2 8y1Y2 8y1y~ 
0 0 0 

yCI 
0 0 0 YiY2 

yCI 
0 3yCI 0 3yCI 0 

yCI 
- 8y1y~ 8YtY§ - 8y1y§ 8y,y~ 
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x2+v'=IY2 0 X2-v'=IY2 0 x2+v'=IY2 0 X2-v'=IY2 
24yM syM syM 24yM 

0 0 0 A 0 0 0 
3y1yi/ 

1 0 1 0 1 0 1 
-24yM -syM -syM -24yM 

v'=Ix2-l/2 0 v'=Ix2+l/2 0 v'=Ix2-Y2 0 v'=Ix2+Y2 
24yM syM syM 24yfyil 

0 0 0 A 0 0 0 
Q3 = 6y~y2 

A 0 A 0 A 0 A 
24yM 8y2yg -= -= 8Y1Y2 24Y1Y2 

v'=Ix2-l/2 0 Fix2-3l/2 0 v'=Ix2+3u2 0 - v'=Ix2+u2 
48y1y~ l6y1y~ l6y1y~ 48ylY~ 

0 A 0 A 0 A 0 syM 12yM syM 
A 0 A 0 A 0 A 

48y1y~ - l6y1y~ l6y1y~ - 48y1y~ 

0 1 0 0 0 1 0 -= syM 8Y1Y2 

The proofs of Lemma 2.1 and Lemma 2.2 are done by direct calculation using Mathematica 
and Maxima. 

2.4. Space of cusp forms. We introduce the space of cusp forms sl3\X::3) associated with 

7r(3), which is necessary to define Eichler-Shimura maps. Since Homo(n) ( rl3), 1rt';)) has di­
mension 1 by Schur's lemma and the theory of minimal K-types, we find a tuple 

f := (ft3 f;3-l f~;,J 

consisting of cuspidal automorphic forms f~: GL3 (Q)\GL3 (QA) --+ C for ->..3 :Sa :S >..3 

associated with 7r(3) satisfying 

for each g E GL3(QA), t E R;_0 and u E 0(3). We call tuples f satisfying the above 

identity as cusp forms associated with 7r(3)_ For each A E A3°h, define s.f\K:3) to be the C­
vector space spanned by cusp forms associated with certain cohomological irreducible cuspidal 
automorphic representations of GL3(QA), which are invariant under the right translation by 

K:3 and whose archimedean parts have the minimal O(3)-type rl3). 

2.5. Definition of Eichler-Shimura map. Suppose that A is a field of characteristic 0 and 

let ,C(3l(w.>.;A) be the local system on YJ!l associated with GL3(Q)-module £(3l(w.>.;A). In 
this subsection, we introduce our description of Eichler-Shimura map: 

J(3),i . s(3) (K: ) -----+ Hi (Y,(3) ,e(3) (w,. C)) · .>. 3 cusp x:,3 , "' 
(i = 2, 3). 

Although only i = 2 case is necessary for the proof of Theorem 1.1, we include i = 3 case 
here, since the explicit description of Eichler-Shimura maps is important itself and might be 
useful for further study. 

We firstly recall the basic fact about (g[3(R), K 3)-cohomology, which is originally worked 
out by Clozel ([Clo90, Lemme 3.14]). Here we introduce slightly modified statement as 
follows: 

Theorem 2.3. ([Mah05, Section 3.1.2] and [GR14, Section 5.5]) Let K3 = R;_0SO(3) and 

define H,r(3),K3 to be the (g[3 (R),K3 )-module associated with 1r~l. Then we have 

for i = 2 and 3, 

otherwise. 
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Let i = 2, 3. By using [BW80, II, Proposition 3.1], we obtain a natural isomorphism 

H\g[3(R), K3; H,r(3J,K3 ® L(3l(w>,; C)) ~ Homso(3) ( /\ P3,c, H1r(3J,K3 ® L(3l(w>..; C)) . 

Hence the 1r(3)_isotypic component of H~usp (Yi:,!l, t:,(3) ( w >..; C)) is given by 

(2.2) ( 
i )00~ 

H1r(3l,K3 ® L(3l(w>..; C) ® /\ P{c ® ( 1ri~t3, 

where P{c is the linear dual of P3,C· For each cusp form f E sl3\JC3), we construct an 

element <5(3),i(f) in the above space. 
Let us consider an element 

P(X, Y, Z, A, B, C, z1, z2, z3) E (C[X, Y, Z; A, B, CJw.>.. ® C[z1, z2, z3],>..3 /V>..)Ell7 

as follows: 

Then matrix P(X, Y, Z, A, B, C, z1, z2, z3) of polynomials satisfies the following distinguished 
properties: 

Lemma 2.4. Let P(X, Y, Z, A, B, C, z1, z2, z3) be as above. 

(i) There exists a unique matrix 

P(X, Y, Z, A, B, C) 

( 
P.>..3 ,3(X, Y, Z, A, B, C) 

= P-,\3 ,3(X,;Z,A,B,C) 

P.\3 ,-3(X, Y, Z, A, B, C)) 
P-,\3 ,-3(X, ~' Z, A, B, C) 

E M2.\3+1,1(C[X, Y, Z; A, B, C]w>,.,wJ 

such that P(X, Y, Z,A, B,C, z1,z2, z3) = (v{3 • • • v~,\J P(X, Y, Z, A,B, C) holds. 
Moreover every entry of P(X, Y, Z, A, B, C) is an element of £(3l(w>..; C) all of whose 
coefficients are contained in Z [2-1 , A]. 

(ii) For each u E SO(3), we have 

(Qf\u)P)(X, Y, Z, A, B, C) = M; 1(u)P(X, Y, Z, A, B, C)M(3,o)(u). 

For a cusp form f = (ff3 J;3 _ 1 . . . f~,\J E sl3\JC3), we define 5(3),i(f) to be 

5(>),'(f) ~ (!;, Jt_, . . . J',,) P(X, Y, Z, A, B, C) (:tJ 
Then Lemma 2.4 shows that t5(3),i(f) is invariant under the O(3)-action. This implies that 

5(3),i(f) gives an element in (2.2), and hence it gives a class of H~usp(Yi:,!l, £(3l(w>..; C)). 
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3. MOTIVIC INTERPRETATIONS 

Assuming the existence of the conjectural motives attached to cohomological automor­
phic representations, Theorem 1.1 implies that the product 01rca) 0;\2) of Raghuram-Shahidi's 
Whittaker periods is related to Deligne's period of motives of Rankin-Selberg product. In 
this section, we clarify this relation by introducing the pure motives which is conjectured by 
Clozel ([Clo90]). 

3.1. Conjectural motives. Notations are as in the previous sections. We briefly recall the 
conjectural description of motives attached to 7r(n). 

Conjecture 3.1. ([Clo90, Conjecture 4.5]) There exists a pure motive M [1r(n)] of rank n and 
of weight -(2vn - n + 1) which satisfies 

L(s, M[1r(n)]) = L ( s - n; 1 , 7r(n)) . 

Since we normalized Vn = -~ + n21, M[1rCn)] has weight ln. Let M(1r(3) X 1rC2l) be 

the tensor product motive of M[1r(3l] and M[1rC2l]. Then we find the following identity of 
£-functions: 

L ( s + i, 1r(3) x 1r(2)) = L(s, M( 1r(3) x 1r(2l)(2) ), 

where M(1r(3) x 1rC2l)(2) denotes the 2-fold Tate twist of M(1rC3) x 1rC2l). 

3.2. Period relations. We introduce a description of Raghuram-Shahidi's Whittaker peri­
ods 01rca) in terms of motives. 

We write a ~ E b for a, b E C and a number field E if a = be for some c E Ex. For a pure 
motive Mover Q, let o(M) and c±(M) be the periods in [Del79]. 

By calculating the r-factor, we find the following relation of critical values: 

11~-m-l L(m + ½, 7r(3) X 1r(2)) 11-12+1 Lfin(m + ½, 7r(3) X 1r(2)) 
(3.1) y-.1 ± ~qy-1 l , 

n7r(3) n 7r(2) (21rv'=I)3m+6-'f-!2 n7r(3) n;=(2) 

o l__a 1 where (-1) + 2 + = ±(-l)m. Note that Theorem 1.1 yields that the right-hand side of the 
above equality is algebraic. 

On the other hand, [Del79, (5.1.8)] implies that 

Lfin(0, M(1r(3) x 1rC2l)(m + 2)) Lfin(0, M(1r(3) x 1rC2l)(m + 2)) 
c+(M(1r(3) x 7r(2))(m + 2)) (21ryCf)3(m+2)c(-1)"'+2(M(1r(3) x 7r(2))) 

(3.2) 

and [Del79, Conjecture 1.8] yields that the above quantity is an algebraic number. 
Combining (3.1) with (3.2), we obtain the following 

( ) ( ) l__a l ±(-l)H~+l 
c±(M(1r 3 X 7r 2 )) ~q (21ryCI)- 2 - 2n7r(3)n7r(2) 

By [Yos0l, Proposition 12], c±(M(1r(3) x 1rC2l)) can be written a product of periods of 
M[1rC2l] and M[1r(3l]. Hence we obtain the following corollary: 

Corollary 3.2. We have the following period relation: 

n7r(3) ~q (21rH)~c+(M[1r(3l])c-(M[1rC3l]). 

Remark 3.3. Independently of our work, S.-Y. Chen [Che] also obtains the same formula 
in Corollary 3.2. 
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Remark 3.4. Analogue of the period relation in Corollary 3.2 for general n is deduced from 
an explicit formula for the unspecified constant p~r1(µ, >.) in [Rag16, Theoreml.1 and 2.50]. 
Assuming p~ (µ, >.) is given by the product of a r-factor and an algebraic number, we clarified 
a motivic background of Raghuram-Shahidi's Whittaker periods for general n and general 
base fields. Our assumption on the evaluation of p~(µ, >.) is recently proved in [IM] if the 
base field is totally imaginary. Hence in this case, the motivic interpretation of fl;'(n), which 
is the generalization of Corollary 3.2 for general n, is obtained in a similar manner. The 
detail will appear in our forthcoming paper [HN2]. 
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