ON GENUINE CHARACTERS OF THE METAPLECTIC GROUP OF $\mathrm{SL}_{2}(\mathfrak{o})$ AND THETA FUNCTIONS

京都大学理学研究科 野口 博史
HIROSHI NOGUCHI
GRADUATE SCHOOL OF SCIENCE，KYOTO UNIVERSITY

Abstract

This is a write up based on the author＇s talk given at the RIMS conference＂Automorphic forms，Automorphic representations， Galois representations，and its related topics＂．

Let F be a totally real number field and \mathfrak{o} the ring of integers of F ．We study theta functions which are Hilbert modular forms of half－ integral weight for the Hilbert modular group $\mathrm{SL}_{2}(\mathfrak{o})$ ．We obtain an equivalent condition that there exists a multiplier system of half－integral weight for $\mathrm{SL}_{2}(\mathfrak{o})$ ．We determine the condition of F that there exists a theta function which is a Hilbert modular form of half－integral weight for $\mathrm{SL}_{2}(\mathfrak{o})$ ．The theta function is defined by a sum on a fractional ideal \mathfrak{a} of F ．

1．Introduction

Put $e(z)=e^{2 \pi i z}$ for $z \in \mathbb{C}$ ．It is known that the modular forms of $\mathrm{SL}_{2}(\mathbb{Z})$ of weight $1 / 2$ and $3 / 2$ are the Dedekind eta function $\eta(z)$ and its cubic power $\eta^{3}(z)$ up to constant，respectively．Here，$\eta(z)$ is given by

$$
\eta(z)=e(z / 24) \prod_{m \geq 1}(1-e(m z)) \quad(z \in \mathfrak{h})
$$

where \mathfrak{h} is the upper half plane．It is known that

$$
\eta(z)=\frac{1}{2} \sum_{m \in \mathbb{Z}} \chi_{12}(m) e(m z / 24), \quad \eta^{3}(z)=\frac{1}{2} \sum_{m \in \mathbb{Z}} m \chi_{4}(m) e(m z / 8)
$$

Here，χ_{12} and χ_{4} are the primitive character $\bmod 12$ and $\bmod 4$ ，respectively． Note that $\eta(z)$ and $\eta^{3}(z)$ are theta functions defined by a sum on \mathbb{Z} ．

The function $\eta(z)$ has the transformation formula with respect to modular transformations（see $[11,12,16]$ ）．Let $\binom{\cdot}{}$. be the Jacobi symbol．We define $(\because)^{*}$ and $\binom{-}{.}_{*}$ by

$$
\left(\frac{c}{d}\right)^{*}=\left(\frac{c}{|d|}\right), \quad\left(\frac{c}{d}\right)_{*}=t(c, d)\left(\frac{c}{d}\right)^{*}, \quad t(c, d)= \begin{cases}-1 & c, d<0 \\ 1 & \text { otherwise }\end{cases}
$$

for $c \in \mathbb{Z} \backslash\{0\}$ and $d \in 2 \mathbb{Z}+1$ such that $(c, d)=1$ ．We understand

$$
\left(\frac{0}{ \pm 1}\right)^{*}=\left(\frac{0}{1}\right)_{*}=1, \quad\left(\frac{0}{-1}\right)_{*}=-1
$$

（see［8，Chapter 4 §1］）．

For $g \in \mathrm{SL}_{2}(\mathbb{R})$ and $z \in \mathfrak{h}$, put

$$
J(g, z)=\left\{\begin{array}{ll}
\sqrt{d} & \text { if } c=0, d>0 \tag{1}\\
-\sqrt{d} & \text { if } c=0, d<0 \\
(c z+d)^{1 / 2} & \text { if } c \neq 0
\end{array} \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .\right.
$$

Here, we choose $\arg (c z+d)$ such that $-\pi<\arg (c z+d) \leq \pi$. Then we have

$$
\begin{equation*}
\eta(\gamma(z))=\mathbf{v}_{\eta}(\gamma) J(\gamma, z) \eta(z), \quad \gamma(z)=\frac{a z+b}{c z+d} \in \mathfrak{h} \tag{2}
\end{equation*}
$$

for any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, where the multiplier system $\mathbf{v}_{\eta}(\gamma)$ is given by
(3) $\quad \mathbf{v}_{\eta}(\gamma)= \begin{cases}\left(\frac{d}{c}\right)^{*} e\left(\frac{(a+d) c-b d\left(c^{2}-1\right)-3 c}{24}\right) & c: \text { odd } \\ \left(\frac{c}{d}\right)_{*} e\left(\frac{(a+d) c-b d\left(c^{2}-1\right)+3 d-3-3 c d}{24}\right) & c: \text { even. }\end{cases}$

It is natural to ask the following problem. When does a Hilbert modular theta series of weight $1 / 2$ with respect to $\mathrm{SL}_{2}(\mathfrak{o})$ exist? Here, \mathfrak{o} is the ring of integers of a totally real number field F.

In 1983, Feng [1] studied this problem. She gave a sufficient condition for the existence of a Hilbert modular theta series of weight $1 / 2$ with respect to $\mathrm{SL}_{2}(\mathfrak{o})$ and constructed certain Hilbert modular theta series. These series are defined by a sum on \mathfrak{o}. In 1984, Naganuma [10] obtained a Hilbert modular form of level 1 for a real quadratic $\mathbb{Q}(\sqrt{D}), \quad D \equiv 1 \bmod 8$ with class number one, using modular imbeddings, from the theta constant with the characteristic $(1 / 2,1 / 2,1 / 2,1 / 2)$ of degree 2 .

In this paper, we solve the problem above completely. We consider theta functions defined by a sum on a fractional ideal \mathfrak{a} of F.

2. Multiplier systems for $\mathrm{SL}_{2}(\mathfrak{o})$

From now on, let F be a totally real number field such that $[F: \mathbb{Q}]=n$. Let v be a place of F and \mathbb{A} the adele ring of F. We denote the completion of F at v by F_{v}. If v is an infinite place, we write $v \mid \infty$. Otherwise, we write $v<\infty$. For $v<\infty$, let $\mathfrak{o}_{v}, \mathfrak{p}_{v}$ and q_{v} be the ring of integers of F_{v}, the maximal ideal of \mathfrak{o}_{v} and the order of the residue field $\mathfrak{o}_{v} / \mathfrak{p}_{v}$, respectively.

For any v, let $\iota_{v}: F \rightarrow F_{v}$ be the embedding. The entrywise embeddings of $\mathrm{SL}_{2}(F)$ into $\mathrm{SL}_{2}\left(F_{v}\right)$ are also denoted by ι_{v}. Let $\left\{\infty_{1}, \cdots, \infty_{n}\right\}$ be the set of infinite places of F. Put $\iota_{i}=\iota_{\infty_{i}}$ for $1 \leq i \leq n$. We embed $\mathrm{SL}_{2}(F)$ into $\mathrm{SL}_{2}(\mathbb{R})^{n}$ by $r \mapsto\left(\iota_{1}(r), \cdots, \iota_{n}(r)\right)$.

The metaplectic group of $\mathrm{SL}_{2}\left(F_{v}\right)$ is denoted by $\widetilde{\mathrm{SL}_{2}\left(F_{v}\right)}$, which is a nontrivial double covering group of $\mathrm{SL}_{2}\left(F_{v}\right)$. Set-theoretically, it is

$$
\left\{[g, \tau] \mid g \in \mathrm{SL}_{2}\left(F_{v}\right), \tau \in\{ \pm 1\}\right\}
$$

Its multiplication law is given by $[g, \tau][h, \sigma]=[g h, \tau \sigma c(g, h)]$ for $[g, \tau],[h, \sigma] \in$ $\widetilde{\mathrm{SL}_{2}\left(F_{v}\right)}$, where $c(g, h)$ is the Kubota 2-cocycle on $\mathrm{SL}_{2}\left(F_{v}\right)$. Put $[g]=[g, 1]$.

Let \tilde{H} be the inverse image of a subgroup H of $\mathrm{SL}_{2}\left(F_{v}\right)$ in $\widetilde{\mathrm{SL}_{2}\left(F_{v}\right)}$. For $v<\infty$, a function $\epsilon_{v}: \widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)} \rightarrow \mathbb{C}$ is genuine if $\epsilon_{v}\left(\left[1_{2},-1\right] \gamma\right)=-\epsilon_{v}(\gamma)$ for any $\gamma \in \widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)}$.

We denote the embedding of $\mathrm{SL}_{2}(F)$ into $\mathrm{SL}_{2}(\mathbb{A})$ by ι. The finite part of $\mathrm{SL}_{2}(\mathbb{A})$ is denoted by $\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$. Let $\iota_{f}: \mathrm{SL}_{2}(F) \rightarrow \mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$ be the projection of the finite part and $\iota_{\infty}: \mathrm{SL}_{2}(F) \rightarrow \mathrm{SL}_{2}\left(F_{\infty}\right)=\mathrm{SL}_{2}(\mathbb{R})^{n}$ that of the infinite part. Then we have $\iota(g)=\iota_{f}(g) \iota_{\infty}(g)$ for any $g \in \mathrm{SL}_{2}(F)$. The embedding of F into \mathbb{A}_{f} is also denoted by ι_{f}.

The adelic metaplectic group $\mathrm{SL}_{2}(\mathbb{A})$ is a double covering of $\mathrm{SL}_{2}(\mathbb{A})$ and there exists a canonical embedding $\widetilde{\mathrm{SL}_{2}\left(F_{v}\right)} \rightarrow \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$ for each v. Let \tilde{H} be the inverse image of a subgroup H of $\mathrm{SL}_{2}(\mathbb{A})$ in $\widetilde{\mathrm{SL}_{2}(\mathbb{A})}$. It is known that $\mathrm{SL}_{2}(F)$ can be canonically embedded into $\widetilde{\mathrm{SL}_{2}(\mathbb{A})}$. The embedding $\tilde{\iota}$ is given by $g \mapsto\left(\left[\iota_{v}(g)\right]\right)_{v}$ for each $g \in \mathrm{SL}_{2}(F)$. We define the maps $\tilde{\iota}_{f}: \mathrm{SL}_{2}(F) \rightarrow \widetilde{\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)}$ and $\tilde{\iota}_{\infty}: \mathrm{SL}_{2}(F) \rightarrow \widetilde{\mathrm{SL}_{2}\left(F_{\infty}\right)}$ by

$$
\tilde{\iota}_{f}(g)=\left(\left[\iota_{v}(g)\right]\right)_{v<\infty} \times\left(\left[1_{2}\right]\right)_{v \mid \infty}, \quad \tilde{\iota}_{\infty}(g)=\left(\left[1_{2}\right]\right)_{v<\infty} \times\left(\left[\iota_{i}(g)\right]\right)_{v \mid \infty} .
$$

Then we have $\tilde{\iota}(g)=\tilde{\iota}_{f}(g) \tilde{\iota}_{\infty}(g)$ for any $g \in \mathrm{SL}_{2}(F)$.
For $\gamma=[g, \tau] \in \widetilde{\mathrm{SL}_{2}(\mathbb{R})}, g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $z \in \mathfrak{h}, \tilde{j}: \widetilde{\mathrm{SL}_{2}(\mathbb{R})} \times \mathfrak{h} \rightarrow \mathbb{C}$ is an automorphy factor given by

$$
\tilde{j}(\gamma, z)= \begin{cases}\tau \sqrt{d} & \text { if } c=0, d>0 \tag{4}\\ -\tau \sqrt{d} & \text { if } c=0, d<0 \\ \tau(c z+d)^{1 / 2} & \text { if } c \neq 0\end{cases}
$$

$\underset{\sim}{\text { Here, }}$, we choose $\arg (c z+d)$ such that $-\pi<\arg (c z+d) \leq \pi$. Note that $\tilde{j}([g, \tau], z)$ is the unique automorphy factor such that $\tilde{j}([g, \tau], z)^{2}=j(g, z)$, where $j(g, z)$ is the usual automorphy factor on $\mathrm{SL}_{2}(\mathbb{R}) \times \mathfrak{h}$ (see $[6, \S 7]$). Note that $\tilde{j}([g], z)=J(g, z)$, where $J(g, z)$ is defined in (1).
Definition 1. Let $\Gamma \subset \mathrm{SL}_{2}(\mathfrak{o})$ be a congruence subgroup. the map $\mathbf{v}=$ $\mathbf{v}(\gamma): \Gamma \rightarrow \mathbb{C}^{\times}$is said to be a multiplier system of half-integral weight if $\mathbf{v}(\gamma) \prod_{i=1}^{n} \tilde{j}\left(\left[\iota_{i}(\gamma)\right], z_{i}\right)$ is an automorphy factor for $\Gamma \times \mathfrak{h}^{n}$, where \tilde{j} is the automorphy factor in (4).
Lemma 1. A function $\mathbf{v}: \Gamma \rightarrow \mathbb{C}^{\times}$is a multiplier system of half-integral weight if and only if we have

$$
\mathbf{v}\left(\gamma_{1}\right) \mathbf{v}\left(\gamma_{2}\right)=c_{\infty}\left(\gamma_{1}, \gamma_{2}\right) \mathbf{v}\left(\gamma_{1} \gamma_{2}\right) \quad \gamma_{1}, \gamma_{2} \in \Gamma
$$

where $c_{\infty}\left(\gamma_{1}, \gamma_{2}\right)=\prod_{i=1}^{n} c_{\mathbb{R}}\left(\iota_{i}\left(\gamma_{1}\right), \iota_{i}\left(\gamma_{2}\right)\right)$. Here, $c_{\mathbb{R}}(\cdot, \cdot)$ is the Kubota 2cocycle at infinite places.

Let $K_{\Gamma} \subset \mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$ be the closure of $\iota_{f}(\Gamma)$ in $\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$. Then K_{Γ} is a compact open subgroup and we have $\iota_{f}^{-1}\left(K_{\Gamma}\right)=\Gamma$. Let \tilde{K}_{Γ} be the inverse image of K_{Γ} in $\widetilde{\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)}$.
Lemma 2. Let $\lambda: \tilde{K}_{\Gamma} \rightarrow \mathbb{C}^{\times}$be a genuine character. Put $\mathbf{v}_{\lambda}(\gamma)=\lambda\left(\tilde{\iota}_{f}(\gamma)\right)$ for $\gamma \in \Gamma$. Then \mathbf{v}_{λ} is a multiplier system of half-integral weight for Γ.

For $v<\infty$, we define a map $s_{v}: \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right) \rightarrow\{ \pm 1\}$ by

$$
s_{v}(g)=\left\{\begin{array}{ll}
1 & c \in \mathfrak{o}_{v}^{\times} \\
\langle c, d\rangle_{v} & c \in \mathfrak{p}_{v} \backslash\{0\} \\
\langle-1, d\rangle_{v} & c=0
\end{array} \quad \text { for } g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right) .\right.
$$

Here, $\langle\cdot, \cdot\rangle_{v}$ is the quadratic Hilbert symbol for F_{v}. A map $\mathbf{s}_{v}: \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right) \rightarrow$ $\widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)}$ is given by $\mathbf{s}_{v}(g)=\left[g, s_{v}(g)\right]$ for $g \in \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)$. This map is the splitting on $K_{1}(4)_{v}$, where

$$
K_{1}(4)_{v}=\left\{\left.\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right) \right\rvert\, c \equiv 0, d \equiv 1 \bmod 4\right\}
$$

If $K_{\Gamma} \subset K_{1}(4)_{f}=\prod_{v<\infty} K_{1}(4)_{v}$, we may define a splitting s : $K_{\Gamma} \rightarrow \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$ by

$$
\mathbf{s}(\gamma)=\left(\mathbf{s}_{v}\left(\iota_{v}(\gamma)\right)\right)_{v<\infty} \times\left(\left[1_{2}\right]\right)_{v \mid \infty}
$$

We consider it as a homomorphism. Then we have $\tilde{K}_{\Gamma}=\mathbf{s}\left(K_{\Gamma}\right) \cdot\left\{\left[1_{2}, \pm 1\right]\right\}$. Note that $\mathbf{s}\left(K_{\Gamma}\right) \subset \widetilde{\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)}$ is a compact open subgroup.

For any congruence subgroup Γ, a map $\mathbf{v}_{0}: \Gamma \rightarrow \mathbb{C}^{\times}$is defined by $\mathbf{v}_{0}(\gamma)=$ $\prod_{v<\infty} s_{v}\left(\iota_{v}(\gamma)\right)$, which is not always a multiplier system of half-integral weight for Γ.
Corollary 1. If $\Gamma \subset \Gamma_{1}(4)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathfrak{o}) \right\rvert\, c \equiv 0, d \equiv 1 \bmod 4\right\}$, then \mathbf{v}_{0} is a multiplier system of half-integral weight for Γ.

Proof. Since $\Gamma \subset \Gamma_{1}(4)$, we have $K_{\Gamma} \subset K_{1}(4)_{f}$. We define a genuine character $\lambda: \tilde{K}_{\Gamma} \rightarrow \mathbb{C}^{\times}$by

$$
\lambda\left(\mathbf{s}(k)\left[1_{2}, \tau\right]\right)=\tau, \quad k \in K_{\Gamma}, \tau \in\{ \pm 1\} .
$$

Put $\mathbf{v}_{\lambda}(\gamma)=\lambda\left(\tilde{\iota}_{f}(\gamma)\right)$ for $\gamma \in \Gamma$. Since $\mathbf{s}(\gamma)=\left(\left[\iota_{v}(\gamma), s_{v}\left(\iota_{v}(\gamma)\right)\right]\right)_{v<\infty}$, we have

$$
\mathbf{v}_{\lambda}(\gamma)=\lambda\left(\mathbf{s}(\gamma)\left[1_{2}, \mathbf{v}_{0}(\gamma)\right]\right)=\mathbf{v}_{0}(\gamma)
$$

Therefore Lemma 2 proves the corollary.
Now suppose that $\Gamma \subset \mathrm{SL}_{2}(\mathfrak{o})$ is a congruence subgroup and that $\mathbf{v}: \Gamma \rightarrow$ \mathbb{C}^{\times}is a multiplier system of half-integral weight.

Lemma 3. There exists a genuine character $\lambda: \tilde{K}_{\Gamma} \rightarrow \mathbb{C}^{\times}$such that $\mathbf{v}_{\lambda}=\mathbf{v}$ if and only if there exists a congruence subgroup $\Gamma^{\prime} \subset \Gamma \cap \Gamma_{1}(4)$ such that $\mathbf{v}(\gamma)=\mathbf{v}_{0}(\gamma)$ for any $\gamma \in \Gamma^{\prime}$.

Proposition 1. If $F \neq \mathbb{Q}$, then any multiplier system \mathbf{v} of half-integral weight of any congruence subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathfrak{o})$ is obtained from a genuine character of \tilde{K}_{Γ}.

Proof. By Lemma 3, it suffices to show that there exists a congruence subgroup $\Gamma^{\prime} \subset \Gamma \cap \Gamma_{1}(4)$ such that $\mathbf{v}(\gamma)=\mathbf{v}_{0}(\gamma)$ for any $\gamma \in \Gamma^{\prime}$. We assume that a congruence subgroup Γ satisfies $\Gamma \subset \Gamma_{1}(4)$ by replacing Γ with $\Gamma \cap \Gamma_{1}(4)$. Since $\mathbf{v}_{0}(\gamma) / \mathbf{v}(\gamma)$ is a character of Γ, we have $\mathbf{v}_{0}(\gamma) / \mathbf{v}(\gamma)=1$ for any $\gamma \in D(\Gamma)$. By the congruence subgroup property, $D(\Gamma)$ contains a
congruence subgroup Γ^{\prime} (see [14, Corollary 3 of Theorem 2] or [7, $\left.\S 3\right]$). Thus we have $\mathbf{v}(\gamma)=\mathbf{v}_{0}(\gamma)$ for any $\gamma \in \Gamma^{\prime}$, which proves this proposition.

By Lemma 3 and Proposition 1, the multiplier system of half-integral weight of a congruence subgroup Γ associated to an automorphy factor in the sense of Shimura [15] is obtained from a genuine character of \tilde{K}_{Γ}.

Put

$$
K_{f}=\prod_{v<\infty} \mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)
$$

Then K_{f} is a compact open group of $\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)$. The inverse image of K_{f} in $\widetilde{\mathrm{SL}_{2}\left(\mathbb{A}_{f}\right)}$ is denoted by \tilde{K}_{f}. We have $\mathrm{SL}_{2}(\mathfrak{o})=\mathrm{SL}_{2}(F) \cap K_{f} \cdot \mathrm{SL}_{2}\left(F_{\infty}\right)$.

Proposition 2. Let \mathbf{v} be a multiplier system of half-integral weight for $\mathrm{SL}_{2}(\mathfrak{o})$. Then there exists a genuine character $\lambda: \tilde{K}_{f} \rightarrow \mathbb{C}^{\times}$such that $\mathbf{v}_{\boldsymbol{\lambda}}=\mathbf{v}$.

Proof. If $F \neq \mathbb{Q}$, the assertion is proved by Proposition 1. If $F=\mathbb{Q}$, then we have

$$
\mathbf{v}_{0}(g)=\left\{\begin{array}{ll}
\left(\frac{d}{c}\right)^{*} & c: \text { odd } \\
\left(\frac{c}{d}\right)_{*} & c: \text { even, }
\end{array} \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right.
$$

Put

$$
\Gamma(12)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, a \equiv d \equiv 1, b \equiv c \equiv 0 \bmod 12\right\}
$$

and let \mathbf{v}_{η} be the multiplier system of $\eta(z)$ in (3). Then we have $\mathbf{v}_{\eta}(\gamma)=$ $\mathbf{v}_{0}(\gamma)$ for $\gamma \in \Gamma(12)$. Since $\mathbf{v}_{\eta}(\gamma) / \mathbf{v}(\gamma)=1$ for any $\gamma \in D\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, we have $\mathbf{v}(\gamma)=\mathbf{v}_{0}(\gamma)$ for any $\gamma \in D\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \cap \Gamma(12)$, which is a congruence subgroup. By Lemma 3, there exists a genuine character $\lambda: \tilde{K}_{f} \rightarrow \mathbb{C}^{\times}$such that $\mathbf{v}_{\lambda}=\mathbf{v}$.

Corollary 2. There exists a multiplier system \mathbf{v} of half-integral weight for $\mathrm{SL}_{2}(\mathfrak{o})$ if and only if 2 splits completely in F / \mathbb{Q}. There exists a genuine character of $\widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)}$ for any $v<\infty$, provided that this condition holds.

Proposition 3. Suppose that 2 splits completely in F / \mathbb{Q}. Let \mathbf{v}_{λ} be a multiplier system of half-integral weight of $\mathrm{SL}_{2}(\mathfrak{o})$, where $\lambda=\prod_{v<\infty} \lambda_{v}$ is a genuine character of \tilde{K}_{f}. Put $S_{2}=\left\{v<\infty \mid F=\mathbb{Q}_{2}\right\}$ and $T_{3}=\{v<\infty \mid$ $\left.q_{v}=3\right\}$. Then there exist continuous functions $\kappa_{v}\left(\iota_{v}(\gamma)\right)$ for $v \in S_{2} \cup T_{3}$ such that

$$
\mathbf{v}_{\lambda}(\gamma)=\mathbf{v}_{0}(\gamma) \prod_{v \in S_{2} \cup T_{3}} \kappa_{v}\left(\iota_{v}(\gamma)\right) \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}_{2}(\mathfrak{o})
$$

We omit the proof of this proposition and give one example instead. For $F=\mathbb{Q}$, we have $\mathbf{v}_{\eta}(g)=\mathbf{v}_{0}(g) \kappa_{2}(g) \kappa_{3}(g)$, where

$$
\begin{gathered}
\mathbf{v}_{0}(g)=\left\{\begin{array}{ll}
\left(\frac{d}{c}\right)^{*} & c: \text { odd } \\
\left(\frac{c}{d}\right)_{*} & c: \text { even, }
\end{array} \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}),\right. \\
\kappa_{2}(g)= \begin{cases}e\left(\frac{3}{8}[(a+d) c-3 c]\right) & c: \text { odd } \\
e\left(\frac{3}{8}[(b-c) d+3(d-1)]\right) & c: \text { even, }\end{cases} \\
\kappa_{3}(g)=e\left(\frac{-1}{3}\left[(a+d) c-b d\left(c^{2}-1\right)\right]\right) .
\end{gathered}
$$

3. The condition of the existence of a theta function

Suppose that 2 splits completely in F / \mathbb{Q}. In this case, there exists a genuine character $\lambda_{v}: \widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)} \rightarrow \mathbb{C}^{\times}$for any $v<\infty$. If $v<\infty$, put $K_{v}=\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)$. If $v \mid \infty$, put $K_{v}=\mathrm{SO}(2)$. Then K_{v} is a maximal compact subgroup of $\mathrm{SL}_{2}\left(F_{v}\right)$ for any v. Let $\psi: \mathbb{A} / F \rightarrow \mathbb{C}^{\times}$be an additive character such that its v-component $\psi_{v}(x)$ equals $e(x)$ for any $v \mid \infty$. Put $\psi_{\beta}(x)=$ $\psi(\beta x)$ and $\psi_{\beta, v}(x)=\psi_{v}(\beta x)$ for $\beta \in F^{\times}$.

For any v, let $S\left(F_{v}\right)$ be the Schwartz space of F_{v}. We denote the Weil representation of $\mathrm{SL}_{2}\left(F_{v}\right)$ by $\omega_{\psi_{\beta}, v}$. For a genuine character $\lambda_{v}: \tilde{K}_{v} \rightarrow \mathbb{C}^{\times}$, we define the set $\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}$ by

$$
\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}=\left\{f \in S\left(F_{v}\right) \mid \omega_{\psi_{\beta}, v}(\gamma) f=\lambda_{v}(\gamma) f \text { for any } \gamma \in \tilde{K}_{v}\right\} .
$$

We have an irreducible decomposition

$$
\omega_{\psi_{\beta}, v}=\omega_{\psi_{\beta}, v}^{+} \oplus \omega_{\psi_{\beta}, v}^{-}
$$

where $\omega_{\psi_{\beta}, v}^{+}\left(\right.$resp. $\left.\omega_{\psi_{\beta}, v}^{-}\right)$is an irreducible representation of the set of even (resp. odd) functions in $S(\mathbb{R})$ (see [9, Lemma 2.4.4]).

The group $\widetilde{\mathrm{SL}_{2}(\mathbb{R})}$ has a maximal compact subgroup $\widetilde{\mathrm{SO}(2)}$, which is the inverse image of $\mathrm{SO}(2)$ in $\widetilde{\mathrm{SL}_{2}(\mathbb{R})}$. It is known that if $\lambda_{v}: \widetilde{\mathrm{SO}(2)} \rightarrow$ \mathbb{C}^{\times}is a genuine character, $\operatorname{dim}_{\mathbb{C}}\left(\omega_{\psi_{\beta}, v}, S(\mathbb{R})\right)^{\lambda_{v}}$ is at most 1 . Let $\lambda_{\infty, 1 / 2}$ be a genuine character of lowest weight $1 / 2$ with respect to $\left(\omega_{\psi_{\beta}, v}^{+}, S(\mathbb{R})\right)$ and $\lambda_{\infty, 3 / 2}$ of lowest weight $3 / 2$ with respect to $\left(\omega_{\psi_{\beta}, v}^{-}, S(\mathbb{R})\right)$. For $\beta>0$, $\left(\omega_{\psi_{\beta}, v}^{+}, S(\mathbb{R})\right)^{\lambda_{\infty, 1 / 2}}=\mathbb{C} e\left(i \iota_{v}(\beta) x^{2}\right)$ and $\left(\omega_{\psi_{\beta}, v}^{-}, S(\mathbb{R})\right)^{\lambda_{\infty, 3 / 2}}=\mathbb{C} x e\left(i \iota_{v}(\beta) x^{2}\right)$ are spaces of lowest weight vectors. If $\beta<0$, there exist no lowest weight vectors with respect to $\left(\omega_{\psi_{\beta}, v}^{+}, S(\mathbb{R})\right)$ or $\left(\omega_{\psi_{\beta}, v}^{-}, S(\mathbb{R})\right)$.

Note that $\lambda_{v}\left(\mathbf{s}_{v}\left(\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)\right)\right)=1$ for any $v<\infty$ except for finitely many places. Then a genuine character $\lambda_{f}: \tilde{K}_{f} \rightarrow \mathbb{C}^{\times}$is given by $\lambda_{f}(g)=$ $\prod_{v<\infty} \lambda_{v}\left(g_{v}\right)$ for $g=\left(g_{v}\right)_{v} \in \tilde{K}_{f}$. Put $w=\left(w_{1}, \cdots, w_{n}\right) \in\{1 / 2,3 / 2\}^{n}$. We define an automorphy factor $j^{\lambda_{f}, w}(\gamma, z)$ for $\gamma \in \operatorname{SL}_{2}(\mathfrak{o})$ and $z=\left(z_{1}, \cdots, z_{n}\right) \in$ \mathfrak{h}^{n} by

$$
j^{\lambda_{f}, w}(\gamma, z)=\prod_{v<\infty} \lambda_{v}\left(\left[\iota_{v}(\gamma)\right]\right) \prod_{i=1}^{n} \tilde{j}\left(\left[\iota_{i}(\gamma)\right], z_{i}\right)^{2 w_{i}} .
$$

In particular, we have $j^{\lambda_{f}, w}\left(-1_{2}, z\right)=\prod_{v<\infty} \lambda_{v}\left(\left[-1_{2}\right]\right) \times(-1)^{\sum 2 w_{i}}$.
Let $M_{w}\left(\mathrm{SL}_{2}(\mathfrak{o}), \lambda_{f}\right)$ be the space of Hilbert modular forms on \mathfrak{h}^{n} with respect to $j^{\lambda_{f}, w}(\gamma, z)$. A holomorphic function $h(z)$ of \mathfrak{h}^{n} belongs to the space $M_{w}\left(\mathrm{SL}_{2}(\mathfrak{o}), \lambda_{f}\right)$ if and only if

$$
h(\gamma(z))=j^{\lambda_{f}, w}(\gamma, z) h(z)
$$

where $\gamma(z)=\left(\iota_{1}(\gamma)\left(z_{1}\right), \cdots, \iota_{n}(\gamma)\left(z_{n}\right)\right)$ for $\gamma \in \operatorname{SL}_{2}(\mathfrak{o})$ and $z \in \mathfrak{h}^{n}$. (When $F=\mathbb{Q}$, the usual cusp condition is also required.) If $j^{\lambda_{f}, w}\left(-1_{2}, z\right)$ does not equal $1, M_{w}\left(\mathrm{SL}_{2}(\mathfrak{o}), \lambda_{f}\right)$ is $\{0\}$.

Put $K=K_{f} \times \prod_{v \mid \infty} \mathrm{SO}(2)$. There exists a genuine character $\lambda: \tilde{K} \rightarrow \mathbb{C}^{\times}$ such that its v-component equals λ_{v}, where $\lambda_{\infty_{i}}$ is $\lambda_{\infty, 1 / 2}$ or $\lambda_{\infty, 3 / 2}$ for $1 \leq i \leq n$. Then we have an automorphy factor $j^{\lambda_{f}, w}(\gamma, z)$ corresponding to λ such that $\lambda_{\infty_{i}}=\lambda_{\infty, w_{i}}$.

For each $g \in \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$, there exist $\gamma \in \mathrm{SL}_{2}(F), g_{\infty} \in \widetilde{\mathrm{SL}_{2}(\mathbb{R})^{n}}$ and $g_{f} \in \tilde{K_{f}}$ such that $g=\gamma g_{\infty} g_{f}$ by the strong approximation theorem for $\mathrm{SL}_{2}(\mathbb{A})$. Put $\mathbf{i}=(\sqrt{-1}, \cdots, \sqrt{-1}) \in \mathfrak{h}^{n}$. For $h \in M_{w}\left(\operatorname{SL}_{2}(\mathfrak{o}), \lambda_{f}\right)$, put

$$
\varphi_{h}(g)=h\left(g_{\infty}(\mathbf{i})\right) \lambda_{f}\left(g_{f}\right)^{-1} \prod_{i=1}^{n} \tilde{j}\left(g_{\infty_{i}}, \sqrt{-1}\right)^{-2 w_{i}}
$$

Then φ_{h} is an automorphic form on $\mathrm{SL}_{2}(F) \backslash \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$.
Let $\mathcal{A}_{w}\left(\mathrm{SL}_{2}(F) \backslash \widetilde{\mathrm{SL}_{2}(\mathbb{A})}, \lambda_{f}\right)$ be the space of automorphic forms φ on $\mathrm{SL}_{2}(F) \backslash \mathrm{SL}_{2}(\mathbb{A})$ satisfying the following conditions (1), (2), and (3).
(1) $\varphi\left(g k_{\infty}\right)=\varphi(g) \prod_{i=1}^{n} \tilde{\tilde{j}}\left(k_{\infty, i}, \sqrt{-1}\right)^{-2 w_{i}}$ for any $g \in \widetilde{\operatorname{SL}_{2}(\mathbb{A})}$ and $k_{\infty}=$ $\left(k_{\infty, 1}, \ldots, k_{\infty, n}\right) \in \mathrm{SO}(2)^{n}$.
(2) φ is a lowest weight vector with respect to the right translation of $\widetilde{\mathrm{SL}_{2}(\mathbb{R})^{n}}$.
(3) $\varphi(g k)=\lambda_{f}(k)^{-1} \varphi(g)$ for any $g \in \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$ and $k \in \tilde{K}_{f}$.

Then $\Phi: h \mapsto \varphi_{h}$ gives rise to an isomorphism

$$
M_{w}\left(\mathrm{SL}_{2}(\mathfrak{o}), \lambda_{f}\right) \xrightarrow{\sim} \mathcal{A}_{w}\left(\mathrm{SL}_{2}(F) \backslash \widetilde{\mathrm{SL}_{2}(\mathbb{A})}, \lambda_{f}\right)
$$

For $\varphi \in \mathcal{A}_{w}\left(\mathrm{SL}_{2}(F) \backslash \widetilde{\mathrm{SL}_{2}(\mathbb{A})}, \lambda_{f}\right)$, put $h=\Phi^{-1}(\varphi)$. Then we have

$$
h(z)=\varphi\left(g_{\infty}\right) \prod_{i=1}^{n} \tilde{j}\left(g_{\infty_{i}}, \sqrt{-1}\right)^{2 w_{i}}, \quad g_{\infty} \in \widetilde{\mathrm{SL}_{2}(\mathbb{R})^{n}}, g_{\infty}(\mathbf{i})=z
$$

When q_{v} is odd, there exists a genuine character $\epsilon_{v}: \widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)} \rightarrow \mathbb{C}^{\times}$ defined by $\epsilon_{v}([g, \tau])=\tau s_{v}(g)$. If $q_{v} \geq 5$, it is a unique genuine character of $\widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)}$.

Put $S_{2}=\left\{v<\infty \mid F_{v}=\mathbb{Q}_{2}\right\}, T_{3}=\left\{v<\infty \mid q_{v}=3\right\}$ and $S_{3}=\left\{v \in T_{3} \mid\right.$ $\left.\lambda_{v} \neq \epsilon_{v}\right\}$. Since 2 splits completely in F / \mathbb{Q}, we have $\left|S_{2}\right|=n$. It is known that for $v<\infty,\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}$ is not 0 if and only if we have

$$
\operatorname{ord}_{v} \psi_{\beta, v} \equiv \begin{cases}0 \bmod 2 & \text { if } \lambda_{v}=\epsilon_{v} \\ 1 \bmod 2 & \text { otherwise }\end{cases}
$$

Then, if $\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}} \neq 0$ for any $v<\infty$, there exists a fractional ideal \mathfrak{a} such that

$$
\begin{equation*}
(8 \beta) \mathfrak{d} \prod_{v \in S_{3}} \mathfrak{p}_{v}=\mathfrak{a}^{2} \tag{5}
\end{equation*}
$$

where \mathfrak{d} is the different of F / \mathbb{Q}. The set of totally positive elements of F is denoted by F_{+}^{\times}. Replacing β with $\beta \gamma^{2}$ and \mathfrak{a} with $(\mathfrak{a} \gamma)^{2}$ in (5) for $\gamma \in F_{+}^{\times}$, we may assume $\operatorname{ord}_{v} \mathfrak{a}=0$ for $v \in S_{2} \cup S_{3}$. Then we have $\operatorname{ord}_{v} \psi_{\beta, v}=-1$ (resp. -3) for $v \in S_{3}$ (resp. S_{2}).

Conversely, suppose that there exists a fractional ideal \mathfrak{a} satisfying (5) for a subset $S_{3} \subset T_{3}$. For $v<\infty$, put

$$
\lambda_{v}= \begin{cases}\epsilon_{v} & \text { if } \operatorname{ord}_{v} \psi_{\beta, v} \equiv 0 \bmod 2 \\ \mu_{\beta} & \text { if } \operatorname{ord}_{v} \psi_{\beta, v} \equiv 1 \bmod 2\end{cases}
$$

where μ_{β} is a certain genuine character such that $\left(\omega_{\psi_{B}, v}, S\left(F_{v}\right)\right)^{\mu_{\beta}} \neq 0$. Then we have $\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}} \neq 0$ for any $v<\infty$. Let $\lambda: \tilde{K} \rightarrow \mathbb{C}^{\times}$be a genuine character such that its v-component equals λ_{v}, where $\lambda_{\infty_{i}}=\lambda_{\infty, w_{i}}$ for $w_{i} \in\{1 / 2,3 / 2\}$. Put $S_{\infty}=\left\{\infty_{i} \mid w_{i}=3 / 2\right\}$.

From now on, suppose that $\beta \in F_{+}^{\times}$. Let $S(\mathbb{A})$ be the Schwartz space of \mathbb{A} and $\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$ the set of functions $\phi=\prod_{v} \phi_{v} \in S(\mathbb{A})$ such that $\phi_{v} \in\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}$ for any v. For $\phi \in S(\mathbb{A})$, we define the theta function Θ_{ϕ} by

$$
\begin{equation*}
\Theta_{\phi}(g)=\sum_{\xi \in F} \omega_{\psi_{\beta}}(g) \phi(\xi) \quad g=\left(g_{v}\right) \in \widetilde{\mathrm{SL}_{2}(\mathbb{A})}, \tag{6}
\end{equation*}
$$

where $\omega_{\psi_{\beta}}(g) \phi(\xi)=\prod_{v} \omega_{\psi_{\beta}, v}\left(g_{v}\right) \phi_{v}\left(\iota_{v}(\xi)\right)$ is essentially a finite product. We have $\Theta_{\phi}(g k)=\lambda(k)^{-1} \Theta_{\phi}(g)$ for any $g \in \widetilde{\mathrm{SL}_{2}(\mathbb{A})}$ and $k \in \tilde{K}_{f}$. If $\phi \in$ $\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$, then Θ_{ϕ} is a Hilbert modular form of weight $w=\left(w_{1}, \cdots, w_{n}\right)$.

It is known that

$$
\omega_{\psi_{\beta}}=\bigoplus_{S} \omega_{\psi_{\beta}, S}, \quad \omega_{\psi_{\beta}, S}=\left(\bigotimes_{v \in S} \omega_{\psi_{\beta}, v}^{-}\right) \otimes\left(\bigotimes_{v \notin S} \omega_{\psi_{\beta}, v}^{+}\right)
$$

where S ranges over all finite subsets of places of F (see [2, §3.4]). We define a map Θ from $\omega_{\psi_{\beta}}$ to the space of automorphic forms on $\widehat{\mathrm{SL}_{2}(\mathbb{A})}$ by $\Theta(\phi)(g)=\Theta_{\phi}(g)$. Then it is known that

$$
\begin{equation*}
\operatorname{Im}(\Theta) \simeq \bigoplus_{|S|: \text { even }} \omega_{\psi_{\beta}, S} \tag{7}
\end{equation*}
$$

(see [2, Proposition 3.1]).
Let \mathbf{G} be the set of triplets $\left(\beta, S_{3}, \mathfrak{a}\right)$ of $\beta \in F_{+}^{\times}$, a subset $S_{3} \subset T_{3}$ and a fractional ideal \mathfrak{a} of F satisfying (5) and the condition (A),

$$
\begin{equation*}
\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{\infty}\right| \in 2 \mathbb{Z} \tag{A}
\end{equation*}
$$

We define an equivalence relation \sim on \mathbf{G} by

$$
\left(\beta, S_{3}, \mathfrak{a}\right) \sim\left(\beta^{\prime}, S_{3}^{\prime}, \mathfrak{a}^{\prime}\right) \Longleftrightarrow S_{3}=S_{3}^{\prime}, \beta^{\prime}=\gamma^{2} \beta, \mathfrak{a}^{\prime}=\gamma \mathfrak{a} \text { for some } \gamma \in F^{\times} .
$$

Theorem 1. Suppose that 2 splits completely in F / \mathbb{Q}. Let $\beta \in F_{+}^{\times}, \lambda$: $\tilde{K} \rightarrow \mathbb{C}^{\times}$and $w_{1}, \ldots, w_{n} \in\{1 / 2,3 / 2\}$ be as above. Then there exists $\phi=\prod_{v} \phi_{v} \in\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$ such that $\Theta_{\phi} \neq 0$ if and only if there exists a fractional ideal \mathfrak{a} of F such that $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$.

Proof. Let $\lambda_{v}: \widetilde{\mathrm{SL}_{2}\left(\mathfrak{o}_{v}\right)} \rightarrow \mathbb{C}^{\times}$be the v-component of λ for any $v<$ ∞. We already proved that there exists $\prod_{v<\infty} \phi_{v} \neq 0$ such that $\phi_{v} \in$ $\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}$ for any $v<\infty$ if and only if there exists a fractional ideal \mathfrak{a} of F satisfying (5). Suppose that the equivalent conditions hold. Since we have $\left(\omega_{\psi_{\beta}, v}^{+}, S(\mathbb{R})\right)^{\lambda_{\infty, 1 / 2}}=\mathbb{C} e\left(i \nu_{v}(\beta) x^{2}\right)$ and $\left(\omega_{\psi_{\beta}, v}^{-}, S(\mathbb{R})\right)^{\lambda_{\infty, 3 / 2}}=$ $\mathbb{C} x e\left(i \iota_{v}(\beta) x^{2}\right)$ for any $v \mid \infty$, there exists a nonzero $\phi=\prod_{v} \phi_{v} \in\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$. It is clear that if there exists a nonzero $\phi=\prod_{v} \phi_{v} \in\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}, \prod_{v<\infty} \phi_{v} \neq$ 0 satisfies $\phi_{v} \in\left(\omega_{\psi_{\beta}, v}, S\left(F_{v}\right)\right)^{\lambda_{v}}$ for any $v<\infty$.

Suppose there exists a nonzero $\phi=\prod_{v} \phi_{v} \in\left(\omega_{\psi_{B}}, S(\mathbb{A})\right)^{\lambda}$. Note that $\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{\infty}\right|$ is the number of v such that ϕ_{v} is an odd function. Then $|S|$ in (7) is $\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{\infty}\right|$. By (7), it is clear that $\Theta_{\phi} \neq 0$ if and only if the condition (A) holds.

Let H be a group of fractional ideals that consists of all elements of the form

$$
\prod_{v \in T_{3}} \mathfrak{p}_{v}^{e_{v}}, \quad \sum_{v} e_{v} \in 2 \mathbb{Z}
$$

Let Cl^{+}be the narrow ideal class group of F. Put $\mathrm{Cl}^{+2}=\left\{\mathfrak{c}^{2} \mid \mathfrak{c} \in \mathrm{Cl}^{+}\right\}$. We denote the image of the group H (resp. $\mathfrak{b} \in \mathrm{Cl}^{+}$) in $\mathrm{Cl}^{+} / \mathrm{Cl}^{+2}$ by \bar{H} (resp. [b]).

Theorem 2. Suppose that 2 splits completely in F / \mathbb{Q}. Let $w_{1}, \ldots, w_{n} \in$ $\{1 / 2,3 / 2\}$ be as above.
(1) Suppose that $\left|S_{2}\right|+\left|S_{\infty}\right|$ is even. Then there exists $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$ if and only if $[\mathfrak{d}] \in \bar{H}$.
(2) Suppose that $\left|S_{2}\right|+\left|S_{\infty}\right|$ is odd. Then there exists $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$ if and only if $T_{3} \neq \emptyset$ and $\left[\mathfrak{o p}_{v_{0}}\right] \in \bar{H}$. Here, v_{0} is any fixed element of T_{3}.

Proof. We prove the theorem in case (1). The proof for case (2) is similar. If $[\mathfrak{d}] \in \bar{H}$, we have $(8 \beta) \mathfrak{d} \prod_{v \in T_{3}} \mathfrak{p}_{v}^{e_{v}}=\mathfrak{a}^{\prime 2}$ such that $\sum_{v} e_{v}$ is even for a fractional ideal \mathfrak{a}^{\prime} and $\beta \in F_{+}^{\times}$. Put $S_{3}=\left\{v \in T_{3} \mid e_{v}\right.$: odd $\}$. Since $\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{\infty}\right|$ is even, we have $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$, where

$$
\mathfrak{a}=\prod_{v \in T_{3} \backslash S_{3}} \mathfrak{p}_{v}^{-e_{v} / 2} \mathfrak{a}^{\prime} .
$$

Conversely, if there exists $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$, it satisfies (5) and $\left|S_{3}\right|$ is even. Then we have $[\mathfrak{d}]=\prod_{v \in S_{3}}\left[\mathfrak{p}_{v}\right] \in \bar{H}$.

Let w_{i} be $1 / 2$ or $3 / 2$ for $1 \leq i \leq n$. Suppose that there exists $\left(\beta, S_{3}, \mathfrak{a}\right) \in$ G. Replacing $\left(\beta, S_{3}, \mathfrak{a}\right)$ with an equivalent element of \mathbf{G}, we may assume
$\operatorname{ord}_{v} \mathfrak{a}=0$ for $v \in S_{2} \cup S_{3}$. For $v \in S_{2} \cup S_{3}$, put

$$
f_{v}(x)= \begin{cases}1 & \text { if } x \in 1+2 \mathfrak{p}_{v} \\ -1 & \text { if } x \in-1+2 \mathfrak{p}_{v} \\ 0 & \text { otherwise }\end{cases}
$$

Put

$$
f=\prod_{v \in S_{2} \cup S_{3}} f_{v} \times \prod_{v<\infty, v \notin S_{2} \cup S_{3}} \operatorname{cha}_{v}^{-1},
$$

where $\mathfrak{a}_{v}=\mathfrak{a}_{v}$. Here, ch A is the characteristic function of a set A. Put $\phi=f \times \prod_{i=1}^{n} f_{\infty, i}$, where $f_{\infty, i}(x)=x^{w_{i}-(1 / 2)} e\left(i \iota_{i}(\beta) x^{2}\right)$ for $x \in \mathbb{R}$. By Theorem 1, there exists $\Theta_{\phi} \neq 0$ of weight $w=\left(w_{1}, \cdots, w_{n}\right)$.

Put $z=\left(z_{1}, \cdots, z_{n}\right), \mathbf{i}=(\sqrt{-1}, \cdots, \sqrt{-1}) \in \mathfrak{h}^{n}$. We define $x_{i}, y_{i} \in \mathbb{R}$ by $z_{i}=x_{i}+\sqrt{-1} y_{i}$ for $1 \leq i \leq n$. Then we have $z=g_{\infty}(\mathbf{i})$, where $g_{\infty}=\left(g_{\infty_{1}}, \cdots, g_{\infty_{n}}\right) \in \mathrm{SL}_{2}(\mathbb{R})^{n}, g_{\infty_{i}}=\left(\begin{array}{cc}y_{i}^{1 / 2} & y_{i}^{1 / 2} x_{i} \\ 0 & y_{i}^{-1 / 2}\end{array}\right)$. Since $\lambda_{v}\left(\left[1_{2}\right]\right)=1$ for $v<\infty$, we have

$$
\Theta_{\phi}\left(g_{\infty}\right)=\sum_{\xi \in \mathfrak{a}^{-1}} f\left(\iota_{f}(\xi)\right) \prod_{i=1}^{n} \omega_{\psi_{\beta}, \infty_{i}}\left(\left[g_{\infty_{i}}\right]\right) f_{\infty, i}\left(\iota_{i}(\xi)\right) .
$$

Theorem 3. Let ϕ and Θ_{ϕ} be as above. We define a theta function θ_{ϕ} : $\mathfrak{h}^{n} \rightarrow \mathbb{C}$ by

$$
\theta_{\phi}(z)=\sum_{\xi \in \mathfrak{a}^{-1}} f\left(\iota_{f}(\xi)\right) \prod_{\infty_{i} \in S_{\infty}} \iota_{i}(\xi) \prod_{i=1}^{n} e\left(z_{i} \iota_{i}\left(\beta \xi^{2}\right)\right)
$$

Then θ_{ϕ} is a nonzero Hilbert modular form of weight w for $\mathrm{SL}_{2}(\mathfrak{o})$ with respect to a multiplier system.

Every theta function of weight w for $\mathrm{SL}_{2}(\mathfrak{o})$ with a multiplier system may be obtained in this way.

Proof. Since

$$
\omega_{\psi_{\beta}, \infty_{i}}\left(\left[g_{\infty, i}\right]\right) f_{\infty, i}\left(\iota_{i}(\xi)\right)=y_{i}^{w_{i} / 2} \iota_{i}(\xi)^{w_{i}-(1 / 2)} e\left(z_{i} \iota_{i}\left(\beta \xi^{2}\right)\right),
$$

we have $\theta_{\phi}(z)=\Theta_{\phi}\left(g_{\infty}\right) \times \prod_{i=1}^{n} y_{i}^{-w_{i} / 2}$. Then θ_{ϕ} is nonzero. Note that

$$
\tilde{j}\left(\left[g_{\infty_{i}}\right], \sqrt{-1}\right)^{2 w_{i}}=y_{i}^{-w_{i} / 2} .
$$

Since $\phi \in\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$, we have $\Theta_{\phi} \in \mathcal{A}_{w}\left(\mathrm{SL}_{2}(F) \backslash \widetilde{\mathrm{SL}_{2}(\mathbb{A})}, \lambda_{f}\right)$. Then we have $\theta_{\phi}=\Phi^{-1}\left(\Theta_{\phi}\right) \in M_{w}\left(\mathrm{SL}_{2}(\mathfrak{o}), \lambda_{f}\right)$. The multiplier system of θ_{ϕ} is \mathbf{v}_{λ} given by

$$
\mathbf{v}_{\lambda}(\gamma)=\mathbf{v}_{0}(\gamma) \prod_{v \in S_{2} \cup T_{3}} \kappa_{v}\left(\iota_{v}(\gamma)\right) \quad \gamma \in \mathrm{SL}_{2}(\mathfrak{o}),
$$

where κ_{v} for $v \in S_{2} \cup T_{3}$ is an continuous function in Proposition 3.
By Proposition 2, if θ is a theta function of weight w for $\mathrm{SL}_{2}(\mathfrak{o})$ with a multiplier system \mathbf{v}, we have a genuine character λ_{f} of \tilde{K}_{f} such that $\mathbf{v}=\mathbf{v}_{\lambda_{f}}$. Let $\lambda=\lambda_{f} \times \prod_{i=1}^{n} \lambda_{\infty, w_{i}}$ be a genuine character of \tilde{K}. Then there exists
nonzero $\phi \in\left(\omega_{\psi_{\beta}}, S(\mathbb{A})\right)^{\lambda}$ such that $\theta=\theta_{\phi}$ up to constant, which completes the proof.

Proposition 4. Let Cl be the usual ideal class group of F. Let $S q: \mathrm{Cl} \rightarrow$ Cl^{+}be the homomorphism given by $[\mathfrak{a}] \mapsto\left[\mathfrak{a}^{2}\right]$ for a fractional ideal \mathfrak{a} of F. The number of equivalence classes of \mathbf{G} is equal to

$$
\left[E^{+}: E^{2}\right] \sum_{\substack{S_{3} \subset T_{3} \\(\mathrm{~A})}}\left|S q^{-1}\left(\left[\mathfrak{d} \prod_{v \in S_{3}} \mathfrak{p}_{v}\right]\right)\right|,
$$

where S_{3} ranges over all subset of T_{3} satisfying (A). Here, E^{+}is the group of totally positive units of F and E^{2} is the subgroup of squares of units of F.

Proof. We follow the argument of Hammond [5] Theorem 2.9. For given S_{3} satisfying (A), the number of ideal classes [a] such that \mathfrak{a}^{2} is narrowly equivalent to $\mathfrak{d} \prod_{v \in S_{3}} \mathfrak{p}_{v}$ is equal to $\left|S q^{-1}\left(\left[\mathfrak{d} \prod_{v \in S_{3}} \mathfrak{p}_{v}\right]\right)\right|$. Then for a given fractional ideal \mathfrak{a} such that \mathfrak{a}^{2} is narrowly equivalent to $\mathfrak{d} \prod_{v \in S_{3}} \mathfrak{p}_{v}$, the number of equivalence classes of triplets of the form $\left(\beta, S_{3}, \mathfrak{a}\right)$ such that $\beta \in F_{+}^{\times}$satisfying (5) is equal to $\left[E^{+}: E^{2}\right]$.

4. The case F is a real quadratic field

Now suppose that $F=\mathbb{Q}(\sqrt{D})$, where $D>1$ is a square-free integer and $D \equiv 1 \bmod 8$. Then 2 splits in F / \mathbb{Q} and we have $\mathfrak{d}=(\sqrt{D})$. When there exists $\left(\beta, S_{3}, \mathfrak{a}\right) \in \mathbf{G}$, one of the followings holds.
(C1) $(8 \beta) \mathfrak{d}=\mathfrak{a}^{2}$ and $S_{3}=\emptyset$.
(C2) $(8 \beta) \mathfrak{o p}=\mathfrak{a}^{2}$ such that $N_{F / \mathbb{Q}}(\mathfrak{p})=3$ and $S_{3}=\{\mathfrak{p}\}$.
(C3) $(8 \beta) \mathfrak{d p} \overline{\mathfrak{p}}=\mathfrak{a}^{2}$ such that $N_{F / \mathbb{Q}}(\mathfrak{p})=N_{F / \mathbb{Q}}(\overline{\mathfrak{p}})=3$ and $S_{3}=\{\mathfrak{p}, \overline{\mathfrak{p}}\}$.
If $\left|S_{\infty}\right|$ is even, (C1) or (C3) holds. If $\left|S_{\infty}\right|$ is odd, (C2) holds.
Proposition 5. Suppose that $F=\mathbb{Q}(\sqrt{D})$, where $D>1$ is a square-free integer such that $D \equiv 1 \bmod 8$.
(1) There exist $\beta \in F_{+}^{\times}$and a fractional ideal \mathfrak{a} satisfying (C1) if and only if $p \equiv 1 \bmod 4$ for any prime $p \mid D$.
(2) There exist $\beta \in F_{+}^{\times}$and a fractional ideal \mathfrak{a} satisfying (C2) if and only if $p \equiv 0$ or $1 \bmod 3$ for any prime $p \mid D$.
(3) There exists $\beta \in F_{+}^{\times}$and a fractional ideal \mathfrak{a} satisfying (C3) if and only if $D \equiv 1 \bmod 24$ and $p \equiv 1 \bmod 4$ for any prime $p \mid D$.
Proof. For a prime ideal \mathfrak{p} such that $N_{F / \mathbb{Q}}(\mathfrak{p})=3$, the equation $(8 \beta) \mathfrak{d} \mathfrak{p}=\mathfrak{a}^{2}$ implies that the narrow ideal class of $\mathfrak{d p}$ is a square. Note that a positive integer x is of the form $3 u^{2}+v^{2}$ for some $u, v \in \mathbb{N}$ if and only if any prime p which divides x satisfies $p \equiv 0$ or $1 \bmod 3$. Here, a necessary and sufficient condition that the narrow ideal class of $\mathfrak{d p}$ is a square for a prime ideal \mathfrak{p} which has norm 3 is that D is of the form $3 u^{2}+v^{2}$ for some $u, v \in \mathbb{N}$, which proves the second assertion.

The equation $(8 \beta) \mathfrak{d}=\mathfrak{a}^{2}$ implies that the narrow ideal class of \mathfrak{d} is a square. Note that a positive integer x is of the form $u^{2}+v^{2}$ for some
$u, v \in \mathbb{N}$ if and only if any prime p which divides x satisfies $p \equiv 1 \bmod 4$. Then [5] Proposition 3.1 proves the first assertion.

There exist two distinct prime ideal \mathfrak{p} and $\overline{\mathfrak{p}}$ such that such that $N_{F / \mathbb{Q}}(\mathfrak{p})=$ $N_{F / \mathbb{Q}}(\overline{\mathfrak{p}})=3$ if and only if 3 splits in F / \mathbb{Q}. This condition holds if and only if $D \equiv 1 \bmod 24$. In the case $D \equiv 1 \bmod 24$, we have $\mathfrak{p p}=(3)$. Then the equation $(8 \beta) \mathfrak{d p} \overline{\mathfrak{p}}=\mathfrak{a}^{2}$ implies that the narrow ideal class of \mathfrak{d} is a square. Thus, similarly to the first assertion, [5] Proposition 3.1 proves the third assertion.

Example: put $D=793=13 \cdot 61$. Then there exist $\beta \in F_{+}^{\times}$and a fractional ideal \mathfrak{a} satisfying any condition of (C1), (C2) or (C3). Moreover, Cl^{+}has order 8 and the fundamental unit ε of F has norm 1. For example, put $\rho=(5+\sqrt{D}) / 2$. Since $N_{F / \mathbb{Q}}(\rho)=-3 \cdot 8^{2}$, we have $(\rho)=\mathfrak{q}_{2}^{6} \mathfrak{q}_{3}$, where $\mathfrak{q}_{3}=(3,1-\sqrt{D})$ and $\mathfrak{q}_{2}=(2,(1+\sqrt{D}) / 2)$ are prime ideals. Put $\beta=\rho \sqrt{D} / 8$ and $\mathfrak{a}=\mathfrak{d} \mathfrak{q}_{2}^{3} \mathfrak{q}_{3}$. Then we have $(8 \beta) \mathfrak{d} \mathfrak{q}_{3}=\mathfrak{a}^{2}$.

References

[1] X. Feng, An Analog of $\eta(z)$ in the Hilbert modular case. J. Number Theory. 17 (1983), no. 1, 116-126.
[2] W. T. Gan, The Shimura correspondence à la Waldspurger, Notes of a short course given at the Postech Theta Festival.
[3] K.-B. Gundlach, Nullstellen Hilbertscher Modulformen, Nachr. Akad. Wiss. Göttingen II. Math. Phys. Kl. 1-38, 1981.
[4] K.-B. Gundlach, Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J. 27 (1985), 57-80.
[5] W. F. Hammond, The modular groups of Hilbert and Siegel. Amer. J. Math. 88 (1966), 497-516.
[6] K. Hiraga and T. Ikeda, On the Kohnen plus space for Hilbert modular forms of half-integral weight I, Compos. Math. 149 (2013), no. 12, 1963-2010.
[7] F. Kirchheimer, Zur Bestimmung der linearen Charaktere symplektischer Hauptkongruenzgruppen. Math. Z. 150 (1976), no. 2, 135-148.
[8] M. I. Knopp, Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill, 1970.
[9] G. Lion and M. Vergne, The Weil representation, Maslow index and theta series. Birkhäuser, Boston, Mass, 1980.
[10] H. Naganuma, Remarks on the modular imbedding of Hammond. Japan. J. Math. (N.S.) 10 (1984), no. 2, 379-387.
[11] H. Petersson, Über gewisse Dirichlet-Reihen mit Eulerscher Produktzerlegung. Math. Z. 189 (1985), no. 2, 273-288.
[12] H. Rademacher, Topics in analytic number theory. Springer-Verlag, New YorkHeidelberg, 1973.
[13] R. Ranga Rao, On some explicit formulas in the theory of Weil representation. Pacific J. Math. 157 (1993), no. 2, 335-371.
[14] J. P. Serre, Le probléme des groupes de congruence pour SL_{2}. Ann. of Math. (2) 92 (1970), 489-527.
[15] G. Shimura, On Hilbert modular forms of half-integral weight. Duke Math. J. 55 (1987), no. 4, 765-838.
[16] H. Weber, Lehrbuch der Algebra, III, 3rd ed., Chelsea, New York, 1961.
Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan.

E-mail address: noguchi.hiroshi.27a@st.kyoto-u.ac.jp

