ON GENUINE CHARACTERS OF THE METAPLECTIC GROUP OF $SL_2(\mathfrak{o})$ AND THETA FUNCTIONS

京都大学理学研究科 野口 博史 HIROSHI NOGUCHI GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY

ABSTRACT. This is a write up based on the author's talk given at the RIMS conference "Automorphic forms, Automorphic representations, Galois representations, and its related topics".

Let F be a totally real number field and \mathfrak{o} the ring of integers of F. We study theta functions which are Hilbert modular forms of halfintegral weight for the Hilbert modular group $\mathrm{SL}_2(\mathfrak{o})$. We obtain an equivalent condition that there exists a multiplier system of half-integral weight for $\mathrm{SL}_2(\mathfrak{o})$. We determine the condition of F that there exists a theta function which is a Hilbert modular form of half-integral weight for $\mathrm{SL}_2(\mathfrak{o})$. The theta function is defined by a sum on a fractional ideal \mathfrak{a} of F.

1. INTRODUCTION

Put $e(z) = e^{2\pi i z}$ for $z \in \mathbb{C}$. It is known that the modular forms of $SL_2(\mathbb{Z})$ of weight 1/2 and 3/2 are the Dedekind eta function $\eta(z)$ and its cubic power $\eta^3(z)$ up to constant, respectively. Here, $\eta(z)$ is given by

$$\eta(z) = e(z/24) \prod_{m \ge 1} (1 - e(mz)) \quad (z \in \mathfrak{h}),$$

where \mathfrak{h} is the upper half plane. It is known that

$$\eta(z) = \frac{1}{2} \sum_{m \in \mathbb{Z}} \chi_{12}(m) e(mz/24), \qquad \eta^3(z) = \frac{1}{2} \sum_{m \in \mathbb{Z}} m \, \chi_4(m) e(mz/8).$$

Here, χ_{12} and χ_4 are the primitive character mod 12 and mod 4, respectively. Note that $\eta(z)$ and $\eta^3(z)$ are theta functions defined by a sum on \mathbb{Z} .

The function $\eta(z)$ has the transformation formula with respect to modular transformations (see [11, 12, 16]). Let $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$ be the Jacobi symbol. We define $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)^*$ and $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)_*$ by $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)^* = \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right) = \left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)^*$

$$\left(\frac{c}{d}\right)^* = \left(\frac{c}{|d|}\right), \quad \left(\frac{c}{d}\right)_* = t(c,d)\left(\frac{c}{d}\right)^*, \quad t(c,d) = \begin{cases} -1 & c,d < 0\\ 1 & \text{otherwise,} \end{cases}$$

for $c \in \mathbb{Z} \setminus \{0\}$ and $d \in 2\mathbb{Z} + 1$ such that (c, d) = 1. We understand

$$\left(\frac{0}{\pm 1}\right)^* = \left(\frac{0}{1}\right)_* = 1, \quad \left(\frac{0}{-1}\right)_* = -1$$

(see $[8, \text{Chapter } 4 \S 1]$).

For $g \in \mathrm{SL}_2(\mathbb{R})$ and $z \in \mathfrak{h}$, put

(1)
$$J(g,z) = \begin{cases} \sqrt{d} & \text{if } c = 0, d > 0\\ -\sqrt{d} & \text{if } c = 0, d < 0\\ (cz+d)^{1/2} & \text{if } c \neq 0, \end{cases} \quad g = \begin{pmatrix} a & b\\ c & d \end{pmatrix}$$

Here, we choose $\arg(cz+d)$ such that $-\pi < \arg(cz+d) \le \pi$. Then we have

(2)
$$\eta(\gamma(z)) = \mathbf{v}_{\eta}(\gamma)J(\gamma,z)\eta(z), \quad \gamma(z) = \frac{az+b}{cz+d} \in \mathfrak{h}$$

for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, where the multiplier system $\mathbf{v}_{\eta}(\gamma)$ is given by

(3)
$$\mathbf{v}_{\eta}(\gamma) = \begin{cases} \left(\frac{d}{c}\right)^{*} e\left(\frac{(a+d)c - bd(c^{2}-1) - 3c}{24}\right) & c: \text{ odd} \\ \\ \left(\frac{c}{d}\right)_{*} e\left(\frac{(a+d)c - bd(c^{2}-1) + 3d - 3 - 3cd}{24}\right) & c: \text{ even.} \end{cases}$$

It is natural to ask the following problem. When does a Hilbert modular theta series of weight 1/2 with respect to $SL_2(\mathfrak{o})$ exist? Here, \mathfrak{o} is the ring of integers of a totally real number field F.

In 1983, Feng [1] studied this problem. She gave a sufficient condition for the existence of a Hilbert modular theta series of weight 1/2 with respect to $SL_2(\mathfrak{o})$ and constructed certain Hilbert modular theta series. These series are defined by a sum on \mathfrak{o} . In 1984, Naganuma [10] obtained a Hilbert modular form of level 1 for a real quadratic $\mathbb{Q}(\sqrt{D})$, $D \equiv 1 \mod 8$ with class number one, using modular imbeddings, from the theta constant with the characteristic (1/2, 1/2, 1/2, 1/2) of degree 2.

In this paper, we solve the problem above completely. We consider theta functions defined by a sum on a fractional ideal \mathfrak{a} of F.

2. Multiplier systems for $SL_2(\mathfrak{o})$

From now on, let F be a totally real number field such that $[F : \mathbb{Q}] = n$. Let v be a place of F and \mathbb{A} the adele ring of F. We denote the completion of F at v by F_v . If v is an infinite place, we write $v \mid \infty$. Otherwise, we write $v < \infty$. For $v < \infty$, let $\mathfrak{o}_v, \mathfrak{p}_v$ and q_v be the ring of integers of F_v , the maximal ideal of \mathfrak{o}_v and the order of the residue field $\mathfrak{o}_v/\mathfrak{p}_v$, respectively.

For any v, let $\iota_v : F \to F_v$ be the embedding. The entrywise embeddings of $\mathrm{SL}_2(F)$ into $\mathrm{SL}_2(F_v)$ are also denoted by ι_v . Let $\{\infty_1, \dots, \infty_n\}$ be the set of infinite places of F. Put $\iota_i = \iota_{\infty_i}$ for $1 \leq i \leq n$. We embed $\mathrm{SL}_2(F)$ into $\mathrm{SL}_2(\mathbb{R})^n$ by $r \mapsto (\iota_1(r), \dots, \iota_n(r))$.

The metaplectic group of $SL_2(F_v)$ is denoted by $SL_2(F_v)$, which is a nontrivial double covering group of $SL_2(F_v)$. Set-theoretically, it is

$$\{[g,\tau] \mid g \in SL_2(F_v), \tau \in \{\pm 1\}\}.$$

Its multiplication law is given by $[g, \tau][h, \sigma] = [gh, \tau \sigma c(g, h)]$ for $[g, \tau], [h, \sigma] \in \widetilde{\operatorname{SL}_2(F_v)}$, where c(g, h) is the Kubota 2-cocycle on $\operatorname{SL}_2(F_v)$. Put [g] = [g, 1].

Let \tilde{H} be the inverse image of a subgroup H of $\mathrm{SL}_2(F_v)$ in $\mathrm{SL}_2(F_v)$. For $v < \infty$, a function $\epsilon_v : \widetilde{\mathrm{SL}}_2(\mathfrak{o}_v) \to \mathbb{C}$ is genuine if $\epsilon_v([1_2, -1]\gamma) = -\epsilon_v(\gamma)$ for any $\gamma \in \widetilde{\mathrm{SL}}_2(\mathfrak{o}_v)$.

We denote the embedding of $\operatorname{SL}_2(F)$ into $\operatorname{SL}_2(\mathbb{A})$ by ι . The finite part of $\operatorname{SL}_2(\mathbb{A})$ is denoted by $\operatorname{SL}_2(\mathbb{A}_f)$. Let $\iota_f : \operatorname{SL}_2(F) \to \operatorname{SL}_2(\mathbb{A}_f)$ be the projection of the finite part and $\iota_{\infty} : \operatorname{SL}_2(F) \to \operatorname{SL}_2(F_{\infty}) = \operatorname{SL}_2(\mathbb{R})^n$ that of the infinite part. Then we have $\iota(g) = \iota_f(g)\iota_{\infty}(g)$ for any $g \in \operatorname{SL}_2(F)$. The embedding of F into \mathbb{A}_f is also denoted by ι_f .

The adelic metaplectic group $\operatorname{SL}_2(\mathbb{A})$ is a double covering of $\operatorname{SL}_2(\mathbb{A})$ and there exists a canonical embedding $\operatorname{SL}_2(F_v) \to \operatorname{SL}_2(\mathbb{A})$ for each v. Let \tilde{H} be the inverse image of a subgroup H of $\operatorname{SL}_2(\mathbb{A})$ in $\operatorname{SL}_2(\mathbb{A})$. It is known that $\operatorname{SL}_2(F)$ can be canonically embedded into $\operatorname{SL}_2(\mathbb{A})$. The embedding $\tilde{\iota}$ is given by $g \mapsto ([\iota_v(g)])_v$ for each $g \in \operatorname{SL}_2(F)$. We define the maps $\tilde{\iota}_f: \operatorname{SL}_2(F) \to \operatorname{SL}_2(\mathbb{A}_f)$ and $\tilde{\iota}_\infty: \operatorname{SL}_2(F) \to \operatorname{SL}_2(F_\infty)$ by

$$\tilde{\iota}_f(g) = ([\iota_v(g)])_{v < \infty} \times ([1_2])_{v \mid \infty}, \quad \tilde{\iota}_\infty(g) = ([1_2])_{v < \infty} \times ([\iota_i(g)])_{v \mid \infty}.$$

Then we have $\tilde{\iota}(g) = \tilde{\iota}_f(g)\tilde{\iota}_{\infty}(g)$ for any $g \in \mathrm{SL}_2(F)$. For $\gamma = [g, \tau] \in \widetilde{\mathrm{SL}_2(\mathbb{R})}, g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $z \in \mathfrak{h}, \tilde{j} : \widetilde{\mathrm{SL}_2(\mathbb{R})} \times \mathfrak{h} \to \mathbb{C}$ is an automorphy factor given by

(4)
$$\tilde{j}(\gamma, z) = \begin{cases} \tau \sqrt{d} & \text{if } c = 0, d > 0, \\ -\tau \sqrt{d} & \text{if } c = 0, d < 0, \\ \tau (cz+d)^{1/2} & \text{if } c \neq 0. \end{cases}$$

Here, we choose $\arg(cz + d)$ such that $-\pi < \arg(cz + d) \le \pi$. Note that $\tilde{j}([g, \tau], z)$ is the unique automorphy factor such that $\tilde{j}([g, \tau], z)^2 = j(g, z)$, where j(g, z) is the usual automorphy factor on $\operatorname{SL}_2(\mathbb{R}) \times \mathfrak{h}$ (see [6, §7]). Note that $\tilde{j}([g], z) = J(g, z)$, where J(g, z) is defined in (1).

Definition 1. Let $\Gamma \subset SL_2(\mathfrak{o})$ be a congruence subgroup. the map $\mathbf{v} = \mathbf{v}(\gamma) : \Gamma \to \mathbb{C}^{\times}$ is said to be a multiplier system of half-integral weight if $\mathbf{v}(\gamma) \prod_{i=1}^{n} \tilde{j}([\iota_i(\gamma)], z_i)$ is an automorphy factor for $\Gamma \times \mathfrak{h}^n$, where \tilde{j} is the automorphy factor in (4).

Lemma 1. A function $\mathbf{v} : \Gamma \to \mathbb{C}^{\times}$ is a multiplier system of half-integral weight if and only if we have

$$\mathbf{v}(\gamma_1)\mathbf{v}(\gamma_2) = c_{\infty}(\gamma_1, \gamma_2)\mathbf{v}(\gamma_1\gamma_2) \quad \gamma_1, \gamma_2 \in \Gamma,$$

where $c_{\infty}(\gamma_1, \gamma_2) = \prod_{i=1}^n c_{\mathbb{R}}(\iota_i(\gamma_1), \iota_i(\gamma_2))$. Here, $c_{\mathbb{R}}(\cdot, \cdot)$ is the Kubota 2-cocycle at infinite places.

Let $K_{\Gamma} \subset \mathrm{SL}_2(\mathbb{A}_f)$ be the closure of $\iota_f(\Gamma)$ in $\mathrm{SL}_2(\mathbb{A}_f)$. Then K_{Γ} is a compact open subgroup and we have $\iota_f^{-1}(K_{\Gamma}) = \Gamma$. Let \widetilde{K}_{Γ} be the inverse image of K_{Γ} in $\widetilde{\mathrm{SL}}_2(\mathbb{A}_f)$.

Lemma 2. Let $\lambda : \tilde{K}_{\Gamma} \to \mathbb{C}^{\times}$ be a genuine character. Put $\mathbf{v}_{\lambda}(\gamma) = \lambda(\tilde{\iota}_{f}(\gamma))$ for $\gamma \in \Gamma$. Then \mathbf{v}_{λ} is a multiplier system of half-integral weight for Γ .

For $v < \infty$, we define a map $s_v : \operatorname{SL}_2(\mathfrak{o}_v) \to \{\pm 1\}$ by

$$s_{v}(g) = \begin{cases} 1 & c \in \mathfrak{o}_{v}^{\times} \\ \langle c, d \rangle_{v} & c \in \mathfrak{p}_{v} \setminus \{0\} \\ \langle -1, d \rangle_{v} & c = 0 \end{cases} \quad \text{for } g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_{2}(\mathfrak{o}_{v}).$$

Here, $\langle \cdot, \cdot \rangle_v$ is the quadratic Hilbert symbol for F_v . A map $\mathbf{s}_v : \mathrm{SL}_2(\mathbf{o}_v) \to \widetilde{\mathrm{SL}_2(\mathbf{o}_v)}$ is given by $\mathbf{s}_v(g) = [g, s_v(g)]$ for $g \in \mathrm{SL}_2(\mathbf{o}_v)$. This map is the splitting on $K_1(4)_v$, where

$$K_1(4)_v = \{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathfrak{o}_v) \mid c \equiv 0, d \equiv 1 \mod 4 \}.$$

If $K_{\Gamma} \subset K_1(4)_f = \prod_{v < \infty} K_1(4)_v$, we may define a splitting $\mathbf{s} : K_{\Gamma} \to SL_2(\mathbb{A})$ by

$$\mathbf{s}(\gamma) = (\mathbf{s}_v(\iota_v(\gamma)))_{v < \infty} \times ([1_2])_{v \mid \infty}.$$

We consider it as a homomorphism. Then we have $\tilde{K}_{\Gamma} = \mathbf{s}(K_{\Gamma}) \cdot \{[1_2, \pm 1]\}$. Note that $\mathbf{s}(K_{\Gamma}) \subset \widetilde{\mathrm{SL}}_2(\mathbb{A}_f)$ is a compact open subgroup.

For any congruence subgroup Γ , a map $\mathbf{v}_0 : \Gamma \to \mathbb{C}^{\times}$ is defined by $\mathbf{v}_0(\gamma) = \prod_{v < \infty} s_v(\iota_v(\gamma))$, which is not always a multiplier system of half-integral weight for Γ .

Corollary 1. If $\Gamma \subset \Gamma_1(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathfrak{o}) \mid c \equiv 0, d \equiv 1 \mod 4 \right\}$, then \mathbf{v}_0 is a multiplier system of half-integral weight for Γ .

Proof. Since $\Gamma \subset \Gamma_1(4)$, we have $K_{\Gamma} \subset K_1(4)_f$. We define a genuine character $\lambda : \tilde{K}_{\Gamma} \to \mathbb{C}^{\times}$ by

$$\lambda(\mathbf{s}(k)[1_2,\tau]) = \tau, \quad k \in K_{\Gamma}, \tau \in \{\pm 1\}.$$

Put $\mathbf{v}_{\lambda}(\gamma) = \lambda(\tilde{\iota}_f(\gamma))$ for $\gamma \in \Gamma$. Since $\mathbf{s}(\gamma) = ([\iota_v(\gamma), s_v(\iota_v(\gamma))])_{v < \infty}$, we have

$$\mathbf{v}_{\lambda}(\gamma) = \lambda(\mathbf{s}(\gamma)[\mathbf{1}_2, \mathbf{v}_0(\gamma)]) = \mathbf{v}_0(\gamma).$$

Therefore Lemma 2 proves the corollary.

Now suppose that $\Gamma \subset SL_2(\mathfrak{o})$ is a congruence subgroup and that $\mathbf{v} : \Gamma \to \mathbb{C}^{\times}$ is a multiplier system of half-integral weight.

Lemma 3. There exists a genuine character $\lambda : \tilde{K}_{\Gamma} \to \mathbb{C}^{\times}$ such that $\mathbf{v}_{\lambda} = \mathbf{v}$ if and only if there exists a congruence subgroup $\Gamma' \subset \Gamma \cap \Gamma_1(4)$ such that $\mathbf{v}(\gamma) = \mathbf{v}_0(\gamma)$ for any $\gamma \in \Gamma'$.

Proposition 1. If $F \neq \mathbb{Q}$, then any multiplier system \mathbf{v} of half-integral weight of any congruence subgroup $\Gamma \subset \mathrm{SL}_2(\mathfrak{o})$ is obtained from a genuine character of \tilde{K}_{Γ} .

Proof. By Lemma 3, it suffices to show that there exists a congruence subgroup $\Gamma' \subset \Gamma \cap \Gamma_1(4)$ such that $\mathbf{v}(\gamma) = \mathbf{v}_0(\gamma)$ for any $\gamma \in \Gamma'$. We assume that a congruence subgroup Γ satisfies $\Gamma \subset \Gamma_1(4)$ by replacing Γ with $\Gamma \cap \Gamma_1(4)$. Since $\mathbf{v}_0(\gamma)/\mathbf{v}(\gamma)$ is a character of Γ , we have $\mathbf{v}_0(\gamma)/\mathbf{v}(\gamma) = 1$ for any $\gamma \in D(\Gamma)$. By the congruence subgroup property, $D(\Gamma)$ contains a

congruence subgroup Γ' (see [14, Corollary 3 of Theorem 2] or [7, §3]). Thus we have $\mathbf{v}(\gamma) = \mathbf{v}_0(\gamma)$ for any $\gamma \in \Gamma'$, which proves this proposition.

By Lemma 3 and Proposition 1, the multiplier system of half-integral weight of a congruence subgroup Γ associated to an automorphy factor in the sense of Shimura [15] is obtained from a genuine character of \tilde{K}_{Γ} .

Put

$$K_f = \prod_{v < \infty} \operatorname{SL}_2(\mathfrak{o}_v).$$

Then K_f is a compact open group of $\mathrm{SL}_2(\mathbb{A}_f)$. The inverse image of K_f in $\widetilde{\mathrm{SL}_2(\mathbb{A}_f)}$ is denoted by \widetilde{K}_f . We have $\mathrm{SL}_2(\mathfrak{o}) = \mathrm{SL}_2(F) \cap K_f \cdot \mathrm{SL}_2(F_\infty)$.

Proposition 2. Let \mathbf{v} be a multiplier system of half-integral weight for $\mathrm{SL}_2(\mathfrak{o})$. Then there exists a genuine character $\lambda : \tilde{K}_f \to \mathbb{C}^{\times}$ such that $\mathbf{v}_{\lambda} = \mathbf{v}$.

Proof. If $F \neq \mathbb{Q}$, the assertion is proved by Proposition 1. If $F = \mathbb{Q}$, then we have

$$\mathbf{v}_0(g) = \begin{cases} \left(\frac{d}{c}\right)^* & c: \text{ odd} \\ \left(\frac{c}{d}\right)_* & c: \text{ even,} \end{cases} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Put

$$\Gamma(12) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a \equiv d \equiv 1, b \equiv c \equiv 0 \mod 12 \right\}$$

and let \mathbf{v}_{η} be the multiplier system of $\eta(z)$ in (3). Then we have $\mathbf{v}_{\eta}(\gamma) = \mathbf{v}_{0}(\gamma)$ for $\gamma \in \Gamma(12)$. Since $\mathbf{v}_{\eta}(\gamma)/\mathbf{v}(\gamma) = 1$ for any $\gamma \in D(\mathrm{SL}_{2}(\mathbb{Z}))$, we have $\mathbf{v}(\gamma) = \mathbf{v}_{0}(\gamma)$ for any $\gamma \in D(\mathrm{SL}_{2}(\mathbb{Z})) \cap \Gamma(12)$, which is a congruence subgroup. By Lemma 3, there exists a genuine character $\lambda : \tilde{K}_{f} \to \mathbb{C}^{\times}$ such that $\mathbf{v}_{\lambda} = \mathbf{v}$.

Corollary 2. There exists a multiplier system **v** of half-integral weight for $SL_2(\mathfrak{o})$ if and only if 2 splits completely in F/\mathbb{Q} . There exists a genuine character of $\widetilde{SL_2(\mathfrak{o}_v)}$ for any $v < \infty$, provided that this condition holds.

Proposition 3. Suppose that 2 splits completely in F/\mathbb{Q} . Let \mathbf{v}_{λ} be a multiplier system of half-integral weight of $\mathrm{SL}_2(\mathfrak{o})$, where $\lambda = \prod_{v < \infty} \lambda_v$ is a genuine character of \tilde{K}_f . Put $S_2 = \{v < \infty \mid F = \mathbb{Q}_2\}$ and $T_3 = \{v < \infty \mid q_v = 3\}$. Then there exist continuous functions $\kappa_v(\iota_v(\gamma))$ for $v \in S_2 \cup T_3$ such that

$$\mathbf{v}_{\lambda}(\gamma) = \mathbf{v}_0(\gamma) \prod_{v \in S_2 \cup T_3} \kappa_v(\iota_v(\gamma)) \qquad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathfrak{o}).$$

We omit the proof of this proposition and give one example instead. For $F = \mathbb{Q}$, we have $\mathbf{v}_{\eta}(g) = \mathbf{v}_0(g)\kappa_2(g)\kappa_3(g)$, where

$$\mathbf{v}_0(g) = \begin{cases} \left(\frac{d}{c}\right)^* & c: \text{ odd} \\ \left(\frac{c}{d}\right)_* & c: \text{ even,} \end{cases} g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}),$$
$$\kappa_2(g) = \begin{cases} e(\frac{3}{8}[(a+d)c-3c]) & c: \text{ odd} \\ e(\frac{3}{8}[(b-c)d+3(d-1)]) & c: \text{ even,} \end{cases}$$
$$\kappa_3(g) = e(\frac{-1}{3}[(a+d)c-bd(c^2-1)]).$$

3. The condition of the existence of a theta function

Suppose that 2 splits completely in F/\mathbb{Q} . In this case, there exists a genuine character $\lambda_v : \widetilde{\mathrm{SL}}_2(\mathfrak{o}_v) \to \mathbb{C}^{\times}$ for any $v < \infty$. If $v < \infty$, put $K_v = \mathrm{SL}_2(\mathfrak{o}_v)$. If $v \mid \infty$, put $K_v = \mathrm{SO}(2)$. Then K_v is a maximal compact subgroup of $\mathrm{SL}_2(F_v)$ for any v. Let $\psi : \mathbb{A}/F \to \mathbb{C}^{\times}$ be an additive character such that its v-component $\psi_v(x)$ equals e(x) for any $v \mid \infty$. Put $\psi_\beta(x) = \psi(\beta x)$ and $\psi_{\beta,v}(x) = \psi_v(\beta x)$ for $\beta \in F^{\times}$.

For any v, let $S(F_v)$ be the Schwartz space of F_v . We denote the Weil representation of $\widetilde{SL_2(F_v)}$ by $\omega_{\psi_{\beta},v}$. For a genuine character $\lambda_v : \tilde{K}_v \to \mathbb{C}^{\times}$, we define the set $(\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v}$ by

$$(\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v} = \{ f \in S(F_v) \mid \omega_{\psi_{\beta},v}(\gamma) f = \lambda_v(\gamma) f \text{ for any } \gamma \in \tilde{K}_v \}.$$

We have an irreducible decomposition

$$\omega_{\psi_{\beta},v} = \omega_{\psi_{\beta},v}^+ \oplus \omega_{\psi_{\beta},v}^-,$$

where $\omega_{\psi_{\beta},v}^+$ (resp. $\omega_{\psi_{\beta},v}^-$) is an irreducible representation of the set of even (resp. odd) functions in $S(\mathbb{R})$ (see [9, Lemma 2.4.4]).

The group $\operatorname{SL}_2(\mathbb{R})$ has a maximal compact subgroup $\operatorname{SO}(2)$, which is the inverse image of $\operatorname{SO}(2)$ in $\operatorname{SL}_2(\mathbb{R})$. It is known that if $\lambda_v : \operatorname{SO}(2) \to \mathbb{C}^{\times}$ is a genuine character, $\dim_{\mathbb{C}}(\omega_{\psi_{\beta},v}, S(\mathbb{R}))^{\lambda_v}$ is at most 1. Let $\lambda_{\infty,1/2}$ be a genuine character of lowest weight 1/2 with respect to $(\omega_{\psi_{\beta},v}^+, S(\mathbb{R}))$ and $\lambda_{\infty,3/2}$ of lowest weight 3/2 with respect to $(\omega_{\psi_{\beta},v}^-, S(\mathbb{R}))$. For $\beta > 0$, $(\omega_{\psi_{\beta},v}^+, S(\mathbb{R}))^{\lambda_{\infty,1/2}} = \mathbb{C} e(i\iota_v(\beta)x^2)$ and $(\omega_{\psi_{\beta},v}^-, S(\mathbb{R}))^{\lambda_{\infty,3/2}} = \mathbb{C} xe(i\iota_v(\beta)x^2)$ are spaces of lowest weight vectors. If $\beta < 0$, there exist no lowest weight vectors with respect to $(\omega_{\psi_{\beta},v}^+, S(\mathbb{R}))$.

Note that $\lambda_v(\mathbf{s}_v(\mathrm{SL}_2(\mathbf{o}_v))) = 1$ for any $v < \infty$ except for finitely many places. Then a genuine character $\lambda_f : \tilde{K}_f \to \mathbb{C}^{\times}$ is given by $\lambda_f(g) = \prod_{v < \infty} \lambda_v(g_v)$ for $g = (g_v)_v \in \tilde{K}_f$. Put $w = (w_1, \cdots, w_n) \in \{1/2, 3/2\}^n$. We define an automorphy factor $j^{\lambda_f, w}(\gamma, z)$ for $\gamma \in \mathrm{SL}_2(\mathbf{o})$ and $z = (z_1, \cdots, z_n) \in \mathfrak{h}^n$ by

$$j^{\lambda_f,w}(\gamma,z) = \prod_{v < \infty} \lambda_v([\iota_v(\gamma)]) \prod_{i=1}^n \tilde{j}([\iota_i(\gamma)], z_i)^{2w_i}$$

In particular, we have $j^{\lambda_f,w}(-1_2,z) = \prod_{v < \infty} \lambda_v([-1_2]) \times (-1)^{\sum 2w_i}$.

Let $M_w(\mathrm{SL}_2(\mathfrak{o}), \lambda_f)$ be the space of Hilbert modular forms on \mathfrak{h}^n with respect to $j^{\lambda_f, w}(\gamma, z)$. A holomorphic function h(z) of \mathfrak{h}^n belongs to the space $M_w(\mathrm{SL}_2(\mathfrak{o}), \lambda_f)$ if and only if

$$h(\gamma(z)) = j^{\lambda_f, w}(\gamma, z) h(z),$$

where $\gamma(z) = (\iota_1(\gamma)(z_1), \cdots, \iota_n(\gamma)(z_n))$ for $\gamma \in \mathrm{SL}_2(\mathfrak{o})$ and $z \in \mathfrak{h}^n$. (When $F = \mathbb{Q}$, the usual cusp condition is also required.) If $j^{\lambda_f, w}(-1_2, z)$ does not equal 1, $M_w(\mathrm{SL}_2(\mathfrak{o}), \lambda_f)$ is $\{0\}$.

Put $K = K_f \times \prod_{v \mid \infty} \mathrm{SO}(2)$. There exists a genuine character $\lambda : \tilde{K} \to \mathbb{C}^{\times}$ such that its *v*-component equals λ_v , where λ_{∞_i} is $\lambda_{\infty,1/2}$ or $\lambda_{\infty,3/2}$ for $1 \leq i \leq n$. Then we have an automorphy factor $j^{\lambda_f,w}(\gamma,z)$ corresponding to λ such that $\lambda_{\infty_i} = \lambda_{\infty,w_i}$.

For each $g \in \operatorname{SL}_2(\mathbb{A})$, there exist $\gamma \in \operatorname{SL}_2(F)$, $g_{\infty} \in \operatorname{SL}_2(\mathbb{R})^n$ and $g_f \in \tilde{K}_f$ such that $g = \gamma g_{\infty} g_f$ by the strong approximation theorem for $\operatorname{SL}_2(\mathbb{A})$. Put $\mathbf{i} = (\sqrt{-1}, \cdots, \sqrt{-1}) \in \mathfrak{h}^n$. For $h \in M_w(\operatorname{SL}_2(\mathfrak{o}), \lambda_f)$, put

$$\varphi_h(g) = h(g_{\infty}(\mathbf{i}))\lambda_f(g_f)^{-1} \prod_{i=1}^n \tilde{j}(g_{\infty_i}, \sqrt{-1})^{-2w_i}.$$

Then φ_h is an automorphic form on $SL_2(F) \setminus \widetilde{SL_2(\mathbb{A})}$.

Let $\mathcal{A}_w(\mathrm{SL}_2(F)\backslash\mathrm{SL}_2(\mathbb{A}),\lambda_f)$ be the space of automorphic forms φ on $\mathrm{SL}_2(F)\backslash\mathrm{SL}_2(\mathbb{A})$ satisfying the following conditions (1), (2), and (3).

- (1) $\varphi(gk_{\infty}) = \varphi(g) \prod_{i=1}^{n} \tilde{j}(k_{\infty,i}, \sqrt{-1})^{-2w_i}$ for any $g \in SL_2(\mathbb{A})$ and $k_{\infty} = (k_{\infty,1}, \ldots, k_{\infty,n}) \in SO(2)^n$.
- (2) φ is a lowest weight vector with respect to the right translation of $\widetilde{\operatorname{SL}_2(\mathbb{R})^n}$.

(3)
$$\varphi(gk) = \lambda_f(k)^{-1}\varphi(g)$$
 for any $g \in \mathrm{SL}_2(\mathbb{A})$ and $k \in \tilde{K}_f$.

Then $\Phi: h \mapsto \varphi_h$ gives rise to an isomorphism

$$M_w(\mathrm{SL}_2(\mathfrak{o}), \lambda_f) \xrightarrow{\sim} \mathcal{A}_w(\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A}), \lambda_f).$$

For $\varphi \in \mathcal{A}_w(\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A}), \lambda_f)$, put $h = \Phi^{-1}(\varphi)$. Then we have

$$h(z) = \varphi(g_{\infty}) \prod_{i=1}^{n} \tilde{j}(g_{\infty_{i}}, \sqrt{-1})^{2w_{i}}, \qquad g_{\infty} \in \widetilde{\mathrm{SL}_{2}(\mathbb{R})^{n}}, \ g_{\infty}(\mathbf{i}) = z.$$

When q_v is odd, there exists a genuine character $\epsilon_v : \operatorname{SL}_2(\mathfrak{o}_v) \to \mathbb{C}^{\times}$ defined by $\epsilon_v([g,\tau]) = \tau s_v(g)$. If $q_v \geq 5$, it is a unique genuine character of $\widetilde{\operatorname{SL}_2(\mathfrak{o}_v)}$.

Put $S_2 = \{v < \infty \mid F_v = \mathbb{Q}_2\}$, $T_3 = \{v < \infty \mid q_v = 3\}$ and $S_3 = \{v \in T_3 \mid \lambda_v \neq \epsilon_v\}$. Since 2 splits completely in F/\mathbb{Q} , we have $|S_2| = n$. It is known that for $v < \infty$, $(\omega_{\psi_\beta,v}, S(F_v))^{\lambda_v}$ is not 0 if and only if we have

$$\operatorname{ord}_{v}\psi_{\beta,v} \equiv \begin{cases} 0 \mod 2 & \text{if } \lambda_{v} = \epsilon_{v} \\ 1 \mod 2 & \text{otherwise.} \end{cases}$$

Then, if $(\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v} \neq 0$ for any $v < \infty$, there exists a fractional ideal \mathfrak{a} such that

(5)
$$(8\beta)\mathfrak{d}\prod_{v\in S_3}\mathfrak{p}_v=\mathfrak{a}^2,$$

where \mathfrak{d} is the different of F/\mathbb{Q} . The set of totally positive elements of F is denoted by F_+^{\times} . Replacing β with $\beta \gamma^2$ and \mathfrak{a} with $(\mathfrak{a}\gamma)^2$ in (5) for $\gamma \in F_+^{\times}$, we may assume $\operatorname{ord}_v \mathfrak{a} = 0$ for $v \in S_2 \cup S_3$. Then we have $\operatorname{ord}_v \psi_{\beta,v} = -1$ (resp. -3) for $v \in S_3$ (resp. S_2).

Conversely, suppose that there exists a fractional ideal \mathfrak{a} satisfying (5) for a subset $S_3 \subset T_3$. For $v < \infty$, put

$$\lambda_v = \begin{cases} \epsilon_v & \text{if } \operatorname{ord}_v \psi_{\beta,v} \equiv 0 \mod 2\\ \mu_\beta & \text{if } \operatorname{ord}_v \psi_{\beta,v} \equiv 1 \mod 2, \end{cases}$$

where μ_{β} is a certain genuine character such that $(\omega_{\psi_{\beta},v}, S(F_v))^{\mu_{\beta}} \neq 0$. Then we have $(\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v} \neq 0$ for any $v < \infty$. Let $\lambda : \tilde{K} \to \mathbb{C}^{\times}$ be a genuine character such that its v-component equals λ_v , where $\lambda_{\infty_i} = \lambda_{\infty,w_i}$ for $w_i \in \{1/2, 3/2\}$. Put $S_{\infty} = \{\infty_i \mid w_i = 3/2\}$.

From now on, suppose that $\beta \in F_+^{\times}$. Let $S(\mathbb{A})$ be the Schwartz space of A and $(\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$ the set of functions $\phi = \prod_{v} \phi_{v} \in S(\mathbb{A})$ such that $\phi_v \in (\omega_{\psi_{\beta,v}}, S(F_v))^{\lambda_v}$ for any v. For $\phi \in S(\mathbb{A})$, we define the theta function Θ_{ϕ} by

(6)
$$\Theta_{\phi}(g) = \sum_{\xi \in F} \omega_{\psi_{\beta}}(g)\phi(\xi) \quad g = (g_v) \in \widetilde{\mathrm{SL}}_2(\mathbb{A}),$$

where $\omega_{\psi_{\beta}}(g)\phi(\xi) = \prod_{v} \omega_{\psi_{\beta},v}(g_{v})\phi_{v}(\iota_{v}(\xi))$ is essentially a finite product. We have $\Theta_{\phi}(gk) = \lambda(k)^{-1} \Theta_{\phi}(g)$ for any $g \in SL_2(\mathbb{A})$ and $k \in \tilde{K}_f$. If $\phi \in$ $(\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$, then Θ_{ϕ} is a Hilbert modular form of weight $w = (w_1, \cdots, w_n)$. It is known that

$$\omega_{\psi_{\beta}} = \bigoplus_{S} \omega_{\psi_{\beta},S}, \quad \omega_{\psi_{\beta},S} = \left(\bigotimes_{v \in S} \omega_{\psi_{\beta},v}^{-}\right) \otimes \left(\bigotimes_{v \notin S} \omega_{\psi_{\beta},v}^{+}\right),$$

where S ranges over all finite subsets of places of F (see $[2, \S 3.4]$). We define a map Θ from $\omega_{\psi_{\beta}}$ to the space of automorphic forms on $SL_2(\mathbb{A})$ by $\Theta(\phi)(g) = \Theta_{\phi}(g)$. Then it is known that

(7)
$$\operatorname{Im}(\Theta) \simeq \bigoplus_{|S|: \text{even}} \omega_{\psi_{\beta}, S},$$

(see [2, Proposition 3.1]).

Let **G** be the set of triplets $(\beta, S_3, \mathfrak{a})$ of $\beta \in F_+^{\times}$, a subset $S_3 \subset T_3$ and a fractional ideal \mathfrak{a} of F satisfying (5) and the condition (A),

(A)
$$|S_2| + |S_3| + |S_\infty| \in 2\mathbb{Z}.$$

We define an equivalence relation \sim on **G** by

$$(\beta, S_3, \mathfrak{a}) \sim (\beta', S'_3, \mathfrak{a}') \iff S_3 = S'_3, \ \beta' = \gamma^2 \beta, \ \mathfrak{a}' = \gamma \mathfrak{a} \text{ for some } \gamma \in F^{\times}.$$

Theorem 1. Suppose that 2 splits completely in F/\mathbb{Q} . Let $\beta \in F_+^{\times}$, $\lambda : \tilde{K} \to \mathbb{C}^{\times}$ and $w_1, \ldots, w_n \in \{1/2, 3/2\}$ be as above. Then there exists $\phi = \prod_v \phi_v \in (\omega_{\psi_\beta}, S(\mathbb{A}))^{\lambda}$ such that $\Theta_{\phi} \neq 0$ if and only if there exists a fractional ideal \mathfrak{a} of F such that $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$.

Proof. Let $\lambda_v : \operatorname{SL}_2(\mathfrak{o}_v) \to \mathbb{C}^{\times}$ be the *v*-component of λ for any $v < \infty$. We already proved that there exists $\prod_{v < \infty} \phi_v \neq 0$ such that $\phi_v \in (\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v}$ for any $v < \infty$ if and only if there exists a fractional ideal \mathfrak{a} of *F* satisfying (5). Suppose that the equivalent conditions hold. Since we have $(\omega_{\psi_{\beta},v}^+, S(\mathbb{R}))^{\lambda_{\infty,1/2}} = \mathbb{C} e(i\iota_v(\beta)x^2)$ and $(\omega_{\psi_{\beta},v}^-, S(\mathbb{R}))^{\lambda_{\infty,3/2}} = \mathbb{C} xe(i\iota_v(\beta)x^2)$ for any $v \mid \infty$, there exists a nonzero $\phi = \prod_v \phi_v \in (\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$. It is clear that if there exists a nonzero $\phi = \prod_v \phi_v \in (\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$, $\prod_{v < \infty} \phi_v \neq 0$ satisfies $\phi_v \in (\omega_{\psi_{\beta},v}, S(F_v))^{\lambda_v}$ for any $v < \infty$.

Suppose there exists a nonzero $\phi = \prod_v \phi_v \in (\omega_{\psi_\beta}, S(\mathbb{A}))^{\lambda}$. Note that $|S_2| + |S_3| + |S_{\infty}|$ is the number of v such that ϕ_v is an odd function. Then |S| in (7) is $|S_2| + |S_3| + |S_{\infty}|$. By (7), it is clear that $\Theta_{\phi} \neq 0$ if and only if the condition (A) holds.

Let ${\cal H}$ be a group of fractional ideals that consists of all elements of the form

$$\prod_{v\in T_3}\mathfrak{p}_v^{e_v}, \quad \sum_v e_v\in 2\mathbb{Z}.$$

Let Cl^+ be the narrow ideal class group of F. Put $\operatorname{Cl}^{+2} = \{\mathfrak{c}^2 \mid \mathfrak{c} \in \operatorname{Cl}^+\}$. We denote the image of the group H (resp. $\mathfrak{b} \in \operatorname{Cl}^+$) in $\operatorname{Cl}^+/\operatorname{Cl}^{+2}$ by \overline{H} (resp. $[\mathfrak{b}]$).

Theorem 2. Suppose that 2 splits completely in F/\mathbb{Q} . Let $w_1, \ldots, w_n \in \{1/2, 3/2\}$ be as above.

- (1) Suppose that $|S_2| + |S_{\infty}|$ is even. Then there exists $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$ if and only if $[\mathfrak{d}] \in \overline{H}$.
- (2) Suppose that $|S_2| + |S_{\infty}|$ is odd. Then there exists $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$ if and only if $T_3 \neq \emptyset$ and $[\mathfrak{dp}_{v_0}] \in \overline{H}$. Here, v_0 is any fixed element of T_3 .

Proof. We prove the theorem in case (1). The proof for case (2) is similar.

If $[\mathfrak{d}] \in \overline{H}$, we have $(8\beta)\mathfrak{d}\prod_{v\in T_3}\mathfrak{p}_v^{e_v} = \mathfrak{a}'^2$ such that $\sum_v e_v$ is even for a fractional ideal \mathfrak{a}' and $\beta \in F_+^{\times}$. Put $S_3 = \{v \in T_3 \mid e_v : \text{odd}\}$. Since $|S_2| + |S_3| + |S_{\infty}|$ is even, we have $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$, where

$$\mathfrak{a} = \prod_{v \in T_3 \setminus S_3} \mathfrak{p}_v^{-e_v/2} \mathfrak{a}'.$$

Conversely, if there exists $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$, it satisfies (5) and $|S_3|$ is even. Then we have $[\mathfrak{d}] = \prod_{v \in S_3} [\mathfrak{p}_v] \in \overline{H}$.

Let w_i be 1/2 or 3/2 for $1 \le i \le n$. Suppose that there exists $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$. Replacing $(\beta, S_3, \mathfrak{a})$ with an equivalent element of \mathbf{G} , we may assume

 $\operatorname{ord}_{v}\mathfrak{a} = 0$ for $v \in S_2 \cup S_3$. For $v \in S_2 \cup S_3$, put

$$f_v(x) = \begin{cases} 1 & \text{if } x \in 1 + 2\mathfrak{p}_v \\ -1 & \text{if } x \in -1 + 2\mathfrak{p}_v \\ 0 & \text{otherwise.} \end{cases}$$

Put

$$f = \prod_{v \in S_2 \cup S_3} f_v \times \prod_{v < \infty, v \notin S_2 \cup S_3} \operatorname{ch} \mathfrak{a}_v^{-1}$$

where $\mathfrak{a}_v = \mathfrak{a}\mathfrak{o}_v$. Here, chA is the characteristic function of a set A. Put $\phi = f \times \prod_{i=1}^{n} f_{\infty,i}$, where $f_{\infty,i}(x) = x^{w_i - (1/2)} e(i\iota_i(\beta)x^2)$ for $x \in \mathbb{R}$. By Theorem 1, there exists $\Theta_{\phi} \neq 0$ of weight $w = (w_1, \cdots, w_n)$.

Put $z = (z_1, \dots, z_n), \mathbf{i} = (\sqrt{-1}, \dots, \sqrt{-1}) \in \mathfrak{h}^n$. We define $x_i, y_i \in \mathbb{R}$ by $z_i = x_i + \sqrt{-1}y_i$ for $1 \le i \le n$. Then we have $z = g_{\infty}(\mathbf{i})$, where $g_{\infty} = (g_{\infty_1}, \cdots, g_{\infty_n}) \in \mathrm{SL}_2(\mathbb{R})^n$, $g_{\infty_i} = \begin{pmatrix} y_i^{1/2} & y_i^{1/2}x_i \\ 0 & y_i^{-1/2} \end{pmatrix}$. Since $\lambda_v([1_2]) = 1$

for $v < \infty$, we have

$$\Theta_{\phi}(g_{\infty}) = \sum_{\xi \in \mathfrak{a}^{-1}} f(\iota_f(\xi)) \prod_{i=1}^n \omega_{\psi_{\beta},\infty_i}([g_{\infty_i}]) f_{\infty,i}(\iota_i(\xi)).$$

Theorem 3. Let ϕ and Θ_{ϕ} be as above. We define a theta function θ_{ϕ} : $\mathfrak{h}^n \to \mathbb{C}$ by

$$\theta_{\phi}(z) = \sum_{\xi \in \mathfrak{a}^{-1}} f(\iota_f(\xi)) \prod_{\infty_i \in S_{\infty}} \iota_i(\xi) \prod_{i=1}^n e(z_i \iota_i(\beta \xi^2)).$$

Then θ_{ϕ} is a nonzero Hilbert modular form of weight w for $SL_2(\mathfrak{o})$ with respect to a multiplier system.

Every theta function of weight w for $SL_2(\mathfrak{o})$ with a multiplier system may be obtained in this way.

Proof. Since

$$\omega_{\psi_{\beta},\infty_{i}}([g_{\infty,i}])f_{\infty,i}(\iota_{i}(\xi)) = y_{i}^{w_{i}/2}\iota_{i}(\xi)^{w_{i}-(1/2)}e(z_{i}\iota_{i}(\beta\xi^{2})),$$

we have $\theta_{\phi}(z) = \Theta_{\phi}(g_{\infty}) \times \prod_{i=1}^{n} y_i^{-w_i/2}$. Then θ_{ϕ} is nonzero. Note that $\tilde{j}([g_{\infty_i}], \sqrt{-1})^{2w_i} = y_i^{-w_i/2}.$

Since $\phi \in (\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$, we have $\Theta_{\phi} \in \mathcal{A}_w(\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A}), \lambda_f)$. Then we have $\theta_{\phi} = \Phi^{-1}(\Theta_{\phi}) \in M_w(\mathrm{SL}_2(\mathfrak{o}), \lambda_f)$. The multiplier system of θ_{ϕ} is \mathbf{v}_{λ} given by

$$\mathbf{v}_{\lambda}(\gamma) = \mathbf{v}_0(\gamma) \prod_{v \in S_2 \cup T_3} \kappa_v(\iota_v(\gamma)) \qquad \gamma \in \mathrm{SL}_2(\mathfrak{o}),$$

where κ_v for $v \in S_2 \cup T_3$ is an continuous function in Proposition 3.

By Proposition 2, if θ is a theta function of weight w for $SL_2(\mathfrak{o})$ with a multiplier system \mathbf{v} , we have a genuine character λ_f of K_f such that $\mathbf{v} = \mathbf{v}_{\lambda_f}$. Let $\lambda = \lambda_f \times \prod_{i=1}^n \lambda_{\infty,w_i}$ be a genuine character of \tilde{K} . Then there exists nonzero $\phi \in (\omega_{\psi_{\beta}}, S(\mathbb{A}))^{\lambda}$ such that $\theta = \theta_{\phi}$ up to constant, which completes the proof.

Proposition 4. Let Cl be the usual ideal class group of F. Let $Sq : Cl \rightarrow Cl^+$ be the homomorphism given by $[\mathfrak{a}] \mapsto [\mathfrak{a}^2]$ for a fractional ideal \mathfrak{a} of F. The number of equivalence classes of \mathbf{G} is equal to

$$[E^+:E^2]\sum_{\substack{S_3\subset T_3\\(\mathbf{A})}}|Sq^{-1}([\mathfrak{d}\prod_{v\in S_3}\mathfrak{p}_v])|,$$

where S_3 ranges over all subset of T_3 satisfying (A). Here, E^+ is the group of totally positive units of F and E^2 is the subgroup of squares of units of F.

Proof. We follow the argument of Hammond [5] Theorem 2.9. For given S_3 satisfying (A), the number of ideal classes $[\mathfrak{a}]$ such that \mathfrak{a}^2 is narrowly equivalent to $\mathfrak{d} \prod_{v \in S_3} \mathfrak{p}_v$ is equal to $|Sq^{-1}([\mathfrak{d} \prod_{v \in S_3} \mathfrak{p}_v])|$. Then for a given fractional ideal \mathfrak{a} such that \mathfrak{a}^2 is narrowly equivalent to $\mathfrak{d} \prod_{v \in S_3} \mathfrak{p}_v$, the number of equivalence classes of triplets of the form $(\beta, S_3, \mathfrak{a})$ such that $\beta \in F_+^{\times}$ satisfying (5) is equal to $[E^+ : E^2]$.

4. The case F is a real quadratic field

Now suppose that $F = \mathbb{Q}(\sqrt{D})$, where D > 1 is a square-free integer and $D \equiv 1 \mod 8$. Then 2 splits in F/\mathbb{Q} and we have $\mathfrak{d} = (\sqrt{D})$. When there exists $(\beta, S_3, \mathfrak{a}) \in \mathbf{G}$, one of the followings holds.

(C1) $(8\beta)\mathfrak{d} = \mathfrak{a}^2$ and $S_3 = \emptyset$.

(C2) $(8\beta)\mathfrak{dp} = \mathfrak{a}^2$ such that $N_{F/\mathbb{Q}}(\mathfrak{p}) = 3$ and $S_3 = \{\mathfrak{p}\}.$

(C3) $(8\beta)\mathfrak{d}\mathfrak{p}\mathfrak{p} = \mathfrak{a}^2$ such that $N_{F/\mathbb{Q}}(\mathfrak{p}) = N_{F/\mathbb{Q}}(\mathfrak{p}) = 3$ and $S_3 = \{\mathfrak{p}, \mathfrak{p}\}.$

If $|S_{\infty}|$ is even, (C1) or (C3) holds. If $|S_{\infty}|$ is odd, (C2) holds.

Proposition 5. Suppose that $F = \mathbb{Q}(\sqrt{D})$, where D > 1 is a square-free integer such that $D \equiv 1 \mod 8$.

- (1) There exist $\beta \in F_+^{\times}$ and a fractional ideal \mathfrak{a} satisfying (C1) if and only if $p \equiv 1 \mod 4$ for any prime $p \mid D$.
- (2) There exist $\beta \in F_+^{\times}$ and a fractional ideal \mathfrak{a} satisfying (C2) if and only if $p \equiv 0$ or 1 mod 3 for any prime $p \mid D$.
- (3) There exists $\beta \in F_+^{\times}$ and a fractional ideal \mathfrak{a} satisfying (C3) if and only if $D \equiv 1 \mod 24$ and $p \equiv 1 \mod 4$ for any prime $p \mid D$.

Proof. For a prime ideal \mathfrak{p} such that $N_{F/\mathbb{Q}}(\mathfrak{p}) = 3$, the equation $(8\beta)\mathfrak{dp} = \mathfrak{a}^2$ implies that the narrow ideal class of \mathfrak{dp} is a square. Note that a positive integer x is of the form $3u^2 + v^2$ for some $u, v \in \mathbb{N}$ if and only if any prime p which divides x satisfies $p \equiv 0$ or 1 mod 3. Here, a necessary and sufficient condition that the narrow ideal class of \mathfrak{dp} is a square for a prime ideal \mathfrak{p} which has norm 3 is that D is of the form $3u^2 + v^2$ for some $u, v \in \mathbb{N}$, which proves the second assertion.

The equation $(8\beta)\mathfrak{d} = \mathfrak{a}^2$ implies that the narrow ideal class of \mathfrak{d} is a square. Note that a positive integer x is of the form $u^2 + v^2$ for some

 $u, v \in \mathbb{N}$ if and only if any prime p which divides x satisfies $p \equiv 1 \mod 4$. Then [5] Proposition 3.1 proves the first assertion.

There exist two distinct prime ideal \mathfrak{p} and $\overline{\mathfrak{p}}$ such that such that $N_{F/\mathbb{Q}}(\mathfrak{p}) = N_{F/\mathbb{Q}}(\overline{\mathfrak{p}}) = 3$ if and only if 3 splits in F/\mathbb{Q} . This condition holds if and only if $D \equiv 1 \mod 24$. In the case $D \equiv 1 \mod 24$, we have $\mathfrak{p}\overline{\mathfrak{p}} = (3)$. Then the equation $(8\beta)\mathfrak{d}\mathfrak{p}\overline{\mathfrak{p}} = \mathfrak{a}^2$ implies that the narrow ideal class of \mathfrak{d} is a square. Thus, similarly to the first assertion, [5] Proposition 3.1 proves the third assertion.

Example: put $D = 793 = 13 \cdot 61$. Then there exist $\beta \in F_+^{\times}$ and a fractional ideal \mathfrak{a} satisfying any condition of (C1), (C2) or (C3). Moreover, Cl⁺ has order 8 and the fundamental unit ε of F has norm 1. For example, put $\rho = (5 + \sqrt{D})/2$. Since $N_{F/\mathbb{Q}}(\rho) = -3 \cdot 8^2$, we have $(\rho) = \mathfrak{q}_2^6\mathfrak{q}_3$, where $\mathfrak{q}_3 = (3, 1 - \sqrt{D})$ and $\mathfrak{q}_2 = (2, (1 + \sqrt{D})/2)$ are prime ideals. Put $\beta = \rho\sqrt{D}/8$ and $\mathfrak{a} = \mathfrak{d}\mathfrak{q}_3^2\mathfrak{q}_3$. Then we have $(8\beta)\mathfrak{d}\mathfrak{q}_3 = \mathfrak{a}^2$.

References

- [1] X. Feng, An Analog of $\eta(z)$ in the Hilbert modular case. J. Number Theory. 17 (1983), no. 1, 116–126.
- [2] W. T. Gan, The Shimura correspondence à la Waldspurger, Notes of a short course given at the Postech Theta Festival.
- [3] K.-B. Gundlach, Nullstellen Hilbertscher Modulformen, Nachr. Akad. Wiss. Göttingen II. Math. Phys. Kl. 1–38, 1981.
- [4] K.-B. Gundlach, Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J. 27 (1985), 57–80.
- [5] W. F. Hammond, The modular groups of Hilbert and Siegel. Amer. J. Math. 88 (1966), 497–516.
- [6] K. Hiraga and T. Ikeda, On the Kohnen plus space for Hilbert modular forms of half-integral weight I, Compos. Math. 149 (2013), no. 12, 1963–2010.
- [7] F. Kirchheimer, Zur Bestimmung der linearen Charaktere symplektischer Hauptkongruenzgruppen. Math. Z. 150 (1976), no. 2, 135–148.
- [8] M. I. Knopp, Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill, 1970.
- [9] G. Lion and M. Vergne, The Weil representation, Maslow index and theta series. Birkhäuser, Boston, Mass, 1980.
- [10] H. Naganuma, Remarks on the modular imbedding of Hammond. Japan. J. Math. (N.S.) 10 (1984), no. 2, 379–387.
- H. Petersson, Uber gewisse Dirichlet-Reihen mit Eulerscher Produktzerlegung. Math. Z. 189 (1985), no. 2, 273–288.
- [12] H. Rademacher, Topics in analytic number theory. Springer-Verlag, New York-Heidelberg, 1973.
- [13] R. Ranga Rao, On some explicit formulas in the theory of Weil representation. *Pacific J. Math.* **157** (1993), no. 2, 335–371.
- [14] J. P. Serre, Le probléme des groupes de congruence pour SL₂. Ann. of Math. (2) 92 (1970), 489–527.
- [15] G. Shimura, On Hilbert modular forms of half-integral weight. Duke Math. J. 55 (1987), no. 4, 765–838.
- [16] H. Weber, Lehrbuch der Algebra, III, 3rd ed., Chelsea, New York, 1961.

Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan.

E-mail address: noguchi.hiroshi.27a@st.kyoto-u.ac.jp