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ON GENUINE CHARACTERS OF THE METAPLECTIC 
GROUP OF SL2 (o) AND THETA FUNCTIONS 
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ABSTRACT. This is a write up based on the author's talk given at the 
RIMS conference "Automorphic forms, Automorphic representations, 
Galois representations, and its related topics". 

Let F be a totally real number field and o the ring of integers of 
F. We study theta functions which are Hilbert modular forms of half­
integral weight for the Hilbert modular group SL2(0). We obtain an 
equivalent condition that there exists a multiplier system of half-integral 
weight for SL2 ( o). We determine the condition of F that there exists a 
theta function which is a Hilbert modular form of half-integral weight 
for SL2 ( o). The theta function is defined by a sum on a fractional ideal 
a of F. 

l. INTRODUCTION 

Put e(z) = e21riz for z E <C. It is known that the modular forms of SL2 (Z) 
of weight 1/2 and 3/2 are the Dedekind eta function ry(z) and its cubic power 
ry3(z) up to constant, respectively. Here, ry(z) is given by 

ry(z) = e(z/24) IJ (1 - e(mz)) (z E ~), 
m21 

where ~ is the upper half plane. It is known that 

1 1 
ry(z) = 2 L x12(m)e(mz/24), ry3(z) = 2 L mx4(m)e(mz/8). 

mEZ mEZ 

Here, x12 and X4 are the primitive character mod 12 and mod 4, respectively. 
Note that ry(z) and ry3(z) are theta functions defined by a sum on Z. 

The function ry(z) has the transformation formula with respect to modular 

transformations (see [11, 12, 16]). Let (J be the Jacobi symbol. We define 

( ~) * and ( ~) * by 

(~r = C~1), (~) * = t(c, d) (~) *, {
-1 

t(c,d) = 1 
c,d < 0 

otherwise, 

for c E Z\ { 0} and d E 2Z + 1 such that ( c, d) = l. We understand 

(see [8, Chapter 4 §1]). 
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For g E SL2(lR) and z E f), put 

(1) {
v'd 

J(g, z) = -v'd 
(cz + d) 112 

if c = O,d > 0 

if c = O,d < 0 

if C =/- 0, 

Here, we choose arg(cz + d) such that -n <arg(cz + d) -:; n. Then we have 

(2) 77('-y(z)) = vrib)J('y, z)ry(z), 1 (z) = :: : ! E fJ 

for any 1 = (: ! ) E SL2 (Z), where the multiplier system v 'f/ ('y) is given 

by 

{ 

( ~) * e c a + d) c - bii c2 - 1) - 3c) 
(3) vrib) = G) * e ( ( a + d) c - bd( c2 ; 41) + 3d - 3 - 3cd) 

c: odd 

c: even. 

It is natural to ask the following problem. When does a Hilbert modular 
theta series of weight 1 /2 with respect to SL2 ( o) exist? Here, o is the ring 
of integers of a totally real number field F. 

In 1983, Feng [1] studied this problem. She gave a sufficient condition for 
the existence of a Hilbert modular theta series of weight 1/2 with respect to 
SL2(0) and constructed certain Hilbert modular theta series. These series 
are defined by a sum on o. In 1984, Naganuma [10] obtained a Hilbert 
modular form of level 1 for a real quadratic Q( /15), D = 1 mod 8 with 
class number one, using modular imbeddings, from the theta constant with 
the characteristic (1/2, 1/2, 1/2, 1/2) of degree 2. 

In this paper, we solve the problem above completely. We consider theta 
functions defined by a sum on a fractional ideal a of F. 

2. MULTIPLIER SYSTEMS FOR SL2(0) 

From now on, let F be a totally real number field such that [F : Q] = n. 
Let v be a place of F and A the adele ring of F. We denote the completion 
of F at v by Fv. If v is an infinite place, we write v I oo. Otherwise, we 
write v < oo. For v < oo, let Ov, Pv and qv be the ring of integers of Fv, the 
maximal ideal of Ov and the order of the residue field Ov/Pv, respectively. 

For any v, let lv : F --+ Fv be the embedding. The entrywise embeddings 
of SL2(F) into SL2(Fv) are also denoted by lv- Let {001, · · ·, oon} be the 
set of infinite places of F. Put li = loo; for 1 S i S n. We embed SL2(F) 
into SL2(lR)n by r c-+ (l1(r), · · ·, ln(r)). 

The metaplectic group of SL2(Fv) is denoted by SL2(Fv), which is a non­
trivial double covering group of SL2(Fv)- Set-theoretically, it is 

{[g,T] I g E SL2(Fv),T E {±1}}. 

I~tiplication law is given by [g, Tl[h, a-] = [gh, Ta-c(g, h)] for [g, T], [h, a-] E 

SL2(Fv), where c(g, h) is the Kubota 2-cocycle on SL2(Fv)- Put [g] = [g, l]. 
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Let if be the inverse i~of a subgroup H of SL2(Fv) in SL2(Fv)- For 

v < oo, a ~ion Ev : SL2(ov)--+ e is genuine if Ev([l2, -1],) = -Ev(,) for 

any I E SL2(ov)-
We denote the embedding of SL2(F) into SL2(A) by i. The finite part of 

SL2 (A) is denoted by SL2 ( A f). Let if : SL2 ( F) --+ SL2 ( A f) be the projection 
of the finite part and i00 : SL2(F)--+ SL2(F00 ) = SL2(~r that of the infinite 
part. Then we have i(g) = i1(g)i00 (g) for any g E SL2(F). The embedding 
of F into A f is also denoted by if;.___._____ 

The adelic metaplectic group SL2(~a doub~ering of SL2(A) and 

there exists a canonical embedding SL2(Fv) --+ SL2(A~each v. Let iI 
be the inverse image of a subgroup H of SL2(A) ~L2(A). It is known 

that SL2(F) can be canonically embedded into SL2(A). The embedding 
Z is given by g ~lv(g)])v for each g E S~)- We define the maps 

ZJ: SL2(F)--+ SL2(A1) and Z00 : SL2(F)--+ SL2(F00 ) by 

lj(g) = ([iv(g)])v<oo X ([l2])vloo, loo(g) = ([l2])v<oo X ([ii(g)])vloo· 

Then we have Z(g) = Z1(g)Z00 (g) for any g E SL2(F). 

For 1 = [g, T] E S~), g = (: ! ) and z E [J, ] : S~) x [J --+ e is an 

automorphy factor given by 

{
TVd, ifc=0,d>0, 

](,,z)= -TVd, ifc=0,d<0, 

T(cz + d) 112 if c # 0. 

(4) 

Here, we choose arg(cz + d) such that -n <arg(cz + d) ::; n. Note that 
]([g, T], z) is the unique automorphy factor such that ]([g, T], z)2 = j(g, z), 
where j(g, z) is the usual automorphy factor on SL2(~) x [J (see [6, §7]). 
Note that ]([g], z) = J(g, z), where J(g, z) is defined in (1). 

Definition 1. Let r C SL2(0) be a congruence subgroup. the map v = 
v(,) : r --+ ex is said to be a multiplier system of half-integral weight if 
v(,)IJf=1 ]([ii(,)], zi) is an automorphy factor for r x [Jn, where ] is the 
automorphy factor in (4). 

Lemma 1. A function v : r --+ ex is a multiplier system of half-integral 
weight if and only if we have 

v(,1)v(,2) = Coo(,1, 12)v(,i,2) 11, 12 Er, 
where c00 (,1, 12) = ITf=1 CJR(li(,1), li(,2)). Here, CJR(·, ·) is the Kubota 2-
cocycle at infinite places. 

Let Kr c SL2(A1) be the closure of i1(r) in SL2(A1 ). Then Kr is a 
compact open su~p and we have i""j1(Kr) = r. Let Kr be the inverse 

image of Kr in SL2(A1 ). 

Lemma 2. Let>.: Kr--+ ex be a genuine character. Put v,>,(,) = >.(Z1(,)) 
for I Er. Then V,>, is a multiplier system of half-integral weight for r. 
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For v < oo, we define a map Sv : SL2 ( Ov) ---+ { ±1} by 

{
1 C E oi 

sv(g) = (c,d)v c E Pv\{0} for g = (~ :) E SL2(ov)-

(-l,d)v C = 0 

H~(-, ·)v is the quadratic Hilbert symbol for Fv. A map Sv : SL2(ov) ---+ 

SL2(ov) is given by sv(g) = [g, sv(g)] for g E SL2(ov)- This map is the 
splitting on K1(4)v, where 

K 1 ( 4 )v = {'y = ( ~ : ) E SL2 ( Ov) I c = 0, d = 1 mod 4}. 

If Kr C K1(4)J = flv<oo K1(4)v, we may define a splitting s: Kr---+ SL2(A) 
by 

s('y) = (sv(lv('y)))v<oo X ([b])vloo· 

We consider it as a h~orphism. Then we have Kr = s(Kr) · {[12, ±1]}. 

Note that s(Kr) c SL2(AJ) is a compact open subgroup. 
For any congruence subgroup r, a map Vo : r---+ ex is defined by vob) = 

flv<oo sv(iv('y)), which is not always a multiplier system of half-integral 
weight for r. 

Corollary 1. Ifr c f1(4) = {(~ :)ESL2(0)1c=0,d=lmod4}, 

then vo is a multiplier system of half-integral weight for r. 

Proof. Since r C f1(4), we have Kr C K1(4)J- We define a genuine char­
acter >. : Kr ---+ ex by 

>.(s(k) [12, T]) = T, k E Kr, T E { ±1 }. 

Put V>,.('y) = >.(ij('y)) for I E r. Since s(,) = ([iv(,), sv(iv(,))])v<oo, we 
have 

v>,.(,) = >.(s(,)[12, vo(,)]) = vo(,). 

Therefore Lemma 2 proves the corollary. □ 
Now suppose that r c SL2(o) is a congruence subgroup and that v: r---+ 

ex is a multiplier system of half-integral weight. 

Lemma 3. There exists a genuine character>.: Kr---+ ex such that V>.. = v 
if and only if there exists a congruence subgroup f' c r n f1 ( 4) such that 
v(,) = v0 (,) for any, Er'. 

Proposition 1. If F -=fa Q, then any multiplier system v of half-integral 
weight of any congruence subgroup r C SL2(0) is obtained from a genuine 
character of k r-

Proof. By Lemma 3, it suffices to show that there exists a congruence sub­
group r' c r n r 1 (4) such that v(,) = v0 (,) for any , E r'. We as­
sume that a congruence subgroup r satisfies r C f1(4) by replacing r with 
r n f1(4). Since vo(,)/v(,) is a character of r, we have vo(,)/v(,) = 1 
for any, E D(r). By the congruence subgroup property, D(r) contains a 
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congruence subgroup r' (see [14, Corollary 3 of Theorem 2] or [7, §3]). Thus 
we have v('y) = vob) for any 'YE r', which proves this proposition. □ 

By Lemma 3 and Proposition 1, the multiplier system of half-integral 
weight of a congruence subgroup r associated to an automorphy factor in 
the sense of Shimura [15] is obtained from a genuine character of Kr. 

Put 

Kt = IT SL2(ov)-
v<oo 

T~Kt is a compact open group of SL2(At ). The inverse image of Kt in 

SL2(At) is denoted by Kt. We have SL2(0) = SL2(F) n Kt · SL2(F00). 

Proposition 2. Let v be a multiplier system of half-integral weight for 
SL2 ( o). Then there exists a genuine character >. : K t --+ C x such that 
VA =V. 

Proof. If F-/=- Q, the assertion is proved by Proposition 1. If F = Q, then 
we have 

odd 

c: even, 

Put 

and let v 77 be the multiplier system of 7J(z) in (3). Then we have v77 ('y) = 
vob) for 'Y E I'(12). Since v77 ('y)/v('y) = 1 for any 'Y E D(SL2(Z)), we 
have v('y) = vob) for any 'Y E D(SL2(Z)) n r(12), which is a congruence 
subgroup. By Lemma 3, there exists a genuine character>.: Kt --+ ex such 
that vA = v. D 

Corollary 2. There exists a multiplier system v of half-integral weight for 
SL2(o) if and~ if 2 splits completely in F/Q. There exists a genuine 

character of SL2(ov) for any v < oo, provided that this condition holds. 

Proposition 3. Suppose that 2 splits completely in F /Q. Let vA be a 
multiplier system of half-integral weight of SL2 ( o), where >. = Ilv<oo Av is a 
genuine character of Kt. Put S2 = {v < oo IF= Q2} and T3 = {v < oo I 
qv = 3}. Then there exist continuous functions Kv(ivb)) for v E S2 U T3 
such that 

vA('y) = vo('y) IT Kv(iv('y)) 
vES2UT3 
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We omit the proof of this proposition and give one example instead. For 
F = Q, we have vry(g) = vo(g)K,2(g)K,3(g), where 

vo(g) = { (~)* c: odd 

(~) * c : even, 

K, _ {e(j[(a + d)c - 3c]) c: odd 
2(g) - e(j[(b - c)d + 3(d - 1)]) c: even, 

K,3(g) = e(:/ [(a+ d)c - bd(c2 - 1)]). 

3. THE CONDITION OF THE EXISTENCE OF A THETA FUNCTION 

Suppose that 2 splits ~letely in F /Q. In this case, there exists a 

genuine character Av : SL2(ov) -+ ex for any v < oo. If v < oo, put 
Kv = SL2(ov)- If v I oo, put Kv = S0(2). Then Kv is a maximal compact 
subgroup of SL2(Fv) for any v. Let 'ljJ : A/ F-+ ex be an additive character 
such that its v-component 1/Jv(x) equals e(x) for any v I oo. Put 'l/J(3(x) = 
'l/J(/3x) and 'l/J(3,v(x) = 'l/Jv(f3x) for /3 E Fx. 

For any v, let S~ be the Schwartz space of Fv. We denote the Weil 

representation of SL2(Fv) by W,j;13 ,v. For a genuine character Av : Kv-+ ex, 
we define the set (w,p13 ,v, S(Fv)f'•v by 

A -(w,p13 ,v, S(Fv)) v = {f E S(Fv) I W,j;13 ,v(,)f = Av(,)f for any 'YE Kv}-

We have an irreducible decomposition 

+ EB -W,f;13,v = w,f;13,v w,f;13,v' 

where wi (resp. w,-;: ) is an irreducible representation of the set of even 
'!'[3,V '!'[3,V 

(resp. odd) fun~ in S(IR.) (see [9, Lemma 2.4.4]). 

The group SL2(IR.) has a m~ compact subgroup SO(2), ~h is 

the inverse image of SO(2) in SL2(IR.). It is known that if Av : SO(2) -+ 
ex is a genuine character, dimc(w,f;13 ,v, S(IR.)/'v is at most 1. Let \x,,l/2 
be a genuine character of lowest weight 1/2 with respect to (wS13 ,v, S(IR.)) 

and \x,,3;2 of lowest weight 3/2 with respect to (w:j;13 ,v, S(IR.)). For /3 > 0, 

(wS13 ,v, S(IR.) )A00 , 1/ 2 = (C e( ilv(f3)x2 ) and (w:j;13 ,v, S(IR.) )A=,3 / 2 = (C xe( ilv (f3)x2 ) 

are spaces of lowest weight vectors. If /3 < 0, there exist no lowest weight 
vectors with respect to (wS13 ,v, S(IR.)) or (w:j;13 ,v, S(IR.)). 

Note that Av(sv(SL2(ov))) = 1 for any v < oo except for finitely many 
places. Then a genuine character AJ : Kt -+ ex is given by AJ(g) = 
Ilv<oo Av(9v) for g = (gv)v E KJ· Put 'W = (w1, · · · , Wn) E {1/2, 3/2}n. We 
define an automorphy factor jAJ,w(,, z) for 'Y E SL2( o) and z = (z1, · · · , zn) E 
!Jn by 

n 

v<oo i=l 
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In particular, we have f't,w(-b, z) = Ilv<oo >..v([-12]) x (-1)~ 2wi_ 
Let Mw(SL2(0), AJ) be the space of Hilbert modular forms on [Jn with 

respect to f't,w(,, z). A holomorphic function h(z) of [Jn belongs to the 
space Mw (SL2 ( o), >.. f) if and only if 

h(,(z)) = /'t,w(,, z)h(z), 

where 1 (z) = (L1(,)(z1), · · · , ln(,)(zn)) for I E SL2(0) and z E [Jn. (When 
F = Q, the usual cusp condition is also required.) If f't,w(-12, z) does not 
equal 1, Mw(SL2(0), >..f) is {O}. 

Put K = Kt x Ilvloo S0(2). There exists a genuine character>..: k--+ (CX 

such that its v-component equals Av, where >..00i is \,0 ,1; 2 or \,o,3/2 for 
1 ::S: i ::S: n. Then we have an automorphy factor f't,w(,, z) corresponding 
to >.. such that >..00 = >..00 w . 

~ ,i 

For each g E SL2(A), there exist I E SL2(F), 900 E SL2(JR)n and 9f E Kt 
such that g = r9oo9f by the strong approximation theorem for SL2(A). Put 
i = (A,··· , A) E [Jn. For h E Mw(SL2(0), AJ ), put 

n 

'Ph(g) = h(goo(i))>..J(9J)-l IJJ(gooi, J=I)-2wi_ 
i=l 

Then 'Phis an autom~ic form on SL2(F)\SL2(A). 

Let ~(F)\SL2(A), AJ) be the space of automorphic forms cp on 

SL2(F)\SL2(A) satisfying the following conditions (1), (2), and (3). 

(1) cp(gk00 ) = cp(g) I]~~,i, ,A)-2wi for any g ES~) and k00 = 

(koo,1, ... , k00 ,n) E S0(2)n. 
(2) cp ~lowest weight vector with respect to the right translation of 

SL2 (JR)n. ________ 

(3) cp(gk) = AJ(k)- 1cp(g) for any g E SL2(A) and k E Kt. 
Then <I> : h c-+ 'Ph gives rise to an isomorphism 

--------For cp E Aw(SL2(F)\SL2(A), >..t), put h = <I>-1(cp). Then we have 
n 

h(z) = cp(goo) IJ](gooi, J=I)2wi, 
i=l 

When Qv is odd, there exists a genuine character Ev : SL2(ov) --+ ex 
d~d by Ev([g, T]) = Tsv(g). If Qv 2 5, it is a unique genuine character of 

SL2(ov)-
Put S2 = { V < oo I Fv = Q2}, T3 = { V < oo I Qv = 3} and S3 = { V E T3 I 

Av-/=- Ev}- Since 2 splits completely in F/Q, we have IB2I = n. It is known 
that for v < oo, (w'l/J13 ,v, S(Fv)f'v is not O if and only if we have 

d nl, _ { 0 mod 2 if Av = Ev 
or v't'f3 v = 

' 1 mod 2 otherwise. 
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Then, if (w1Pf3,v, S(Fv)f'v -=/=- 0 for any v < oo, there exists a fractional 
ideal a such that 

(5) (8/J)i'l IJ Pv = a2 , 

vES3 

where i) is the different of F /Q. The set of totally positive elements of F is 
denoted by F:. Replacing (3 with /3"(2 and a with (a'Y) 2 in (5) for 'YE F:, 
we may assume ordva = 0 for v E S2 U S3. Then we have ordv7fif3,v = -1 
(resp. -3) for v E S3 (resp. S2)-

Conversely, suppose that there exists a fractional ideal a satisfying (5) for 
a subset S3 c T3. For v < oo, put 

>-v = {µEv/3 if ordv7f/(3,v = 0 mod 2 
if ordv7f/(3,v = 1 mod 2, 

where µ13 is a certain genuine character such that (w1Pf3,v, S(Fv))µf3 -=/=- 0. 

Then we have (w1Pf3,v, S(Fv))A•v -=/=- 0 for any v < oo. Let >. : k -+ ex be a 
genuine character such that its v-component equals >-v, where >.00 ; = >-oo,w; 
for Wi E {1/2, 3/2}. Put Soo = { OOi I Wi = 3/2}. 

From now on, suppose that /3 E F:. Let S(A) be the Schwartz space 
of A and (w1Pf3, S(A)f' the set of functions cp = Ilv c/Jv E S(A) such that 
c/Jv E (w1Pf3,v, S(Fv)/•v for any v. For cp E S(A), we define the theta function 
0rp by 

(6) 0rp(g) = LW1Pf3(g)cp(~) g = (gv) E SL2(A), 
f;.EF 

where W1jJf3(g)c/J(O = I1vw1Pf3,v(9v)c/Jv(lv(~)) is ~ially a finite product. 

We have 0rp(gk) = >.(k)-10rp(g) for any g E SL2(A) and k E Kt. If cp E 
(w1Pf3' S(A))\ then 0rp is a Hilbert modular form of weight w = (w1, · · · , wn)-

It is known that 

where S ranges over all finite subsets of places of F (see [2, §3Jll_ We 

define a map 0 from w1Pf3 to the space of automorphic forms on SL2(A) by 
0(cp)(g) = 0rp(g). Then it is known that 

(7) 

(see [2, Proposition 3.1]). 

Im(0) c:,, E9 w1Pf3,s, 
ISl:even 

Let G be the set of triplets (/3, S3, a) of /3 E F:, a subset S3 c T3 and a 
fractional ideal a of F satisfying (5) and the condition (A), 

(A) 

We define an equivalence relation ~ on G by 

(/3, S3, a) rv (/3', s~, a')~ S3 = s~, /31 = "(2/3, a'= "(a for some"( E pX. 
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Theorem 1. Suppose that 2 splits completely in F/Q. Let (3 E F};, ,\ : 
k --+ ex and w1 , ... , Wn E {1/2, 3/2} be as above. Then there exists 
<P = ITv<Pv E (w,pfl,8(A)f' such that 8q;-/- 0 if and only if there exists a 
fractional ideal a of F such that ((3, 8 3, a) E G. 

Proof. Let Av : SL2(ov) --+ ex be the v-component of ,\ for any v < 
oo. We already proved that there exists ITv<oo <Pv -/- 0 such that <Pv E 

(w'Pfl,v, 8(Fv)f'•v for any v < oo if and only if there exists a fractional 
ideal a of F satisfying (5). Suppose that the equivalent conditions hold. 
Since we have (wi v,8(JR)),\=, 1l 2 = Ce(ilv(f3)x2 ) and (w.7. v,8(JR)),\=,3l 2 = 

'l'f], 'l'f], 

(C xe ( ilv ((3)x2 ) for any v I oo, there exists a nonzero cp = ITv <Pv E ( W,j;fl, 8 (A)),\. 

It is clear that if there exists a nonzero <P = ITv <Pv E (w'Pfl' 8(A))\ ITv<oo <Pv -/-
0 satisfies <Pv E (w'Pfl,v, 8(Fv)),\v for any v < oo. 

Suppose there exists a nonzero cp = ITv <Pv E (w'Pfl' 8(A)),\. Note that 
l82I + l83I + 1800 1 is the number of v such that <Pv is an odd function. Then 
181 in (7) is l82I + l83I + l8ool• By (7), it is clear that 8q;-/- 0 if and only if 
the condition (A) holds. □ 

Let H be a group of fractional ideals that consists of all elements of the 
form 

IJ p~v, Lev E 2Z. 
vET3 v 

Let c1+ be the narrow ideal class group of F. Put c1+2 = { c2 I C E c1+}. 
We denote the image of the group H (resp. b E Cl+) in c1+ ;ci+2 by fI 
(resp. [b]). 

Theorem 2. Suppose that 2 splits completely in F/Q. Let w1, ... , Wn E 
{1/2, 3/2} be as above. 

(1) Suppose that l82I + 1800 1 is even. Then there exists ((3, 83, a) E G if 
and only if [il] E fI. 

(2) Suppose that l82I + 1800 1 is odd. Then there exists ((3, 83, a) E G if 
and only if T3 -/- f/J and [i>Pval E fI. Here, vo is any fixed element of 
T3. 

Proof. We prove the theorem in case (1). The proof for case (2) is similar. 
If [il] E fI, we have (8,B)il I1vET3 p~v = a'2 such that I:v ev is even for 

a fractional ideal a' and ,8 E F};. Put 83 = { v E T3 I ev : odd}. Since 
l82I + l83I + l8ool is even, we have (,8, 83, a) E G, where 

a= IT p;;-ev/2a'. 
vET3\S3 

Conversely, if there exists (,8, 83, a) E G, it satisfies (5) and 1831 is even. 
Then we have [il] = I1vES3 [Pv] E fI. □ 

Let Wi be 1/2 or 3/2 for 1 :S i :S n. Suppose that there exists (,8, 83, a) E 
G. Replacing (,8, 8 3, a) with an equivalent element of G, we may assume 
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Put 

f = IT fv X 

if X E 1 + 2Pv 

if X E -1 + 2Pv 

otherwise. 

II h -1 
C av , 

vES2US3 v<oo,viS2US3 
where av = aov. Here, chA is the characteristic function of a set A. Put 
<P = f X I]f=l foo,i, where foo,i(x) = xwi-(1!2)e(ili(,B)x2) for x E R By 
Theorem 1, there exists 8 </> =I- 0 of weight w = ( W1' . . . ' Wn). 

Putz= (z1,··· ,zn),i = (A,··· ,A) E ~n. We define Xi,Yi E lR 
by z; = x; + HYi for 1 s:; i s:; n. Then we have z = 900 (i), where 

900 = (9oo1 , · · · , 9ooJ E SL2(1Rt, 900; = (Yi 12 
yt:;i). Since >-v([l2]) = 1 

0 Y; 
for v < oo, we have 

n 

84>(900) = L f(lj(~)) IT W1p13,ooi ([9oo;])Joo,i(li(O). 
eEa-1 i=l 

Theorem 3. Let cp and 84> be as above. We define a theta function 0</> : 
~n--+ (C by 

n 

Then 0</> is a nonzero Hilbert modular form of weight w for SL2(o) with 
respect to a multiplier system. 

Every theta function of weight w for SL2 ( o) with a multiplier system may 
be obtained in this way. 

Proof. Since 

W1p13,00;([900,i]) f oo,i ( li(~)) = Y:;/2 li(~)w;-(l/2) e(Zili(,/Je)), 

we have 04>(z) = 84>(900) x I]f=1 i;w;/2 . Then 04> is nonzero. Note that 

J([9oo;l, -J=I)2w; = y;w;/2_ 

Since cp E (w1p13 , S(A))\ we have 84> E Aw(SL2(F)\S~), AJ ). Then we 
have 0</> = <1>- 1 (84>) E Mw(SL2(0), AJ ). The multiplier system of 0</> is V>, 

given by 

vES2UT3 

where ;;,v for v E S2 U T3 is an continuous function in Proposition 3. 
By Proposition 2, if 0 is a theta function of weight w for SL2(0) with a 

multiplier system v, we have a genuine character AJ of kf such that v = V>.r 

Let A = AJ x I]f=1 Aoo,w; be a genuine character of k. Then there exists 
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nonzero <p E (w,µfJ, S(A)f' such that 0 = 0</:> up to constant, which completes 
the proof. □ 

Proposition 4. Let Cl be the usual ideal class group of F. Let Sq: Cl--+ 
c1+ be the homomorphism given by [o] r-+ [o2] for a fractional ideal o of F. 
The number of equivalence classes of G is equal to 

[E+: E 2] L ISq-1 ([() IJ Pv])I, 
S3CT3 vES3 

(A) 

where S3 ranges over all subset of T3 satisfying (A). Here, E+ is the group 
of totally positive units of F and E 2 is the subgroup of squares of units of 
F. 

Proof. We follow the argument of Hammond [5] Theorem 2.9. For given 
S3 satisfying (A), the number of ideal classes [o] such that o2 is narrowly 
equivalent to() I1vEs3 Pv is equal to ISq-1 ([() I1vES3 PvDI- Then for a given 
fractional ideal o such that o2 is narrowly equivalent to () I1vES3 Pv, the 
number of equivalence classes of triplets of the form (/3, S3, o) such that 
/3 E F; satisfying (5) is equal to [E+ : E 2]. D 

4. THE CASE F IS A REAL QUADRATIC FIELD 

Now suppose that F = Q( ffi), where D > l is a square-free integer and 
D = l mod 8. Then 2 splits in F/Q and we have()= (ffi). When there 
exists (/3, S3, o) E G, one of the followings holds. 

(Cl) (8/3)(') = o2 and S3 = 0. 
(C2) (8/3)(')p = o2 such that N Fj<Q(P) = 3 and S3 = {p }. 
(C3) (8/3)i)pp = o2 such that NF;<Q(P) = NFj<Q(P) = 3 and S3 = {p,p}. 

If IS00 I is even, (Cl) or (C3) holds. If 1S00 1 is odd, (C2) holds. 

Proposition 5. Suppose that F = Q(-../i5), where D > l is a square-free 
integer such that D = l mod 8. 

(1) There exist /3 E F; and a fractional ideal o satisfying (Cl) if and 
only if p = l mod 4 for any prime p I D. 

(2) There exist /3 E F; and a fractional ideal o satisfying (C2) if and 
only if p = 0 or 1 mod 3 for any prime p I D. 

(3) There exists /3 E F; and a fractional ideal o satisfying (C3) if and 
only if D = l mod 24 and p = l mod 4 for any prime p I D. 

Proof. For a prime ideal p such that N Fj<Q(P) = 3, the equation (8/3)()JJ = o2 

implies that the narrow ideal class of ()jJ is a square. Note that a positive 
integer x is of the form 3u2 + v2 for some u, v E N if and only if any prime p 
which divides x satisfies p = 0 or 1 mod 3. Here, a necessary and sufficient 
condition that the narrow ideal class of ()JJ is a square for a prime ideal p 
which has norm 3 is that Dis of the form 3u2 + v 2 for some u, v EN, which 
proves the second assertion. 

The equation (8/3)() = o2 implies that the narrow ideal class of () is a 
square. Note that a positive integer x is of the form u2 + v2 for some 
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u, v E N if and only if any prime p which divides x satisfies p = 1 mod 4. 
Then [5] Proposition 3.1 proves the first assertion. 

There exist two distinct prime ideal p andµ such that such that N FjQ(P) = 
N FjQ(P) = 3 if and only if 3 splits in F /Q. This condition holds if and only 
if D = 1 mod 24. In the case D = 1 mod 24, we have pp= (3). Then the 
equation (8,B)llpp = a2 implies that the narrow ideal class of() is a square. 
Thus, similarly to the first assertion, [5] Proposition 3.1 proves the third 
assertion. □ 

Example: put D = 793 = 13 · 61. Then there exist ,B E Ft and a 
fractional ideal a satisfying any condition of (Cl), (C2) or (C3). Moreover, 
c1+ has order 8 and the fundamental unit c of F has norm 1. For example, 
put p = (5 + ./I5)/2. Since NF;Q(P) = -3 · 82, we have (p) = q~q3, where 

q3 = (3, 1-./I5) and q2 = (2, (1+./I5)/2) are prime ideals. Put ,B = p./I5/8 
and a = llq~q3. Then we have (8,B)llq3 = a2 . 
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