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ON GENUINE CHARACTERS OF THE METAPLECTIC
GROUP OF SLy(0) AND THETA FUNCTIONS
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GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY

ABSTRACT. This is a write up based on the author’s talk given at the
RIMS conference “Automorphic forms, Automorphic representations,
Galois representations, and its related topics”.

Let F' be a totally real number field and o the ring of integers of
F. We study theta functions which are Hilbert modular forms of half-
integral weight for the Hilbert modular group SL2(0). We obtain an
equivalent condition that there exists a multiplier system of half-integral
weight for SLz(0). We determine the condition of F' that there exists a
theta function which is a Hilbert modular form of half-integral weight
for SLz(0). The theta function is defined by a sum on a fractional ideal
aof F.

1. INTRODUCTION

Put e(z) = ¢*™* for z € C. Tt is known that the modular forms of SLy(Z)
of weight 1/2 and 3/2 are the Dedekind eta function 7(z) and its cubic power
n3(2) up to constant, respectively. Here, n(2) is given by

n(z) = e(z/24) [[ (1 —e(mz)) (=€),
m>1
where b is the upper half plane. It is known that

1) =5 3 xaalmelm=/20), () =5 37 mxalm)e(me/9).

meZ meZ

Here, x12 and x4 are the primitive character mod 12 and mod 4, respectively.
Note that 7(z) and n3(2) are theta functions defined by a sum on Z.
The function 7(z) has the transformation formula with respect to modular

transformations (see [11, 12, 16]). Let (—) be the Jacobi symbol. We define
(i)* and (—) by

6 =(5): @Sy wa-{ b

for ¢ € Z\{0} and d € 2Z + 1 such that (¢,d) = 1. We understand

(2= ().

(see [8, Chapter 4 §1]).



For g € SLy(R) and z € b, put

Vid ifc=0,d>0 )

(1) J(g,2) =< —Vd ifc=0,d<0 gz(z d).
(cz+d)V/? ifc#0,

Here, we choose arg(cz + d) such that —7 <arg(cz + d) < 7. Then we have

az+b
&) 1) = ()T ), () = e
for any v = ( Z) € SLy(Z), where the multiplier system v, (v) is given
by
( ) <a+dc—bd(c—1)—30> c: odd
24
(3) vy(v) =

c (a+d)c—bd(c? —1)+3d — 3 — 3cd )
(5).¢( = ) oo

It is natural to ask the following problem. When does a Hilbert modular
theta series of weight 1/2 with respect to SLa(0) exist? Here, o is the ring
of integers of a totally real number field F'.

In 1983, Feng [1] studied this problem. She gave a sufficient condition for
the existence of a Hilbert modular theta series of weight 1/2 with respect to
SLa(0) and constructed certain Hilbert modular theta series. These series
are defined by a sum on o. In 1984, Naganuma [10] obtained a Hilbert
modular form of level 1 for a real quadratic Q(v/D), D = 1 mod 8 with
class number one, using modular imbeddings, from the theta constant with
the characteristic (1/2, 1/2, 1/2, 1/2) of degree 2.

In this paper, we solve the problem above completely. We consider theta
functions defined by a sum on a fractional ideal a of F'.

2. MULTIPLIER SYSTEMS FOR SLz(0)

From now on, let F' be a totally real number field such that [F : Q] = n.
Let v be a place of F and A the adele ring of F'. We denote the completion
of F at v by F,. If v is an infinite place, we write v | co. Otherwise, we
write v < co. For v < oo, let 04, p, and g, be the ring of integers of F),, the
maximal ideal of 0, and the order of the residue field o, /p,, respectively.

For any v, let ¢, : F — F,, be the embedding. The entrywise embeddings
of SLy(F) into SLa(F),) are also denoted by ,,. Let {001, -+ ,00,} be the
set of infinite places of F. Put t; = 1o, for 1 < i < n. We embed SLy(F)
into SLy(R)™ by r — (t1.(r), -+, tn(r)).

The metaplectic group of SLy(F,) is denoted by SLo(F,), which is a non-
trivial double covering group of SLo(F,). Set-theoretically, it is

{lg,7] | 9 € SLa(Fy), 7 € {£1}}.
Its multiplication law is given by [g, T]|[h, o] = [gh, Toc(g, h)] for [g, 7], [, 0] €

SLo(F,), where ¢(g, h) is the Kubota 2-cocycle on SLy(F,). Put [g] = [g, 1].
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Let H be the inverse image of a subgroup H of SLo(Fy) in SLy(Fy,). For
v < 00, a function €, : SLo(0,) — C is genuine if €,([1a, —1]7) = —€,(7) for

any v € SLa(o0y).

We denote the embedding of SLy(F) into SLa(A) by ¢. The finite part of
SLy(A) is denoted by SLa(Ay). Let ¢y : SLao(F) — SLa(Af) be the projection
of the finite part and too : SLa(F') — SLa(Fuo) = SL2(R)™ that of the infinite
part. Then we have 1(g9) = t7(9)tec(g) for any g € SLa(F'). The embedding
of ' into Ay is also denoted by ;.

The adelic metaplectic group SLg(A) is a double covering of SLa(A) and
there exists a canonical embedding SLy(F,) — SLo(A) for each v. Let H

—~

be the inverse image of a subgroup H of SLg(A) in SLo(A). It is known

—_—

that SLo(F') can be canonically embedded into SLa(A). The embedding
7 is given by g ([tw(g)])w for each g € SLo(F). We define the maps

—_—— —_~—

Iy :SLy(F) — SLa(Ay) and iy : SLa(#) — SLa(#) by

Zf(g) = ([to(9)])v<oo X ([12})1;\007 i (9) = ([12])v<oo X ([Li(g)bmoo
Then we have i(g) = i1(9)iso(g) for any g € SLao(F).
For v = [g, 7] eSm),g: <CCL Z) andzeh,ﬁzsm)xh%((:isan

automorphy factor given by

d if c=0,d>0,
(4) 7(v,2) = —7Vd if c=0,d <0,

T(cz 4+ d)'/? if ¢ #0.
Here, we choose arg(cz + d) such that —7 <arg(cz + d) < 7. Note that
3([g, 7], ) is the unique automorphy factor such that j([g,7],2)? = j(g, 2),
where j(g, z) is the usual automorphy factor on SLa(R) X b (see [6, §7]).
Note that j([g]. 2) = J(g, z), where J(g, z) is defined in (1).

Definition 1. Let I' C SLy(0) be a congruence subgroup. the map v =
v(vy) : T' — C* is said to be a multiplier system of half-integral weight if
v() T, 7([ti(7)], z:) is an automorphy factor for I' x h™, where j is the
automorphy factor in (4).

Lemma 1. A function v : I' = C* is a multiplier system of half-integral
weight if and only if we have
v(n)v(r2) = cs(1:72)v(n72) M2 €T,

where coo(71,72) = [[im; er(ti(11), ti(12)). Here, cr(-,-) is the Kubota 2-
cocycle at infinite places.

Let Kp C SLa(Ay) be the closure of ¢f(I') in SLa(Ay). Then Ky is a
compact open subgroup and we have L;l(KF) =TI. Let Kr be the inverse

image of Kr in SLy(Aj).

Lemma 2. Let \ : K — C* be a genuine character. Put vy(y) = A(i;(7))
for v € I'. Then v} is a multiplier system of half-integral weight for I'.



For v < 0o, we define a map s, : SLa(0,) = {£1} by

1 ceo) )
su(g) = < (¢, d)y cep,\{0} forg= (i d) € SLy(0y).
(—1,d), ¢=0
Here, (-, ), is the quadratic Hilbert symbol for F,. A map s, : SLa(0,) —

Si;\(o/v) is given by s,(g9) = [g,sv(g9)] for g € Sla(0,). This map is the
splitting on K3 (4),, where

Ki(4), ={y= (CCL Z) € SLa(0,) | ¢ =0,d =1 mod 4}.

—_~—

IfKr C Ki(4)r =11 K1 (4),, we may define a splitting s : K — SLo(A)

by

v<oo

s(7) = (s(t0(7)))v<oo X ([12])v]oo-
We consider it as a homomorphism. Then we have K1 = s(KT) - {[12, £1]}.

Note that s(Kt) C SL2(Ay) is a compact open subgroup.

For any congruence subgroup I', a map v : I' — C* is defined by vo(v) =
[[,<o0 50(tu()), which is not always a multiplier system of half-integral
weight for T'.

Corollary 1. If I' c T'1(4) = {(CCL Z) € SLa(0) | c=0,d =1 mod 4},

then v is a multiplier system of half-integral weight for I'.

Proof. Since I' C I'1(4), we have Kt C K1(4)y. We define a genuine char-
acter A : Kp — C* by

As(k)[1a,7]) =7, k€ Kp,7e€ {£1}.

Eut va(y) = Alep(7)) for v € T Since s(y) = ([to(7), $0 (00 (7)) v<oo, We

va(y) = Als()[12, vo()]) = vo(7)-
Therefore Lemma 2 proves the corollary. 0

Now suppose that I' C SLy(0) is a congruence subgroup and that v : T’ —
C* is a multiplier system of half-integral weight.

Lemma 3. There exists a genuine character A : Kpr — C* such that vy = v
if and only if there exists a congruence subgroup I'' € I' N I'1(4) such that
v(7y) = vo(y) for any v € I'.

Proposition 1. If F' # Q, then any multiplier system v of half-integral
weight of any congruence subgroup I' C SLg(0) is obtained from a genuine
character of Kr.

Proof. By Lemma 3, it suffices to show that there exists a congruence sub-
group I € I' N I'1(4) such that v(y) = vo(y) for any v € I". We as-
sume that a congruence subgroup I satisfies I' C I'1(4) by replacing I" with
I'NT(4). Since vo(vy)/v(7y) is a character of T, we have vo(v)/v(vy) = 1
for any v € D(T'). By the congruence subgroup property, D(T") contains a
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congruence subgroup I (see [14, Corollary 3 of Theorem 2] or [7, §3]). Thus
we have v(v) = vo(v) for any v € I”, which proves this proposition. O

By Lemma 3 and Proposition 1, the multiplier system of half-integral
weight of a congruence subgroup I' associated to an automorphy factor in
the sense of Shimura [15] is obtained from a genuine character of K.

Put

Kf = H SLQ(UU).

<00

Then K is a compact open group of SLa(Ay). The inverse image of Ky in

—~

SLy(Ay) is denoted by Xf. We have SLa(0) = SLo(F) N Ky - SLy(Fix)-

Proposition 2. Let v be a multiplier system of half-integral weight for
SLy(0). Then there exists a genuine character A\ : Ky — C* such that
V) = V.

Proof. If F # Q, the assertion is proved by Proposition 1. If F' = Q, then
we have

volg) = <<§>> oo g=<z 2>€SL2(Z).
) e even,

Put

F(12)—{<‘C’ Z) €SLy(Z) |a=d=1,b=c=0mod 12}

and let v, be the multiplier system of 7(z) in (3). Then we have v, (v) =
vo(y) for v € I'(12). Since vy(y)/v(y) = 1 for any v € D(SL2(Z)), we
have v(v) = vo(v) for any v € D(SLy(Z)) NT(12), which is a congruence
subgroup. By Lemma 3, there exists a genuine character A : f(f — C* such
that vy = v. O

Corollary 2. There exists a multiplier system v of half-integral weight for
SLa(0) if and only if 2 splits completely in F//Q. There exists a genuine

character of SLy(0,) for any v < oo, provided that this condition holds.

Proposition 3. Suppose that 2 splits completely in F/Q. Let vy be a
multiplier system of half-integral weight of SLy(0), where A =[] __ Ay is a
genuine character of K;. Put Sy = {v < 0o | F = Qa} and T3 = {v < o0 |
@y = 3}. Then there exist continuous functions ky(ty(7y)) for v € Sy U Tj
such that

no=vil) I sl 3= (4 5) et

vESUT3



We omit the proof of this proposition and give one example instead. For
F = Q, we have v, (g9) = vo(g)r2(9)k3(g), where

vo(g) = <%l> oo = (‘CL b) € SLy(Z),

() et even ’

oy JeBllat de—3d) ¢: odd
2(9) {c(%[(b c)d+3(d—1)]) c: even,

ka(g) = e(FH(a + d)e —bd(c® = 1))).
3. THE CONDITION OF THE EXISTENCE OF A THETA FUNCTION

Suppose that 2 splits completely in F//Q. In this case, there exists a
genuine character A\, : SLg(0,) — C* for any v < oo. If v < o0, put

K, = SLa(0y). If v | o0, put K, = SO(2). Then K, is a maximal compact
subgroup of SLa(Fy) for any v. Let ¢ : A/F — C* be an additive character
such that its v-component ¢, (x) equals e(x) for any v | co. Put ¢g(z) =

Y(Bz) and gy (z) = ¢y (Bz) for § € F*.

For any v, let S ( ») be the Schwartz space of F,,. We denote the Weil
representation of SLQ( v) by wwﬂ ». For a genuine character \, : K, — C*,
we define the set (wy, v, S(F; »)™ by

(Wypg0r S(F)™ = {f € S(F) | wyyw(7)f = Ae(9)f for any v € Ky}

We have an irreducible decomposition

— 7t -
Wygv = “’wﬁ,v S wwﬁﬂ)’
where w;};ﬁ , (resp. Wy ,) is an irreducible representation of the set of even

(resp. odd) functions in S(R) (see [9, Lemma 2.4.4]).

The group SLo(R) has a maximal compact subgroup SO(2), which is
the inverse image of SO(2) in SLy(R). It is known that if A, : SO(2) —
C* is a genuine character, dimc(wwﬂ’v,S(R))A” is at most 1. Let Ay /9
be a genuine character of lowest weight 1/2 with respect to (wl’gﬂ »-S(R))
and Ay 3/2 of lowest weight 3/2 with respect to (w;ﬁvv, S(R)). For g > 0,
(0 SRIP172 = Ceitn(B)a?) and (s, SR)) 72 = Care(in($)a?)
are spaces of lowest Weight vectors. If f < 0, there exist no lowest weight
vectors with respect to (w Wi v S(R)) or (w;ﬁﬂv, S(R)).

Note that A,(sy(SL2(0y))) = 1 for any v < oo except for finitely many
places. Then a genuine character Ay : Ky — C* is given by Af(g) =
[1ocoo Mo(gv) for g = (gu)o € K. Put w = (w1, ,wy,) € {1/2,3/2}". We
define an automorphy factor j*/*% (v, ) for v € SLa(0) and 2z = (21, -+ , 2,) €
b™ by

Pz = T Aol H (e ()], 20)*

V<00
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In particular, we have jA (=15, 2) = [T, Ao([—12]) X (—1)22wi,
Let M,,(SLy(0),As) be the space of Hilbert modular forms on h™ with
respect to j27%(,2). A holomorphic function h(z) of h™ belongs to the

space M,,(SLa(0), Ay) if and only if

h(y(2)) = 3 (7, 2)h(z),
where v(z) = (t1(7)(21), -+, tn(Y)(2n)) for v € SLa(0) and z € h™. (When
F = Q, the usual cusp condition is also required.) If j4/"(—1,, z) does not
equal 1, M,,(SLa2(0), Ay) is {0}.

Put K = Ky x[], o SO(2). There exists a genuine character \ : K — C~*
such that its v-component equals Ay, where Ao, is Ay 12 OF Ay 3/2 for
1 < i < n. Then we have an automorphy factor j*/% (v, z) corresponding
to A such that Ao, = Aoo,uw; -

For each g € SLy(A), there exist v € SLo(F), goo € SLo(R)” and gf € K/
such that g = vg.g by the strong approximation theorem for SLy(A). Put
i=(V/-1,---,v/~-1) € h™ For h € M,(SLa(0), \s), put

n

n(9) = h(geo (D) A (97) ™ [ [ 5900, vV=1) 720

i=1

—_—~—

Then ¢y, is an automorphic form on SLo(F)\SLy(A).

—_—

Let Ay (SL2(F)\SL2(A),Ay) be the space of automorphic forms ¢ on

P

SLa(F)\SLa(A) satisfying the following conditions (1), (2), and (3).

—_~—

(1) @lgkoo) = 2(9) [Tz J (koo i, v=1) 72 for any g € SLy(A) and koo =
(koon RN k/'oo,n) S SO(2)"
(2) ¢ is a lowest weight vector with respect to the right translation of
SLa(R)™.
(3) ¢(gk) = Ap(k) ‘() for any g € SLa(A) and k € K.
Then ® : h — @}, gives rise to an isomorphism

My (SLa(0), Ay) =5 Ay (SLa(F)\SLa(A), Ay).

P

For ¢ € Ay(SL2(F)\SL2(A), Af), put h = @~!(). Then we have

—_—

(2) = e(900) [ [ 5 (9000 V=1)*",  goo € SLa(R)™, goo (i) = 2.
i=1

When ¢, is odd, there exists a genuine character €, : SLa(0,) — C*
defined by €,([g, 7]) = Tsy(g). If ¢, > 5, it is a unique genuine character of
SLa(0y).

Put S ={v<oo| F,=Q2}, T35 ={v <0 |q,=3}and S3 ={v e T} |
Ay # €,}. Since 2 splits completely in F/Q, we have |S2| = n. It is known
that for v < 00, (Wyy .0, S(F,))* is not 0 if and only if we have

0Omod 2 if \y = ¢,
1 mod 2 otherwise.

ordyg ., = {



Then, if (wy,v, S(Fy))* # 0 for any v < oo, there exists a fractional
ideal a such that

(5) 88 ] po =,
vES3

where 0 is the different of F//Q. The set of totally positive elements of F' is
denoted by F. Replacing 8 with 842 and a with (ay)? in (5) for v € F,
we may assume ord,a = 0 for v € Sy U S3. Then we have ord,yg, = —1
(resp. —3) for v € S5 (resp. S2).

Conversely, suppose that there exists a fractional ideal a satisfying (5) for
a subset S3 C T3. For v < oo, put

N € if ordy15, =0 mod 2
Y pg if ordyg, =1 mod 2,

where ji5 is a certain genuine character such that (wy, .., S(Fy))H # 0.

Then we have (wwg_,v,S(Fv))’\“ # 0 for any v < oo. Let A\: K — C* be a
genuine character such that its v-component equals A,, where Ao, = Ao w;
for w; € {1/2,3/2}. Put Se = {o0; | w; = 3/2}.

From now on, suppose that g € F_if Let S(A) be the Schwartz space
of A and (w,/)B,S(A))’\ the set of functions ¢ = [[, ¢, € S(A) such that
Pv € (Wyps 0, S(F,))* for any v. For ¢ € S(A). we define the theta function
O by

—_~—

(6) Ou(9) = Y _wy,(9)d(€) g = (g0) € SLa(A),

fer

where wy,;(9)0(§) = [, wyy0(90)Pu(ts(§)) is (\js\cr/ltially a finite product.

We have O4(gk) = A(k)"'O04(g) for any g € SLy(A) and k € K;. If ¢ €

(Wypg S(A))?, then Oy is a Hilbert modular form of weight w = (wy, - -+, wy,).
It is known that

— — - +
= @i s (@) (@),
S veS vgS

where S ranges over all finite subsets of places of F' (see [2, §3.4]). We

define a map © from wy, to the space of automorphic forms on SL2(A) by
O(¢)(g) = O4(g). Then it is known that

(7) Im(@)z @ w¢6757
|S|:even

(see [2, Proposition 3.1]).
Let G be the set of triplets (3, Ss,a) of 8 € F, a subset S3 C T3 and a
fractional ideal a of F' satisfying (5) and the condition (A),

(A) |S2| + S| + |Sse| € 2Z.
We define an equivalence relation ~ on G by

(B, 83,a) ~ (8,85, d') < S3 =54, B’ =+2B, a =~a for some v € F*.
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Theorem 1. Suppose that 2 splits completely in F/Q. Let 8 € F, X :
K — C* and wi,...,w, € {1/2,3/2} be as above. Then there exists
¢ =1[,00 € (wwﬁ,S(A)))‘ such that ©4 # 0 if and only if there exists a
fractional ideal a of F' such that (3,53, a) € G.

—_—

Proof. Let A, : SLa(0,) — C* be the v-component of X for any v <
0o. We already proved that there exists [[, ., ¢» # 0 such that ¢, &
(W, S(Fy))M for any v < oo if and only if there exists a fractional
ideal a of F satisfying (5). Suppose that the equivalent conditions hold.
Since we have (wqj&v, S(R)) 172 = Ce(it,(8)x?) and (wiﬁw, S(R))Ae3/2 =
Cze(ity(B)z?) for any v | oo, there exists a nonzero ¢ = [[, ¢, € (Wypg s S(A)A.
It is clear that if there exists a nonzero ¢ = [, ¢ € (wyy, SAN, TTyeno dv #
0 satisfies ¢y, € (wyy,0, S(F,))* for any v < oo.

Suppose there exists a nonzero ¢ = [[, ¢y € (wy,, S(A))*. Note that
|S2| + [S3] 4 |Seo| is the number of v such that ¢, is an odd function. Then
|S|in (7) is |S2| + |S3] + [Sc|- By (7). it is clear that ©4 # 0 if and only if
the condition (A) holds. O

Let H be a group of fractional ideals that consists of all elements of the

form
II v, D eve2z
veTS v
Let CI* be the narrow ideal class group of F. Put CI"* = {¢? | ¢ € CI*}.
We denote the image of the group H (resp. b € CIT) in CIT/CI™2 by H
(resp. [b]).
Theorem 2. Suppose that 2 splits completely in F/Q. Let wy,...,w, €
{1/2,3/2} be as above.
(1) Suppose that [Sa| +[Su| is even. Then there exists (3, S3,a) € G if
and only if 0] € H.
(2) Suppose that |Sa| + [S| is odd. Then there exists (8, 53,a) € G if
and only if T5 # () and [op,,] € H. Here, v is any fixed element of
Ts.

Proof. We prove the theorem in case (1). The proof for case (2) is similar.
If o] € H, we have (88)0 ][ ey, Po" = a’? such that > e, is even for

a fractional ideal o’ and § € F. Put S3 = {v € T3 | e, : odd}. Since
|S2] + [S3] + |Seo| is even, we have (8,53, a) € G, where

a= H p, /%
UGTQ’,\S?,

Conversely, if there exists (3, S3,a) € G, it satisfies (5) and |S3| is even.
Then we have [0] = [],cq,[p0] € H. O

Let w; be 1/2 or 3/2 for 1 < i < n. Suppose that there exists (3,53, a) €
G. Replacing (3, S3,a) with an equivalent element of G, we may assume



ord,a = 0 for v € S, U S3. For v € S5 U S3, put
1 ifzel+2p,

folx)=¢ -1 ifze—-1+2p,
0 otherwise.
Put
f= H Jo X H Chaqjl,
vES2US3 v<00,v¢52US3

where a, = ao,. Here, chA is the characteristic function of a set A. Put
¢ = f x Tl fooi» where fooi(x) = 2= e(i1;(B)a?) for € R. By
Theorem 1, there exists ©4 # 0 of weight w = (w1, -+, wy).

Put z = (21, ,2,),i = (V=1,--- ,v/=1) € b*. We define x;,y; € R
by zi = x; ++/—1y; for 1 < i < n. Then we have z = goo(i), where

Joo = (90017 T 7gOOn) € SLQ(RyLv Joo; = Z0 Z—1/2Z . Since AU(UQ]) =1
Y;

for v < 0o, we have

O4(950) = Y F(er(€) [ [wus,o0([9o0:]) fiii(€))-
¢ea—t i=1
Theorem 3. Let ¢ and ©4 be as above. We define a theta function 6 :
" — C by
O5(z) = > fep(©) [ w(®]]e(zii(B8%)).

660_1 00;ESo i=1

Then 6, is a nonzero Hilbert modular form of weight w for SLy(0) with
respect to a multiplier system.

Every theta function of weight w for SLo(0) with a multiplier system may
be obtained in this way.

Proof. Since
W00 ([o0i]) fooi (1)) = 91" 20i(€)" =MD e(z0a (52)),
we have 04(2) = O4(goo) x [ 14 yi_wi'/2. Then 6, is nonzero. Note that
Hlgmer), VT2 = 702,

Since ¢ € (wy,, S(A))*, we have ©4 € A, (SLa(F)\SL2(A), Af). Then we
have 0, = ® 1(04) € M,(SLa(0), Ay). The multiplier system of 0y is vy
given by

() =vo(v) [ () 7 €SLao),
vESUTS
where k, for v € Sy UTj5 is an continuous function in Proposition 3.

By Proposition 2, if § is a theta function of weight w for SLs(0) with a

multiplier system v, we have a genuine character Ay of K ssuch that v =wv,,.

Let A = Af X [T | Asc.w, be a genuine character of K. Then there exists
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nonzero ¢ € (wy,, S(A))* such that § = 6, up to constant, which completes
the proof. O

Proposition 4. Let Cl be the usual ideal class group of F. Let Sq: Cl —
CI" be the homomorphism given by [a] — [a?] for a fractional ideal a of F.
The number of equivalence classes of G is equal to

(BB Y 1Sg (o ] el
S3CT3 vES3
(A)
where S3 ranges over all subset of T3 satisfying (A). Here, ET is the group
of totally positive units of F' and E? is the subgroup of squares of units of
F.

Proof. We follow the argument of Hammond [5] Theorem 2.9. For given
S5 satisfying (A), the number of ideal classes [a] such that a? is narrowly
equivalent to 0[], cg, v is equal to 1Sqg~([o [T,es, Pol)|- Then for a given
fractional ideal a such that a? is narrowly equivalent to o] ], 55 Pu, the
number of equivalence classes of triplets of the form (8,S3,a) such that
B € F satisfying (5) is equal to [ET : E?]. O

4. THE CASE F' IS A REAL QUADRATIC FIELD

Now suppose that F' = Q(v/D), where D > 1 is a square-free integer and
D =1 mod 8. Then 2 splits in F/Q and we have 9 = (v/D). When there
exists (8, S3,a) € G, one of the followings holds.

(C1) (88)0 = a? and S5 = 0.

(C2) (88)op = a? such that Np/g(p) = 3 and S5 = {p}.

(C3) (88)opp = a? such that Npg(p) = Npyg(p) = 3 and Sz = {p,p}.

If |Soo| is even, (C1) or (C3) holds. If | S| is odd, (C2) holds.

Proposition 5. Suppose that F = Q(v/D), where D > 1 is a square-free
integer such that D =1 mod 8.

(1) There exist 3 € F and a fractional ideal a satisfying (C1) if and
only if p = 1 mod 4 for any prime p | D.

(2) There exist f € F and a fractional ideal a satisfying (C2) if and
only if p =0 or 1 mod 3 for any prime p | D.

(3) There exists 3 € F* and a fractional ideal a satisfying (C3) if and
only if D =1 mod 24 and p = 1 mod 4 for any prime p | D.

Proof. For a prime ideal p such that Np/q(p) = 3, the equation (83)op = a?
implies that the narrow ideal class of dp is a square. Note that a positive
integer x is of the form 3u? +v? for some u,v € N if and only if any prime p
which divides x satisfies p = 0 or 1 mod 3. Here, a necessary and sufficient
condition that the narrow ideal class of 0p is a square for a prime ideal p
which has norm 3 is that D is of the form 3u? + v? for some u, v € N, which
proves the second assertion.

The equation (83)0 = a? implies that the narrow ideal class of 0 is a
square. Note that a positive integer z is of the form u? + v? for some



u,v € N if and only if any prime p which divides z satisfies p = 1 mod 4.
Then [5] Proposition 3.1 proves the first assertion.

There exist two distinct prime ideal p and p such that such that Ny/q(p) =
Npjg(p) = 3 if and only if 3 splits in F//Q. This condition holds if and only
if D =1 mod 24. In the case D = 1 mod 24, we have pp = (3). Then the
equation (83)opp = a? implies that the narrow ideal class of ? is a square.
Thus, similarly to the first assertion, [5] Proposition 3.1 proves the third
assertion. O

Example: put D = 793 = 13- 61. Then there exist § € F and a
fractional ideal a satisfying any condition of (C1), (C2) or (C3). Moreover,
C1" has order 8 and the fundamental unit ¢ of F has norm 1. For example,
put p = (54 v/D)/2. Since Npyg(p) = =3 - 8%, we have (p) = q9qs, where
g3 = (3,1—+v/D) and q2 = (2, (14++/D)/2) are prime ideals. Put 8 = pv/D/8
and a = 0q3q3. Then we have (83)0q3 = a?.
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