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Galois representations 

K/Qp finite extension. 

GK:= Gal(K/K). 

Ra topological ring. 

* * * * * 
* * 
* * 
* * * European Rue11rd1 Counci.l 

[MIIGltlNit,-•~~ 

Is there a moduli space of representations p: GK-+ GLd(R)? 
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Moduli spaces of Galois representations 

There is a good theory over Zz, l -=/=- p, or even Z [1 / p]. 

Basic point: the action of wild inertia doesn't deform, and tame 
inertia is "easy". Can work with Weil-Deligne representations and 
get finite type lei moduli spaces (Helm, ... ) 

Over Zp: doesn't work. 

Mazur: fix p: GK-+ GLd(F), F/Fp finite, and consider lifts ofp 
top: GK-+ GLd(R), where R is Artin local with residue field F. 
Moduli space: Spf R75. 

How can we let p vary? 

Existence of the stack 

K/Qp finite extension, GK:= Gal(K / K). 

Theorem 

There is a Noetherian formal algebraic stack Xd over Spf Zp, such 
that Xd(Spf Zp) is naturally equivalent to the groupoid of 
continuous representations GK-+ GLd(Zp)-

The underlying reduced substack Xd,red is an algebraic stack of 
finite type over F p, and is equidimensional of dimension 
[K: Qp]d(d - 1)/2. 

Similarly for Xd(F p). Not true for general p-adically complete 
Zp-algebras, e.g. Fp[x]. 

n.b. Xd is not a p-adic formal algebraic stack. It is probably 
[K : Qp]d2-dimensional. 
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The I-dimensional case 

For simplicity from now, unless otherwise stated: K = Qp-

-x . 
Characters GqP ➔ F P are of the form AaEi, 0 :=:; i < p - 1, where 
Aa is the unramified character taking Frob c--+ a. 

X 1 has (p - 1) irreducible components, indexed by i. 

Xi,red is 0-dimensional: one dimension for a, but automorphisms 
are Gm. 

Definition of the stack 

A a finite type Z/paZ-algebra for some a ~ 1. 

Definition 

Xd(A) := rank d projective etale ( cp, r)-modu/es with 
A-coefficients. 

Extend to general p-adically complete A by taking limits. 

Identification of Xd(Zp) with GK ➔ GLd(Zp) is due to Fontaine. 
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etale ( cp, f)-modules 

A a finite type Z/paZ-algebra for some a 2': 1. 

A rank d projective ( <p, f)-module with A-coefficients is: a rank d 
projective A((T))-module M with commuting semilinear actions 
of <p and r. 

<p: A((T))--+ A((T)) is A-linear, <p(l + T) = (1 + T)P. 

r = Gal(Qp((poo )/Qp), C: r--+ z; cyclotomic character. 

'Y: A((T))--+ A((T)) is A-linear, ,y(l + T) = (1 + TfC,), 

etale: M = A((T)) -<p(M). 

Closed points and specializations 

Irreducible representations GqP --+ GL2 (F p) are again discrete up 
to unramified twist, and give 0-dimensional substacks of the 

1-dimensional algebraic stack X2,red· 

Reducible indecomposable representations c\~[i >.:"Ej) with 

* -=I=- 0 can specialize to * = 0, so these are not closed points. 

Fact: closed points of Xd = semisimple GK--+ GLd(Fp)-
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Closed points and specializations 

Are there other specializations? 

Consider the family of etale cp-modules over F P given by 

( a -1) 
cp= ~ 0 

with 1 ::; i ::; p - 2 and ap E F p· (This can be equipped with an 
action of r). 

If ap =f. 0, corresponding GQv ➔ GL2(Fp) is reducible, but if 
ap = 0 it is irreducible. 

This cannot happen for a literal family of representations! 

Irreducible components 

Example from the previous slide is a feature, not a bug. 

For each O ::; i, j < p - l consider ( A~Ei A;Ej) with a, b varying. 

The closure of this is a 1-dimensional substack. 

In fact if i = j + 1 (mod p - l) we have an extra irreducible 
component with a= b. 

Theorem 

(K = Qp) X 2 has p(p - l) irreducible components, indexed by i, j 
as above. 

More generally, the irreducible components of Xd are indexed by 

( k1, ... , kn) with O ::; ki - ki+ 1 ::; p - l, 0 ::; kn < p - l. 
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A coarse moduli space for GL2(Qp) 

In general the specialisation relations are complicated and no 
obvious coarse moduli space. 

For GL2 (Qp): the only interesting specialisations are those we 
wrote down before. 

Fixing determinants, have a 1-dimensional scheme, in fact a chain 
of P 1s. 

A coarse moduli space for GL2(Qp) 

,. - --
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The crystalline/potentially semistable substacks 
Fix~= (>11 ~ ... ~Ad)-

Theorem 

There is a unique closed substack XJrys,~ of Xd which is flat 

over Spf Zp, and such that if A/Zp is finite flat, then 

xJrys,~ = {p: GQp -+ GLd(A) I 
p ® Qp is crystalline with Hodge-Tate weights ~}. 

XJrys,~ is a p-adic formal algebraic stack. 

If A1 > · · · > Ad then (XJrys,~)Fp is equidimensional of dimension 

equal to dim xd,red· 

Analogous result holds for (potentially) semistable representations, 
for any K. 

The geometric Breuil-Mezard conjecture I 

If A1 > · · · > Ad then (XJrys,~)Fp is equidimensional of dimension 

dimXdred· 
' 

Not necessarily reduced: write Z(~) = Z((XJrys,~)Fp), a formal 

sum of irreducible components of Xd red· 
' 

Question (Breuil-Mezard): Which components? What are the 
multiplicities? 
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p-adic local Langlands 

Expectation/hope: there is a sheaf M of GLd(K)-representations 
on xd which: 

satisfies local-global compatibility for completed cohomology 
of locally symmetric spaces. 

encodes the weight part of Serre's conjecture. 

answers the question of Breuil-Mezard. 

(p-adic analogue of Hellmann/Ben-Zvi-Chen-Helm-Nadler /Zhu.) 

Dotto-Emerton-G. (in progress): holds for GL2 (Qp)-

ldea: Colmez's construction of (D IZl P 1)/(DQ IZl P 1) makes sense 
on X2. 

The weight part of Serre's conjecture 

K = Qp- Let a be an irreducible F p-representation of GLd(F p)-

Expectation: support of M(a) is a union of irreducible 

components of Xd,red· 

Z(a) := Z(M(a))). 

If local-global compatibility holds, the support of Z(a) exactly 
determines the weight part of Serre's conjecture. 

True for modular curves. 
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The geometric Breuil-Mezard conjecture 11 

For~= (,~1 >···>Ad), set M(~) := HomaLd(Zv)(M,1r{t, 
where n~ = irreducible algebraic GLd(Zp)-representation of 
highest weight (A1 - (d - 1), ... , Ad-1 - 1, Ad)-

Expectations imply: Z(M(~)) = Z(~) = Z((XJrys,~)Fv). 

Then we have the geometric Breuil-Mezard conjecture 
Z(~) = La na(~)Z(a-), where no-(~)= multiplicity of a
in n~ @zv F p· 

Known for GL2 (Qp) (Kisin, Pask□ nas, ... ) 

Extends to potentially crystalline/semistable case, using inertial 
local Langlands correspondence. 

This version can sometimes be proved if~ is small, e.g. G.-Kisin, 
Le-Le Hung-Levin-Morra. 

Patched modules and deformation rings 

No construction is known of M other than for GL1 or GL2 (Qp)-

However there is a candidate after pulling back to the versal ring 
at a fixed p: GK-+ GLd(Fp): the patched module M 00 of 
Caraiani-Emerton-G.-Geraghty-Pask□ nas-Shin. 

Construction via globalisation and Taylor-Wiles patching of 
cohomology of unitary Shimura varieties. 

The pullback of the geometric Breuil-Mezard conjecture 

Z(~) = La na(~)Z(a-) to the versal ring is equivalent to 
automorphy lifting theorems (Kisin ). 

e.g. can use solvable base change to reduce the potentially 
crystalline case to the crystalline case (G.-Kisin). 


