Beilinson-Bloch conjecture for unitary Shimura varieties

Chao Li

Department of Mathematics, Columbia University

Joint work with Yifeng Liu (Yale)
RIMS conference, Jan 26, 2021

1 The BSD conjecture

- $E: y^{2}=x^{3}+A x+B$ an elliptic curve over \mathbb{Q}.
- Algebraic rank: the rank of the finitely generated abelian group $E(\mathbb{Q})$

$$
r_{\mathrm{alg}}(E):=\operatorname{rank} E(\mathbb{Q}) .
$$

- Analytic rank: the order of vanishing of $L(E, s)$ at the central point $s=1$

$$
r_{\mathrm{an}}(E):=\operatorname{ord}_{s=1} L(E, s) .
$$

Conjecture (Birch-Swinnerton-Dyer, 1960s)
(1) (Rank)

$$
r_{\mathrm{an}}(E) \stackrel{?}{=} r_{\mathrm{alg}}(E)
$$

(2) (Leading coefficient) For $r=r_{\mathrm{an}}(E)$,

$$
\frac{L^{(r)}(E, 1)}{r!} \stackrel{?}{=} \frac{\Omega(E) R(E) \prod_{p} c_{p}(E) \cdot|\amalg(E)|}{\left|E(\mathbb{Q})_{\mathrm{tor}}\right|^{2}}
$$

where $R(E)=\operatorname{det}\left(\left\langle P_{i}, P_{j}\right\rangle_{\mathrm{NT}}\right)_{r \times r}$ is the regulator for the Néron-Tate height pairing

$$
\langle,\rangle_{\mathrm{NT}}: E(\mathbb{Q}) \times E(\mathbb{Q}) \rightarrow \mathbb{R}
$$

and $\amalg(E)$ is the Tate-Shafarevich group.
Remark. (Tate, The Arithmetic of Elliptic Curves, 1974)
This remarkable conjecture relates the behavior of a function L at a point where it is not at present known to be defined to the order of a group $I I I$ which is not known to be finite!

2 What is known about BSD?

The BSD conjecture is still widely open in general, but much progress has been made in the rank 0 or 1 case.

Theorem (Gross-Zagier, Kolyvagin, 1980s)

$$
r_{\mathrm{an}}(E)=0 \Rightarrow r_{\mathrm{alg}}(E)=0, \quad r_{\mathrm{an}}(E)=1 \Rightarrow r_{\mathrm{alg}}(E)=1
$$

Remark. When $r=r_{\mathrm{an}}(E) \in\{0,1\}$, many cases of the formula for $L^{(r)}(E, 1)$ are known. The proof combines two inequalities:
(1) (Gross-Zagier formula)

$$
r_{\mathrm{an}}(E)=1 \Rightarrow r_{\mathrm{alg}}(E) \geq 1
$$

(2) (Kolyvagin's Euler system)

$$
r_{\mathrm{an}}(E) \in\{0,1\} \Rightarrow r_{\mathrm{alg}}(E) \leq r_{\mathrm{an}}(E)
$$

Both steps rely on Heegner points on modular curves.

3 The Beilinson-Bloch conjecture

- X : smooth projective variety over a number field K.
- $\mathrm{CH}^{m}(X)$: the Chow group of algebraic cycles of codimension m on X.
- $\mathrm{CH}^{m}(X)^{0} \subseteq \mathrm{CH}^{m}(X)$: the subgroup of geometrically cohomologically trivial cycles.
- Beilinson-Bloch height pairing

$$
\langle,\rangle_{\mathrm{BB}}: \mathrm{CH}^{m}(X)^{0} \times \mathrm{CH}^{\mathrm{dim} X+1-m}(X)^{0} \rightarrow \mathbb{R}
$$

- $L\left(H^{2 m-1}(X), s\right)$: the motivic L-function for $H^{2 m-1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$.

Conjecture (Beilinson-Bloch, 1980s)
(1) (Rank)

$$
\begin{aligned}
\operatorname{ord}_{s=m} L\left(H^{2 m-1}(X), s\right) & \stackrel{?}{=} \operatorname{rank} \mathrm{CH}^{m}(X)^{0} \\
L^{(r)}\left(H^{2 m-1}(X), m\right) & \stackrel{?}{\sim} \operatorname{det}\left(\left\langle Z_{i}, Z_{j}^{\prime}\right\rangle_{\mathrm{BB}}\right)_{r \times r}
\end{aligned}
$$

(2) (Leading coefficient)

Example $(X / K=E / \mathbb{Q}$ and $m=1)$
BB recovers the BSD conjecture as

$$
\mathrm{CH}^{1}(E)^{0} \simeq E(\mathbb{Q}), \quad L\left(H^{1}(E), s\right)=L(E, s), \quad\langle,\rangle_{\mathrm{BB}}=-\langle,\rangle_{\mathrm{NT}} .
$$

Remark. In general both sides are only conditionally defined!
(1) $L\left(H^{2 m-1}(X), s\right)$ is not known to be analytically continued to the central point $s=m$.
(2) $\mathrm{CH}^{m}(X)^{0}$ is not known to be finitely generated.

4 Testable BB conjecture: $X=$ Shimura varieties

- Langlands-Kottwitz/Langlands-Rapoport: express the motivic L-functions of Shimura varieties $X=\mathrm{Sh}_{G}$, as a product of automorphic L-functions $L(s, \pi)$ on G,

$$
L\left(H^{2 m-1}(X), s+m\right)=\prod_{\pi} L(s+1 / 2, \pi) .
$$

- Assume from now (the most interesting case):
(1) $2 m-1=\operatorname{dim} X$ (middle cohomology).
(2) π is tempered cuspidal.
- Analytic properties of $L(s, \pi)$ can be established.
- $\mathrm{CH}^{m}(X)^{0}$ is not known to be finitely generated, but we can test if it is nontrivial.

Unconditional prediction of BB conjecture, in the same spirit of Gross-Zagier:
Conjecture (Beilinson-Bloch for Shimura varieties)

$$
\operatorname{ord}_{s=1 / 2} L(s, \pi)=1 \xlongequal{?} \operatorname{rankCH} \mathrm{CH}^{m}(X)_{\pi}^{0} \geq 1 .
$$

Remark. Conjecture was only known for:
(1) $X=$ modular curves (Gross-Zagier)
(2) $X=$ Shimura curves (S. Zhang, Kudla-Rapoport-Yang, Yuan-Zhang-Zhang, Liu).
(3) $X=\mathrm{U}(1,1) \times \mathrm{U}(2,1)$ Shimura threefolds and $\pi=$ endoscopic (Xue).

Theorem A (L.-Liu [1], impressionist version)
Conjecture holds for $\mathrm{U}(2 m-1,1)$-Shimura varieties and π satisfying local assumptions.

5 The Hermitian symmetric space for $\mathrm{U}(n-1,1)$

- Hermitian symmetric space for $\mathrm{U}(n-1,1)$,

$$
\mathbb{D}_{n-1}:=\left\{z \in \mathbb{C}^{n-1}:|z|<1\right\} \cong \frac{\mathrm{U}(n-1,1)}{\mathrm{U}(n-1) \times \mathrm{U}(1)}
$$

- We have an action

$$
\mathrm{U}(n-1,1) \curvearrowright \mathbb{D}_{n-1}
$$

- Notice \mathbb{D}_{1} is isomorphic to the upper half plane \mathbb{H}.

6 Unitary Shimura varieties X

- $E / F: \mathrm{CM}$ extension of a totally real number field.
- \mathbb{V} : totally definite incoherent $\mathbb{A}_{E} / \mathbb{A}_{F}$-hermitian space of rank n.
- Incoherent: \mathbb{V} is not the base change of a global E / F-hermitian space, or equivalently $\prod_{v} \varepsilon\left(\mathbb{V}_{v}\right)=-1$, where $\mathbb{V}_{v}:=\mathbb{V} \otimes_{\mathbb{A}_{F}} F_{v}$.
- Any place $w \mid \infty$ of F gives a nearby coherent E / F-hermitian space V such that

$$
V_{v} \cong \mathbb{V}_{v}, v \neq w, \quad \text { but } V_{w} \text { has signature }(n-1,1)
$$

- $G=\mathrm{U}(\mathbb{V})$.
- $K \subseteq G\left(\mathbb{A}_{F}^{\infty}\right) \cong \mathrm{U}(V)\left(\mathbb{A}_{F}^{\infty}\right)$: open compact subgroup.
- X: unitary Shimura variety of dimension $n-1$ over E such that for any place $w \mid \infty$ inducing $\iota_{w}: E \hookrightarrow \mathbb{C}$,

$$
X(\mathbb{C})=\mathrm{U}(V)(F) \backslash\left[\mathbb{D}_{n-1} \times \mathrm{U}(V)\left(\mathbb{A}_{F}\right)^{\infty} / K\right] .
$$

- X is a Shimura variety of abelian type.
- Its étale cohomology and L-function are computed in the forthcoming work of Kisin-Shin-Zhu, under the help of the endoscopic classification for unitary groups (Mok, Kaletha-Minguez-Shin-White).

7 Automorphic representations π

- $W=E^{2 m}$: the standard E / F-skew-hermitian space with matrix $\left(\begin{array}{cc}0 & 1_{m} \\ -1_{m} & 0\end{array}\right)$.
- $\mathrm{U}(W)$: quasi-split unitary group of rank $n=2 m$.
- π : cuspidal automorphic representation of $\mathrm{U}(W)\left(\mathbb{A}_{F}\right)$.

Assumptions.

(1) E / F is unramified at all finite places (so $F \neq \mathbb{Q}$), and split at all 2-adic places. Assume that E / \mathbb{Q} is Galois or contains an imaginary quadratic field (for simplicity).
(2) For $v \mid \infty, \pi_{v}$ is the holomorphic discrete series with Harish-Chandra parameter $\left\{\frac{n-1}{2}, \frac{n-3}{2}\right.$, $\left.\ldots, \frac{-n+3}{2}, \frac{-n+1}{2}\right\}$.
(3) For $v \nmid \infty, \pi_{v}$ is tempered.
(4) For $v \nmid \infty$ split in E, π_{v} is a principal series.
(5) For $v \nmid \infty$ inert in E, π_{v} is unramified or almost unramified. If π_{v} is almost unramified, then v is unramified over \mathbb{Q}.
Remark.
(1) π_{v} is almost unramified: π_{v} has a nonzero Iwahori-fixed vector and its Satake parameter contains $\left\{q_{v}, q_{v}^{-1}\right\}$ and $2 m-2$ complex numbers of norm 1 . Equivalently, the theta lift of π_{ν} to the non-split local hermitian space has nontrivial invariants under the stabilizer of an almost self-dual lattice.
(2) Let $S_{\pi}=\left\{v\right.$ inert : π_{v} almost unramified $\}$. Then under Assumptions, the global root number for the (complete) standard L-function $L(s, \pi)$ equals

$$
\varepsilon(\pi)=(-1)^{\left|S_{\pi}\right|}
$$

by the epsilon dichotomy (Harris-Kudla-Sweet, Gan-Ichino).

8 Main result A: BB conjecture

When $\operatorname{ord}_{s=1 / 2} L(s, \pi)=1$:

- $\varepsilon(\pi)=-1$ and so $\left|S_{\pi}\right|$ is odd.
- $\mathbb{V}=\mathbb{V}_{\pi}$: totally definite incoherent space of rank $n=2 m$ such that

$$
\varepsilon\left(\mathbb{V}_{v}\right)=-1 \text { exactly for } v \in S_{\pi}
$$

- Associated unitary Shimura variety X of dimension $n-1=2 m-1$ over E.
- $\mathrm{CH}^{m}(X)_{\pi}^{0}$ the localization of $\mathrm{CH}^{m}(X)_{\mathbb{C}}^{0}$ at the maximal ideal \mathfrak{m}_{π} of the Hecke algebra associated to π.

Theorem A (L.-Liu [1], 2020)
Let π be a cuspidal automorphic representation of $\mathrm{U}(W)\left(\mathbb{A}_{F}\right)$ satisfying Assumptions. Then the implication

$$
\operatorname{ord}_{s=1 / 2} L(s, \pi)=1 \Longrightarrow \operatorname{rankCH}(X)_{\pi}^{0} \geq 1
$$

holds when the level $K \subseteq G\left(\mathbb{A}_{F}^{\infty}\right)$ is sufficiently small.
Nontrivial cycles constructed via the method of arithmetic theta lifting (Kudla, Liu).
Next: a baby example of Heegner points.

9 The Gross-Zagier formula

- Modular curve

$$
X_{0}(N)=\Gamma_{0}(N) \backslash \mathbb{H} \cup\{\text { cusps }\}=\left\{\left(E_{1} \xrightarrow[N \text {-sogeny }]{\text { cyclic }} E_{2}\right)\right\}
$$

- For certain imaginary quadratic fields $K=\mathbb{Q}(\sqrt{-d})$, get a Heegner divisor

$$
Z(d):=\left\{\left(E_{1} \rightarrow E_{2}\right) \text { with endomorphisms by } O_{K}\right\} \in \mathrm{CH}^{1}\left(X_{0}(N)\right) .
$$

- The theory of complex multiplication: $Z(d)$ is defined over K.
- E / \mathbb{Q} elliptic curve of conductor N has a modular parametrization

$$
\varphi_{E}: X_{0}(N) \rightarrow E .
$$

- Get a Heegner point

$$
P_{K} \in \varphi_{E}(Z(d)-\operatorname{deg} Z(d) \cdot \infty) \in E(K) .
$$

Theorem (Gross-Zagier, 1980s)
Up to simpler nonzero factors,

$$
L^{\prime}\left(E_{K}, 1\right) \sim\left\langle P_{K}, P_{K}\right\rangle_{\mathrm{NT}} .
$$

Remark.
(1) Choosing K suitably gives the implications $r_{\mathrm{an}}(E)=1 \Rightarrow r_{\mathrm{alg}}(E) \geq 1$.
(2) BSD formula for E_{K} reduces to a precise relation between P_{K} and $\amalg\left(E_{K}\right)$.

10 Generating series of Heegner points

Take $P_{d}=\operatorname{tr}_{K / \mathbb{Q}} P_{K} \in E(\mathbb{Q})$. It may depend on the choice of d, even when $E(\mathbb{Q}) \cong \mathbb{Z}$.
Example $\left(E=37 a 1=X_{0}^{+}(37): y^{2}+y=x^{3}-x\right)$

- $E(\mathbb{Q}) \cong \mathbb{Z}$ with a generator $P=(0,0)$.
- E corresponds to the modular form $f \in S_{2}(37)$,

$$
f=\sum_{n \geq 1} a_{n} q^{n}=q-2 q^{2}-3 q^{3}+2 q^{4}-2 q^{5}+6 q^{6}-q^{7}+6 q^{9}+4 q^{10}-5 q^{11}-6 q^{12}-2 q^{13}+\cdots
$$

- Table of Heegner points P_{d} :

d	3	4	7	11	12	16	27	\ldots	67	\ldots
P_{d}	$(0,-1)$	$(0,-1)$	$(0,0)$	$(0,-1)$	$(0,0)$	$(1,0)$	$(-1,-1)$	\cdots	$(6,-15)$	\cdots
c_{d}	-1	-1	1	-1	1	2	3	\cdots	-6	\ldots

where $P_{d}=c_{d} \cdot P$.
Miracle. The coefficients c_{d} appear as the Fourier coefficients of $\phi \in S_{3 / 2}^{+}(4 \cdot 37)$,

$$
\phi=\sum_{d \geq 1} c_{d} q^{d}=-q^{3}-q^{4}+q^{7}-q^{11}+q^{12}+2 q^{16}+3 q^{27}+\cdots-6 q^{67}+\cdots
$$

which maps to f under the Shimura-Waldspurger-Kohnen correspondence

$$
\theta: S_{3 / 2}^{+}(4 N) \rightarrow S_{2}(N), \quad \theta(\phi)=f
$$

11 Arithmetic theta lifting

- The generating series of Heegner points

$$
\sum_{d \geq 1} P_{d} \cdot q^{d}=\sum_{d \geq 1} c_{d} P \cdot q^{d}=\phi \cdot P \in S_{3 / 2}^{+}(4 \cdot 37) \otimes E(\mathbb{Q})_{\mathbb{C}}
$$

is a modular form valued in $E(\mathbb{Q})_{\mathbb{C}}$.

- More generally, we may define a generating series of Heegner divisors on $X_{0}(N)$,

$$
Z:=\sum_{d} Z(d) q^{d} \in M_{3 / 2}(4 N) \otimes \mathrm{CH}^{1}\left(X_{0}(N)\right)_{\mathbb{C}}
$$

which may be viewed as an arithmetic theta series.

- Use Z as the kernel to define arithmetic theta lifting

$$
\Theta(\phi):=(Z, \phi)_{\text {Pet }} \in \mathrm{CH}^{1}\left(X_{0}(N)\right)_{f, \mathbb{C}}^{0}=E(\mathbb{Q})_{\mathbb{C}} .
$$

- Now $\Theta(\phi)$ does not depend on any particular choice of d or K.

Theorem (Gross-Kohnen-Zagier, 1980s)
Up to simpler nonzero factors,

$$
L^{\prime}(E, 1) \sim\langle\Theta(\phi), \Theta(\phi)\rangle_{\mathrm{NT}}
$$

12 Special cycles on X

- For any $y \in V$ with $(y, y)>0$. Its orthogonal complement $V_{y} \subseteq V$ has rank $n-1$. The embedding $\mathrm{U}\left(V_{y}\right) \hookrightarrow \mathrm{U}(V)$ defines a Shimura subvariety of codimension 1

$$
\mathrm{Sh}_{\cup\left(V_{y}\right)} \rightarrow X=\mathrm{Sh}_{\cup(V)} .
$$

- For any $x \in V\left(\mathbb{A}_{F}^{\infty}\right)$ with $(x, x) \in F_{>0}$, there exists $y \in V$ and $g \in \mathrm{U}(V)\left(\mathbb{A}_{F}^{\infty}\right)$ such that $y=g x$. Define the the special divisor

$$
Z(x) \rightarrow X
$$

to be g-translate of $\mathrm{Sh}_{U\left(V_{y}\right)}$.

- For any $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in V\left(\mathbb{A}_{F}^{\infty}\right)^{m}$ with $T(\mathbf{x})=\left(\left(x_{i}, x_{j}\right)\right) \in \operatorname{Herm}_{m}(F)_{>0}$, define the special cycle (of codimension m)

$$
Z(\mathbf{x})=Z\left(x_{1}\right) \cap \cdots \cap Z\left(x_{m}\right) \rightarrow X
$$

- More generally, for a Schwartz function $\varphi \in \mathcal{S}\left(V\left(\mathbb{A}_{F}^{\infty}\right)^{m}\right)^{K}$ and $T \in \operatorname{Herm}_{m}(F)_{>0}$, define the weighted special cycle

$$
Z_{\varphi}(T)=\sum_{\substack{\mathbf{x} \in K \backslash V\left(A_{F}^{\infty}\right)^{m} \\ T(\mathbf{x})=T}} \varphi(\mathbf{x}) Z(\mathbf{x}) \in \mathrm{CH}^{m}(X)_{\mathbb{C}} .
$$

- With extra care, we can also define $Z_{\varphi}(T) \in \mathrm{CH}^{m}(X)_{\mathbb{C}}$ for any $T \in \operatorname{Herm}_{m}(F)_{\geq 0}$.

13 Arithmetic theta lifting

Define Kudla's generating series of special cycles

$$
Z_{\varphi}(\tau)=\sum_{T \in \operatorname{Herm}_{m}(E) \geq 0} Z_{\varphi}(T) q^{T}
$$

Conjecture (Kudla's modularity, 1990s)
The formal generating series $Z_{\varphi}(\tau)$ converges absolutely and defines a modular form on $\mathrm{U}(W)$ valued in $\mathrm{CH}^{m}(X)_{\mathrm{C}}$.

Remark.

(1) The analogous modularity in Betti cohomology is known (Kudla-Millson, 1980s).
(2) Conjecture is known for $m=1$. For general m, the modularity follows from the absolute convergence (Liu, 2011).
(3) The analogous conjecture for orthogonal Shimura varieties over \mathbb{Q} is known (Bruinier-Raum, 2014).
(4) Conjecture is known when E / F is a norm-Euclidean imaginary quadratic field (Xia, 2021).

Assuming Kudla's modularity conjecture, for $\phi \in \pi$, define arithmetic theta lifting

$$
\Theta_{\varphi}(\phi)=\left(Z_{\varphi}(\tau), \phi\right)_{\mathrm{Pet}} \in \mathrm{CH}^{m}(X)_{\pi}^{0} .
$$

14 Main result B: Arithmetic inner product formula

Theorem B (L.-Liu [1], 2020)
Let π be a cuspidal automorphic representation of $U(W)\left(\mathbb{A}_{F}\right)$ satisfying Assumptions. Assume $\varepsilon(\pi)=-1$. Assume Kudla's modularity. Then for any $\phi \in \pi$ and $\varphi \in \mathcal{S}\left(\mathbb{V}\left(\mathbb{A}_{F}^{\infty}\right)^{m}\right)$, up to simpler factors depending on ϕ and φ,

$$
L^{\prime}(1 / 2, \pi) \sim\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}}
$$

Remark. The simpler factors can be further made explicit. For example, if

- π : unramified or almost unramified at all finite places,
- $\phi \in \pi$: holomorphic newform such that $(\phi, \bar{\phi})_{\pi}=1$,
- φ : characteristic function of self-dual or almost self-dual lattices at all finite places.

Then

$$
\frac{L^{\prime}(1 / 2, \pi)}{\prod_{i=1}^{2 m} L\left(i, \eta_{E / F}^{i}\right)} C_{m}^{[F: \mathbb{Q}]} \prod_{v \in S_{\pi}} \frac{(-1)^{m} q_{v}^{m-1}\left(q_{v}+1\right)}{\left(q_{v}^{2 m-1}+1\right)\left(q_{v}^{2 m}-1\right)}=\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}}
$$

where $C_{m}=2^{m(m-1)} \pi^{m^{2}} \frac{\Gamma(1) \cdots \Gamma(m)}{\Gamma(m+1) \cdots \Gamma(2 m)}$.

Remark.

- Riemann hypothesis predicts $L^{\prime}(1 / 2, \pi) \geq 0$.
- Beilinson's Hodge index conjecture predicts $(-1)^{m}\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}} \geq 0$.

Compatible with our formula!

15 Summary

BSD conjecture	BB conjecture
Modular curves $X_{0}(N)$	Unitary Shimura varieties X
Heegner points $Z(d)$	Special cycles $Z_{\varphi}(T)$
$Z=\sum_{d} Z(d) q^{d} \in \mathrm{CH}^{1}\left(X_{0}(N)\right)_{\mathbb{C}}$	$Z_{\varphi}=\sum_{T} Z_{\varphi}(T) q^{T} \in \mathrm{CH}^{m}(X)_{\mathbb{C}}$
$\Theta(\phi) \in E(\mathbb{Q})_{\mathbb{C}}$	$\Theta_{\varphi}(\phi) \in \mathrm{CH}^{m}(X)_{\pi}^{0}$
Gross-Zagier formula	Arithmetic inner product formula
$L^{\prime}(E, 1) \sim\langle\Theta(\phi), \Theta(\phi)\rangle_{\mathrm{NT}}$	$L^{\prime}(1 / 2, \pi) \sim\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}}$

16 Proof strategy: doubling method

- Doubling method (Piatetski-Shapiro-Rallis, Yamana)

$$
L(s+1 / 2, \pi) \sim(\phi \otimes \bar{\phi}, \operatorname{Eis}(s, g))_{\cup(W)^{2}},
$$

where $\operatorname{Eis}(s, g)$ is a Siegel Eisenstein series on $\mathrm{U}(W \oplus W)$.

- By definition $\Theta_{\varphi}(\phi)=\left(Z_{\varphi}, \phi\right)_{\text {Pet }}$ gives

$$
\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}}=\left(\phi \otimes \bar{\phi},\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}}\right)_{\mathrm{U}(W)^{2}} .
$$

- To prove $L^{\prime}(1 / 2, \pi) \sim\left\langle\Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi)\right\rangle_{\mathrm{BB}}$, it suffices to compare

$$
\operatorname{Eis}^{\prime}(0, g) \stackrel{?}{=}\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}} .
$$

This can be viewed as an arithmetic Siegel-Weil formula.

- The Beilinson-Bloch height pairing is a sum of local indexes

$$
\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}}=\sum_{v}\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}, v} .
$$

- The nonsingular Fourier coefficient decomposes as

$$
\operatorname{Eis}_{T}^{\prime}(0, g)=\sum_{v} \operatorname{Eis}_{T, v}^{\prime}(0, g)
$$

17 Proof strategy: comparison

- Nonsingular terms: it suffices to compare

$$
\operatorname{Eis}_{T, v}^{\prime}(0, g) \stackrel{?}{=}\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}, T, v}
$$

- Gross-Zagier $(m=1)$: compute both sides explicitly.
- Explicit computation infeasible for general m.
- $v \nmid \infty$
(1) relate $\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}, T, v}$ to arithmetic intersection numbers.
(2) recent proof of Kudla-Rapoport conjecture (L.-Zhang).
- $v \mid \infty$:
(1) archimedean arithmetic Siegel-Weil (Liu, Garcia-Sankaran).
(2) avoidance of holomorphic projections.

To finish:

- Kill singular terms on both sides: Prove the existence of special $\varphi \in \mathcal{S}\left(V\left(\mathbb{A}_{F}^{\infty}\right)^{m}\right)$ with regular support at two split places with nonvanishing local zeta integrals.
- Theorem B for special φ : comparison of nonsingular terms.
- Theorem B for arbitrary φ : multiplicity one of doubling method (tempered case).
- Theorem A: same computation without Kudla's modularity (proof by contradiction).

18 Remarks on Assumptions

- When $v \nmid \infty$, the local index $\langle,\rangle_{\mathrm{BB}, v}$ is defined as a ℓ-adic linking number. It is defined on a certain subspace $\mathrm{CH}^{m}(X)^{\langle\ell\rangle} \subseteq \mathrm{CH}^{m}(X)^{0}$ (conjecturally equal) and its independence on ℓ is not known in general.
- Find a Hecke operator $t \notin \mathfrak{m}_{\pi}$ such that $t^{*} Z \in \mathrm{CH}^{m}(X)^{\langle\ell\rangle}$, so BB height is defined.
- Find another Hecke operator $s \notin \mathfrak{m}_{\pi}$, so BB height of $s^{*} t^{*} Z$ can be computed in terms of the arithmetic intersection number of a nice extension \mathcal{Z} on \mathcal{X}.
- Here \mathcal{X} is a regular integral model of a related unitary Shimura variety of PEL type (Kudla-Rapoport, Rapoport-Smithling-Zhang).
- Kudla-Rapoport conjecture: arithmetic intersection number equals $\operatorname{Eis}_{T, v}^{\prime}(0, g)$.
- The ℓ-independence of $\left\langle Z_{\varphi}, Z_{\varphi}\right\rangle_{\mathrm{BB}, T, v}$ then follows.
- Construction of Hecke operators and the proof of Kudla-Rapoport conjecture requires Assumptions.
- More recent work ([2]): remove some of Assumptions, and extend Kudla-Rapoport conjecture to include ramified places.

References

[1]: Chao Li and Yifeng Liu. Chow groups and L-derivatives of automorphic motives for unitary groups. arXiv e-prints, page arXiv:2006.06139, June 2020.
[2]: Chao Li and Yifeng Liu. Chow groups and L-derivatives of automorphic motives for unitary groups, II. arXiv e-prints, page arXiv:2101.09485, January 2021.

Department of Mathematics
Columbia University
2990 Broadway, New York, NY 10027
USA
E-mail address: chaoli@math.columbia.edu

