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A BRIEF REPORT ON p-ADIC SPIN £-FUNCTIONS FOR GSp6 

E. E. EISCHEN 

ABSTRACT. This document summarizes the content of the author's presentation at 
the remote RIMS conference "Automorphic forms, Automorphic representations, Ga­
lois representations, and its related topics." In particular, we report on a paper-in­
preparation (joint with S. Shah and G. Rosso) on p-adic Spin £-functions for GSp6 . 

1. INTRODUCTION 

The main goal of the talk at RIMS was to introduce a construction of p-adic £-functions 
for GSp6 (a joint paper-in-preparation with S. Shah and G. Rosso). As a first step, we 
introduced some key aspects of p-adic £-functions. Then we elaborated on related results, 
especially for symplectic groups. Finally, we gave an overview of the key ingredients and 
steps of proofs of main results. 

The theory of p-adic £-functions could not exist without results about rationality of 
special values of £-functions. As a first example, consider the Riemann zeta function 

( ( s). In the 1700s, Euler proved that for each positive integer k, ( ( 2k) = ~g:~:;, • ~%k , 
where B 2k denotes the 2k-th Bernoulli number. Since we are particularly interested in the 
rational part of this value, we often consider instead the values ((1 - 2k) = -~ E Q. In 
the 1800s, as part of his study of ideals and class numbers for cyclotomic fields, Kummer 
proved that for a prime number p and k, k' positive integers such that (p - 1) -f- 2k, 2k', 
if 2k = 2k' mod cp(pd), then ((P)(l - 2k) = ((P)(l - 2k') mod pd, where ((P)(l - 2k) := 

(1- p2k-l )((1- 2k ). Kummer's death came about a decade before Hensel's discovery of 
the p-adic numbers. In the 1960s, however, Kubota and Leopoldt constructed the first 
p-adic zeta function, a p-adic analytic function that p-adically interpolates values of ((P). 

Since then, there has been much interest in the possibility of constructing other p­
adic £-functions, i .. e p-adic analytic functions whose values at certain points interpolate 
particular values of (appropriately normalized) classical L-functions. This began with 
Iwasawa's work in the middle of the twentieth century. It continues today, thanks to 
work building on an approach introduced by Serre in the 1970s. 

2. CONNECTIONS WITH MODULAR FORMS 

In the 1970s, Serre introduced an approach to constructing p-adic zeta functions, which 
used modular forms. Consider the Eisenstein series of weight 2k :::>: 2: 

~ 1 
G2k(z) := L 2k · 

(0,0)*(m,n)eZxZ ( mz + n) 
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The Fourier expansion of G2k ( z) := g~~)1}~ G2k ( z) is 

00 

G2k(z) = ((1- 2k) + 2 L a-2k-1(n)qn, 
n=l 

where q = e21riz and a-2k-l ( n) = Ldln d2k-l. This is a special case of the Eisenstein series 
00 

where x is Dirichlet character and a-2k-1,x(n) = LdinX(d)d2k-l_ 

In the 1970s, Serre introduced a new approach to constructing p-adic L-functions: Con­
sider congruences between Fourier coefficients of modular forms (and construct p-adic 
modular forms). In the 1970s, Serre proved that if we have modular forms 

f(q) = ao + a1q + a2q2 + a 3q3 + •·· 

g(q) = bo + b1q + b2q2 + b3q3 + ··· 

such that an = bn mod pd for n ;::>: 1, then ao = bo mod pd. Applying this to the p­
stabilization of Gk,x, 

Gk~~(q) := L(P>(l - k, x) + 2 ~ a-k~i,x(n)qn, 

where L(P>(l - k,x) == (1- x(p)pk-1)L(l- k,x) and a-k~i,x(n) := Ldln,p+dx(d)dk-l, we 
recover the results of Kummer and Kubota-Leopoldt. 

Furthermore, Serre proved that modular forms can be put into p-adic families, and you 
can take p-adic limits of them. That is, if {!k; (q) := Ln~O an (ki) qn}i is a sequence of 
modular forms of weight ki with ki converging in 7L/(p-1)7L x Zp and limi-+oo an(ki) = an 
for n ;::>: 1, then ao(ki) converge p-adically to some ao. This builds on work of Hecke, 
Klingen, and Siegel on algebraicity and of Atkin and Swinnerton-Dyer on congruences. 

This is the first instance of properties of modular forms driving the study of p-adic 
(or algebraic) properties of values of L-functions. The behavior of families of Galois 
representations is also tied to properties of p-adic modular forms, as developed in work 
of Hida in the 1980s via systems of Hecke eigenvalues. This approach turns out to be 
fruitful, because it generalizes naturally. 

In analogue with how Klingen and Siegel's work on algebraicity inspired Serre's approach 
to congruences and p-adic L-functions, we have: 

Theorem 2.1 (Shimura, 1970s). Let f(q) = Ln>Oanqn be a cusp form of weight k and 
g(q) = Ln~O bnqn be a modular form of weight£. Consider the Dirichlet series 

00 

D(s,f,g) := L anbnn-s. 
n=l 

Then for £ < k and k+t2 < m < k 

D(m, f,g) rn, 
k E ~ 

7r (!,!)Pet 

(in fact, lies in (Q ( { an, bn}n) ). 
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Here (, }Pet denotes the usual Petersson pairing on modular forms. 

In the 1980s, Hida constructed p-adic Rankin-Selberg £-functions (as p-adic measures) 
by reinterpreting the pairing in Shimura's result p-adically. This is an instance of a 
broader phenomenon, in which there are connections between approaches to proving 
algebraicity and to constructing p-adic £-functions. 

3. OVERVIEW OF SOME CONJECTURES AND RESULTS ABOUT p-ADIC £-FUNCTIONS 

In view of the discussion above, it is reasonable to ask: 

Question 1. For which (CC-valued) £-functions L(s, M) and data M does there exist a 
p-adic function £p-adic such that 

for all ( n, M) meeting appropriate conditions ( and such that the construction exploits 
congruences between Fourier expansions of modular forms)? 

First, though, we must ask: 

Question 2. What can we say about algebraicity of values of L(n, M)? (We need to 
know that values of algebraic, and furthermore p-integral, before talking about p-adic 
properties.) 

There are precise conjectures addressing these questions. In particular, Coates and 
Perrin-Riou conjectured the existence of a wide class of p-adic £-functions. The also 
predicted the form of the Euler factor at p. Building on the main conjecture of Iwasawa 
Theory (proved by Mazur and Wiles), Greenberg predicted the meaning of many p-adic 
£-functions through more extensive Main Conjectures, which concern p-adic variation of 
arithmetic data. As for the question about algebraicity, which are necessary to address 
before one can speak meaningfully of congruences or p-adic properties, Deligne made 
precise conjectures about algebraicity of special values. 

Via applications of properties of p-adic families of modular forms, several mathemati­
cians have constructed p-adic £-functions in various settings. Kubota and Leopoldt 
constructed p-adic Dirichlet £-functions. What about p-adic £-functions associated to 
Hecke characters on the ideles of a number field K? Coates and Sinnott did this for 
real quadratic fields, and Deligne-Ribet handled the more general case of K totally real 
without a condition on the degree of K. Katz then handled the case of K a CM field, 
under the condition that each prime above p split completely. Taking this further, Hida 
constructed p-adic £-functions attached to modular forms, including to ordinary fam­
ilies of modular forms. Later, Panchishkin extended this construction to the case of 
Coleman families (the finite slope case). Still more recently, Eischen-Harris-Li-Skinner 
constructed p-adic £-functions associated to families of ordinary cuspidal automorphic 
representations on unitary groups, under a similar splitting condition on p to the one 
Katz required. 
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4. SUMMARY OF A STRATEGY FOR CONSTRUCTING p-ADIC L-FUNCTIONS 

This is an overview of the recipe employed by Hida, Panchishkin, E-Harris-Li-Skinner, 
and others, broken into three (nontrivial!) steps: 

(1) Construct a p-adic family lE of Eisenstein series (indexed by weights, like the 
example of G2k at the beginning) on some group G 

(2) Restrict ("pull back") to some (possibly smaller) subgroup H inside G, and pair 
against a cusp form on H 

(3) Interpret (via an integral representation, such as the Rankin-Selberg method) as 
a (familiar) L-function 

This builds on a strategy for proving algebraicity results (pioneered by Shimura in his 
study of Rankin-Selberg convolutions): 

(1) Realize your L-function in terms of an integral representation (e.g. Rankin­
Selberg convolution, doubling integral, ... ), pairing an Eisenstein series against 
cusp form(s), so values of your L-function are realized as a pairing (</>,E) 

(2) Find an Eisenstein series with algebraic Fourier coefficients 
(3) Find an othonormal basis { <f>i} for your space of cusp forms over Q, and show 

that (<Pi, E}/(</>i, <Pi) E Q. Use this prove similar statement for any cusp form c/; in 
place of <Pi· 

It is nontrivial to carry out this recipe, and it is even nontrivial to acquire 
some of the ingredients (in particular, the Fourier expansion of an Eisen­
stein series, an integral representation of an L-function, and furthermore an 
integral representation that is suitable for studying algebraicity). 

5. SYMPLECTIC GROUPS AND SIEGEL MODULAR FORMS 

In analogue with the standard Langlands L-functions studied by E-Harris-Li-Skinner 
in the setting of unitary groups, p-adic standard Langlands L-functions associated to 
cuspidal automorphic forms on symplectic groups were recently constructed by Zheng 
Liu, further extending earlier work by Bi.icherer-Schmidt. This relies on the doubling 
method, due to Piatetski-Shapiro-Rallis and earlier work of Garrett. Shimura proved 
corresponding algebraicity results. In the setting of GSp2 = GL2 , the standard L-function 
is L(Sym2 f,s). 

In addition to the standard representation, we also have that LGSp2n = GSpin2n+l, 
which has a natural 2n-dimensional representation, the spin representation. What can 
we say about algebraicity and p-adic interpolation if we replace L(s, n, std) (studied by 
Liu, Bi.icherer-Schmidt, ... ) by L(s, n, spin), with 7r a cuspidal automorphic represen­
tation of GSp2n? When n = 1, this is L(J, s) with f a modular form. Using modular 
symbols, Manin-Shimura proved algebraicity results, and Mazur-Tate-Teitelbaum con­
structed the corresponding p-adic L-function. When n = 2, using higher Hida theory, 
together with Harris's interpretation of L-values as cup products (useful for studying 
algebraicity), Loeffler-Pilloni-Skinner-Zerbes constructed p-adic L-function. This topic 
remains poorly understood for n > 3 (although Bump-Ginzburg constructed an inte­
gral representation for n=3, 4, 5 that appears not to be amenable to proving algebraicity 
results) 
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The case of n = 3 is the subject of the author/speaker's joint work with Rosso and Shah. 
Our work focuses on analytic p-adic L-functions, obtained via p-adic interpolation. On 
the algebraic side, there is recent related work of Cauchi-Jacinto and Cauchi-Lemma­
Jacinto. 

We provide a brief summary of the main results of the paper-in-preparation of the author, 
Rosso, and Shah: 

Theorem 5.1 (E-Rosso-Shah). Lehr be a cuspidal automorphic representation of GSp6 

associated to a Siegel modular form cp of weight 2r. Then 1r4•~~;;!f!i~; ,ef,) is algebraic, for 

s E {3r- 2, ... ,4r-5}. (Here, WN is a certain involution for G.) 

Theorem 5.2 (E-Rosso-Shah). There is a two-variable p-adic L-function Lp(J(2r),j) 
that varies p-adically in 2r and j, interpolating the values 

L(P) ( 'lr(2r), spin, s) 
Ioofp--~~----, 

{J(2r) lwN, f(2r)} 

where 3r - 2 :-::; j :-::; 4r - 5 and f( 2r) varies in a Hida family of ordinary Siegel modular 
forms. Here Ioo denotes the archimedean Euler factor (a product of gamma factors) and 
Ip denotes the modified Euler factor at p. 

We work with the Rankin-Selberg-style interval studied by Aaron Pollack in this setting. 
Let cp be a cusp form associated to a holomorphic Siegel modular form on GSp6 of 
positive, even scalar weight 2r. Consider the pairing 

(cp, E2r(g, s)} = I2r( cp, s) = hsp
6

(!/J)Z(A)\GSp
6

(A) cp(g )E2r(g, s )dg, 

for E2r(g, s) certain Eisenstein series on a group G (to be defined in a few moments) 
restricted to GSp6 c G. 

If you're familiar with the doubling method for Siegel modular forms or the Rankin­
Selberg integral for modular forms, it might feel like you can use what you know about 
those settings to proceed here. There are some key differences, though: 

Fix: 

(1) G is closely related to the exceptional group GE1 (and although G is related to 
a unitary group, that's a quaternionic unitary group). 

(2) There's currently no known moduli problem for G, no q-expansion principle, etc. 
(3) The Rankin-Selberg style pairing here is a non-unique model. 

• a field F of characteristic 0 
• a quaternion algebra B over F 

Define an F vector space 

W := F E9 H3(B) E9 H3(B) E9 F, 

where H3(B) denotes 3 x 3 hermitian matrices over B, i.e. matrices of the form 
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with c1, c2, c3 E F and a1, a2, a3 E B. Here, a* denotes the conjugate of a in the quaternion 
algebra B. 

The group G will be defined as a certain subgroup of GL(W) xGL1 (F). First, though, we 
establish a few conventions for operations on H3(B), following the conventions employed 

by Pollack. Given h = (~i ~; :~) E H3(B), we put 
a2 a1 c3 

N(h) := c1c2c3 - c1n(a1) - c2n(a2) - c3n(a3) + tr(a1a2a3), 

where n(a) == aa* for all a E B. We also define 

( 
( ) * * *) c2c3 - n a1 a2a1 - c3a3 a3a1 - c2a2 

h# := a1a2 - c3a3 c1c2 - n(a2) a3a2 - c1a1 
* * * ( ) a1 a3 - c2a2 a2a3 - c1a1 cic2 - n a3 

Given an element h' E H3(B), we define 

tr(h, h') := trace(hh' + h'h). 

Define 

• A symplectic form{,): W x W--+ F by 

{(a,b,c, d), (a',b',c', d')) := ad' -tr(b, c') + tr(c, b') - da', 

where tr(b, c) := ½(be+ cb) for all b, c E H 3 (B). 
• A quartic form Q : W --+ F by 

Q( (a, b, c, d)) := (ad - tr(b, c) )2 + 4aN(c) + 4dN(b) - 4tr(b#, c#). 

We define G to be the similitude algebraic group consisting of all (g, v(g)) E GL(W) x 
GL1(F) such that for all u,v,w E W: 

(ug, vg) = v(g ){u, v) 

Q(wg) = v(g) 2Q(w) 

We note a few properties of the group G: 

• There's a group that is a double cover of G and GU6 (B) (quaternionic unitary 
group) 

• G is closely related to the exceptional group G E7 
• G is a half-spin group of type D 6 

The Hermitian symmetric space for G (IR) is 

1i == {Z E H3(B ®JR C)IZ = X + iY, withX, YE H3(BJR), Y positive definite } 

Continuing to follow Pollack's conventions, we have a map r: 1i--+ W, Z >-+ (l, -Z, z#, -N(Z)). 
The action of G on 1i and the factor of automorphy Jc(JR)(g, Z) are defined simultane-
ously by 

r(Z)g-1 = fo(JR)(g, Z)r(gZ). 

There is an embedding GSp6 ._. G and corresponding embedding of Siegel upper half 
space into 1i. 
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A key input to the Rankin-Selberg integral is (a family of) Eisenstein series. We have 
an Eisenstein series E2r(g, s) that is holomorphic at s = r and whose Fourier expansion 
when s = r has coefficients of the form 

N(hr-5 ( TI Pc(C2r))' 
flN(h) 

with Pc a polynomial with rational coefficients and h is a 3 x 3 hermitian quaternionic 
matrix. We easily see that these Fourier coefficients satisfy congruences, which would be 
nice for constructing an Eisenstein measure; but we don't have a q-expansion principle 
here. Note, though, that it pulls back nicely to the space for GSp6 , where we do have 
a q-expansion principle and can construct a p-adic family of (pullbacks of) Eisenstein 
series. There is a differential operator V such that VE2r(g, s) = E2r+2(g, s ). So it suffices 
to study V and E2r(g,r). This differential operator has a nice action on q-expansions. 

We can show that the differential operator V acting on a weight k modular form f(Z) 
on 1i has the form 

N(Ytk~(N(Ylf), 

where ~ is the determinant of a matrix of partial derivatives. Note the similarity with the 
familiar Maass-Shimura operators in the setting of classical automorphic forms. Given 
the way the action of G and the automorphy factor are defined, how can we see that 
this operator raises the weight of a modular form on G by 2? The answer follows from 
two key equations (whose proofs are a nice exercise in exploring how to think about the 
action of G and the embedding r: 1i <-+ W):For any o: E c+(JR) and z, w E 1i, we have: 

(5.1) N(o:z - o:w) = v(o:)-1j(o:,zt1j(o:,wt1 N(z -w) 

(5.2) N(Im(o:z)) = lj(o:, z)1-2v(o:r1 N(Imz) 

These rely on the observation that ( r( z), r( w)) = N ( z - w). 

Similarly to Shimura's approach to proving algebraicity for Rankin-Selberg convolutions, 

the following key realization enables our algebraicity theorem: Write ,r4•~~;:~f~1~; ,</;) 

(<PlwN't~t~'.~~5-3r)) with Eisenstein series E 2r and a Rankin-Selberg style pairing as above, 

and recall that VE2r(z, s) = E2r+2(z, s ). Following Hida's approach to constructing p­
adic L-functions associated to Rankin-Selberg convolutions of modular forms, we write 
n (E ( )) (hrlwN,E2r(z,s+5-3r)) d b • d" L f · · d {, h 2r s = (</JI f ) , an we o tarn a p-a 1c - unction associate to a 

r wN, 2r 

Hida family of (ordinary) Siegel modular forms f( 2r)· 

Full details will be in the paper, which will be available soon. 
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