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On supercuspidal representations of Sp2n 

and Langlands parameters 

Koichi Takase 
Miyagi University of Education 

1 Introduction 

Let F /Qp be a finite extension with p =/= 2 whose integer ring OF has unique 
maximal ideal PF wich is generated by WF. The residue class field lF = OF/PF 
is a finite field of q-elements. The Weil group of F is denoted by W F which is 
a subgroup of the absolute Galois group Gal(F / F) where F is a fixed algebraic 
closure of F in which we will take the algebraic extensions of F. 

Let e be a connected semi-simple linear algebraic group defined over F. For 
the sake of simplicity, we will assume that e splits over F. Then the £-group 
Le of e is equal to the dual group e~of e. An admissible representation 

of the Weil-Deligne group of F is called a discrete parameter of e over F if 
the centralizer Acp = Z La(Imcp) of the image of cp in Le is a finite group. Let 
us denote by DF(e) the e--::.conjugacy classes of the discrete parameters of e 
over F. The conjectural parametrization of Irr2 ( e) ( resp. Irr 8 ( e)), the set 
of the equivalence classes of the irreducible admissible square-integrable (resp. 
supercuspidal) representations of e, by DF(e) is (see [7, p.483, Conj.7.1] for 
the details) 

Conjecture 1.0.1 For every cp E DF(e), there exists a finite subset IT'P of 
Irr2 ( e) such that 

1) Irr2(e) = lJ Ilcp, 

cpE1Jp(G) 

2) there exists a bijection of IT'P onto the equivalence classes A; of the irre­
ducible complex linear representations of Acp, 

3) Ilcp C Irrs(e) if 'PlsL2 (1C) = 1. 

The finite set IT'P is called a L-packet of cp. 

According to this conjecture, any 1r E Irr2(e) is determined by cp E DF(e) 
and CJ EA;. So the formal degree of 7f should be determined by these data. The 
formal degree conjecture due to Hiraga-Ichino-Ikeda [8] is (with the formulation 
of [7]) 
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Conjecture 1.0.2 The formal degree d1r of 1r with respect to the absolute value 
of the Euler-Poincare measure (see [12, §3] for the details) on G(F) is equal to 

dima I "f(cp,Ad,1/J,d(x),0) I 
IAPI · 'Y('-Po,Ad,1/;,d(x),0) · 

Here 

L(cpv,Ad,1-s) 
"f(cp,Ad,1/J,d(x),s) = E(cp,Ad,d(x),s) · L(cp,Ad,s) 

is the gamma-factor associated with the cp combined with the adjoint represen­
tation Ad of G~ on its Lie algebra g--: and a continuous additive character 1/J of 
F such that {x E F 11/J(xOp) = 1} = Op and the Haar measure d(x) on the 

additive group F such that { d(x) = l. See [7, pp.440-441] for the details. loF 

is the principal parameter (see [7, p.447] for the definition). 
The formal degree conjecture concerns with the absolute value of the epsilon­

factor 
E(cp, Ad, d(x), s) = w(cp, Ad). qa(<p,Ad)(½-s) 

where a(cp,Ad) is the Artin-conductor and w(cp,Ad) is the root number. The 
root number conjecture says that 

Conjecture 1.0.3 [7, p.493, Conj.8.3] 

w(cp,Ad) =1r(E) 
w(cpo, Ad) 

where E is a special central element of G (see [7, p.492, (65)] for the definition). 

We assume that G splits over F so that w(cp0 ,Ad) = 1 (see [7, p.448]). 
In this report we will construct explicitly supercuspidal representations 1r13,0 

of G = Sp2n ( F) by means of a tamely ramified extension K / F of degree 2n 
(Theorem 3.1.2) and a group homomorphism (see subsection 3.3) 

with which the formal degree conjecture and the root umber conjecture are valid 
(Theorem 3.3.1 and Corollary 3.4.4 respectively). 

After my talk at the conference, several participants suggested certain rela­
tions to works of T.Kaletha and J.K.Yu especially [10] and [19]. We will discuss 
these relations in the section 4. 

The details are presented in [18]. Parallel problems with the special linear 
group are discussed in [17]. 
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2 Regular characters of hyperspecial compact 
groups 

2.1 General theory 

Let G C GLn be a closed smooth Op-group subscheme, and g the Lie algebra 
scheme of G which is a closed affine Op-subscheme of g[n the Lie algebra scheme 
of GLn. We assume that the fibers G@oFK (K = F or K = lF) are non­
commutative algebraic K-groups (that is smooth K-group schemes). Let 

be the trace form on g[n, that is B(X, Y) = tr(XY) for all X, Y E g[n(R) 
with any Op-algebra R. The smoothness of G implies that the canonical group 
homomorphism G(Op) ➔ G(Op/J:t) is surjective due to the formal smoothness 
[2, p.111, Cor. 4.6]. For any O < l < r, let us denote by Kz(Op/'f,r) the kernel 
of the canonical surjection G(Op/'f,r) ➔ G(Op!'f,Z). Let us assume that the 
following three conditions on G are satisfied: 

I) B : g(lF) x g(lF) ➔ lF is non-degenerate, 

II) for any integers r = l + l' with O < l' :S l, we have a group isomorphism 

g(Op/Jl) ➔ Kz(Op/'f,r) 

defined by X (mod 1/) f-t 1 + 1:,iX (mod pr), 

III) if r = 2l - 1 2:: 3 is odd, then we have a mapping 

g(Op) ➔ Kz-1(Op/pr) 

defined by X ,-+ (1 + w 1- 1 X + 2-1 w 21 - 2 X 2 ) (mod pr). 

The condition I) implies that B : g(Op/p1) x g(Op/p1) ➔ Op/p1 is non­
degenerate for all l > 0. Then, by the condition II), the characters of the 
commutative group K1(Op/pr) of the form 

X13(1+w1X (modpr))=7P(w-1'B(X,,ti)) (X (modp1')Eg(Op/p1')) 

with ,B(mod p1') E g(Op/p1'). 

Since any finite dimensional complex continuous representation of the com­
pact group G(Op) factors through the canonical surjection G(Op) ➔ G(Op /pr) 
for some O < r E Z, it is enough to know the irreducible complex representations 
of the finite group G( 0 p /pr). Let us assume that r > 1 and put r = l + l' with 
the minimal integer l such that O < l' < l. 

Let r5 be an irreducible complex representation of G(Op/pr). The Clif­
ford's theorem says that the restriction r5IK,(OF/Pr) is a sum of the G(Op/pr)­
conjugates of characters of K 1(Op/pr): 
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with an adjoint G(OF/tl)-orbit n c g(OF/tl). In this way the irreducible 
complex representations of G(OF/t,r) correspond to adjoint G(OF/tl)-orbits 

in g(OF/tl). 

Fix an adjoint G(OF/tl)-orbit n C g(OF/tl) and let us denote by n~ 
the set of the equivalence classes of the irreducible complex representations of 
G(OF/r/) correspond ton. Then [16] gives a parametrization of n~as follows: 

Theorem 2.1.1 Take a representative ,B (mod 1/) En (,BE gOF )) and assume 
that 

1) the centralizer G13 = Za(,B) of ,BE g(OF) in G is smooth over OF, 

2) the characteristic polynomial X"iJ(t) = det(t · ln - /3) of /3 = ,B (mod p) E 

g(JF) C gln(JF) is the minimal polynomial of/3 E Mn(lF). 

Then we have a bijection 0 c-+ 013,0 of the set 

onto n---: 

2.2 Regular Lie elements 

Let us assume that the connected OF-group scheme G is reductive, that is, the 
fibers G@oFK (K = F, lF) are reductive K-algebraic groups. In this case the 
dimension of a maximal torus in G@oFK is independent of K which is denoted 
by rank(G). For any ,BE g(OF) we have 

(2.2.1) 

We say ,Bis smoothly regular over Kif dimx g13 (K) = rank(G) (see [14, (5.7)]). 
In this case G13@0FK is smooth over K. Then the general theory (see Th. 3.10 
and Cor. 4.4 of [3]) implies 

Proposition 2.2.1 The centralizer G13 = Za(,B) of ,B in G is smooth over OF 
if the fallowing two conditions are fulfilled: 

1) ,BE g(OF) is smoothly regular over F and lF, and 

2) G13@0FF and G13@0FlF are connected. 

If G = Sp2n over OF, then, for ,BE g(OF ), the following two statements are 
equivalent: 

1) /3 E g(K) is smoothly regular over K, 

2) the characteristic polynomial of /3 E g(K) C gl2n(K) is equal to its mini-
mal polynomial 

where /3 E g ( K) is the image of ,B E g ( 0 F) by the canonical morphism g ( 0 F) --+ 
g(K) with K = F or lF. If further /3 E g(K) C gl2n(K) is nonsingular, then 
G13@0FK is connected. 
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3 Supercuspidal representations of Sp2n(F) 

3.1 Construction 

Let K+/F be a tamely ramified extension such that (K+: F) = n and K/K+ 
a quadratic extension with Gal(K/K+) = (T). Then we have 

Proposition 3.1.1 There exists a /3 E OK such that OK = OF[/3] and 13r +/3 = 
0 if and only if K / K + is unramified or K / F is totally ramified. 

Now we will assume this and take a /3 E OK such that OK = OF[/3] and 
13r + f3 = 0. Then a F-symplectif form on K is defined by 

for x,y EK, where e+ = e(K+/F) is the ramification index and OK= OK+[w] 
with wr + w = 0. Then /3 E spp(K, D) by the regular representation of /3 on 
K, and /3 E sp2n ( 0 F) with respect to a suitable symplectic basis. It is shown 
by [13] that the characteristic polynomial of /3(mod p) E sp2n(lF) C g(2n(JF) is 
equal to the minimal polynomial of it. 

In order to guarantee the smoothness as OF-group scheme of the centralizer 
GfJ = Za(/3), we should exclude the case of K/F being totally ramified. 

Then the general theory presented in the section 2.1 gives a parametriza­
tion of fCwhere n C sp2n(OF/p11 ) is the G(OF/p11 )-orbit of /3(mod p11 ) E 

l' SP2n(OF/P ). Here 

GfJ(OF) =G(OF) n OF[/3] = GfJ(OF) n OK 

=UK/K+ = {s E Of I NK/K+(s) = 1} 

and a bijection 0 H OfJ,0 onto n~ofthe continuous unitary character 0 of UK/K+ 
such that 

1) 0 factors through the canonical morphism UK/K+-+ (OK/PK(, 

2) 0(c) = X (1;;;fi/TKjF(f3(s -1)) for all c E UK/K+ n (1 +p~J 

Fix a continuous unitary character 0 of UK/ K+ which satisfies the two con­
ditions given above and the corresponding irreducible unitary representation 
OfJ,0 of G(OF/Pr) which is considered as an irreducible unitary representation 
of G(OF) via the canonical morphism G(OF)-+ G(OF/Pr). Then we have 

Theorem 3.1.2 If l' = [~] 2: Max{2, 2(e - 1)}, then the compactly induced 

representation 7rfJ,0 = cmp-ind~/~~J°fJ,0 is an irreducible supercuspidal repre­
sentation of G(F) = Sp2n(F) such that 

1) the multiplicity of OfJ,0 in 7rfJ,0la(oF) is one, and OfJ,0 is the unique irre­
ducible unitary constituent of1rfJ,0la(oF) which factors through the canon­
ical morphism G(OF)-+ G(OF/pr), 
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2) with respect to the Haar measure on G(F) such that the volume of G( OF) 
is one, the formal degree of 1r13,0 is equal to 

where f+ = f(K+/F) is the inertial degree of K+/F, 

3) 1r13,0 is generic if K/F is unramified. 

3.2 Structures of Galois group of tamely ramified exten-
sion 

From now on we will assume that the tamely ramified extension K / F is normal. 
The structure of the Galois group Gal( K / F) of the tamely ramified extension 
K / F is well understood: 

Gal(K/F) = (8,p) 

where Gal(K/K0 ) = (8) with the maximal unramified subextension K 0 /F of 
K/F and PIKo E Gal(Ko/F) is the inverse of the Frobenius automorphism. We 
have a relation p- 18p = 8q due to Iwasawa [9] and put 

pf = 8m with O :Sm< e = e(K/F),f = f(K/F). 

The structure of the elements of order two in Gal(K/ F) plays an important role 
in our arguments, and we have 

Proposition 3.2.1 H = {'y E Gal(K/F) 1,2 = 1} c Z(Gal(K/F)) and 

{1, 8~} f dd { 
e = even, 

: = o or 
m=odd 

H= : e = odd , m = even 

: e = odd , m = odd 

: f = even , e = even , m = even. 

Remark 3.2.2 If T = 8~, then K / F is totally ramified. We have excluded this 
case. 

3.3 Candidate of the Langlands parameter 

We have fixed a character 0: UK/K+-+ ex. Chose a character c: UK/K+-+ ex 
such that 

1) c(x) = 1 for all x E UK/K+ n (1 +pf), 

2) c(-1) = { 1 
q-1 f 

-(-1) 2 + 

: l{cr E Gal(K/F) I cr2 = l}I = 2, 

: l{cr E Gal(K/F) I cr2 = l}I = 4 · 

Put rJ = 0-c and define a character{}: Kx-+ ex by d(x) = rJ(x 1-T) (x E Kx). 
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Let WK/F be the relative Weil group of K/F; 

Wx;F = Wp/[Wx, Wx] = Gal(K/F) ~°'K/F Kx 

where ax;F E Z 1(Gal(K/F), Kx) is the fundamental class of K/F. The repre­

sentation space Ve of the induced representation 8 = Ind:~/F,Ohas a Wx;r 
invariant quadratic form 

S(cp,1/;) = 
1 EGal(K/F) 

for cp, 1/; E Ve. So we have a group homomorphism 

and then 
can. eEBdet e ( ) ({J: WF-------+ Wx;F -------+ S02n+l <C (3.3.1) 

with IAPI = 2. We have a(cp,Ad) = 2n2r and L(cp,Ad,s) = (l+q-f+s)- 1, 
hence 

,(cp,Ad,1/;,d(x),0) = w(cp,Ad). qn2 r. 2 f . 
1 +q- + 

On the other hand 

(<C) proj. (<C) Sym2n (<C) ({Jo: Wp x SL2 -=---------=--+ SL2 -------=-:..:.+ SO2n+1 

is the principal parameter, and we have 

n -l 

a(cpo,Ad)=2n2, w(cp0 ,Ad)=l, L(cp0 ,Ad,s)=IT(1-q-C2k-l)q-s) . 
k=l 

2 n 1 - q-(2k-1) 
So the ,-factor is 1 ( ({Jo, Ad, 1/;, d(x ), 0) = qn IT _2k . 

k=l l - q 

Let da(F) be the Haar measure on G(F) such that { da(F)(x) = 1. 
lacoF) 

Then the Euler-Poincare measure µG(F) on G(F) = Sp2n(F) is (see [12, p.150, 
Th.7]) 

n 

dµa(F) (x) = (-l)nqn2 IT ( 1 - q-(2k-1)) . da(F) (x). 

k=l 

So Theorem 3.1.2 shows the following 

Theorem 3.3.1 The formal degree conjecture is validfonr/3,0 and cp of (3.3.1). 

3.4 Root number conjecture 

The character of e = Ind:~ IF J is 

xe(g) = {o L J (x') 
,EGal(K/F) 

: (Y-=/ 1, 

: (Y = 1 (3.4.1) 
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2 
for g = (o-,x) E Wx;F = Gal(K/F)KaK/FKx. Since Ado cp(g) = /\ cp(g), we 
have 

1 { 2 2 } XAdoe(g) = 2 Xe(g) - Xe(g ) • 

Now we can read the character formula (3.4.2), and we have 

Theorem 3.4.1 

Ad o ( 8 E9 <let 8) 

EB 
nEGal(K/F( 

,r(T)#l 

where, for 1-/- 'YE Gal(K/F), we put .i-y(x) = .i(xl+-Y) (x E Kx) and 

X-r: Wx;K., = Wx,,/[Wx, Wx]-------+ Wx,,/[Wx,,, Wx,,] 
can. 

------"'-----+Kx ___ ____,ex 
'Y 

l.c.f.t. ( *,K/ K-, )-if 

with 

Gal(K/K-r) = (,), 

(3.4.2) 

Then c:(Ad o r.p, 1/J, dp(x), s) is a product of powers of q and Gauss sums: 

G(x,1/Jx) = q-n/2 L X ( wi(n+d)t) · 1/Jx ( wi(n+d)t) 

iE(OK/P'kV 

for X: Kx -+ ex s.t. xlox -/- 1 with 
K 

n = Min{O < l E Z I x(l +P~d = 1}, 

and 
1PK : K TK/Qp Qp ~ Qp/Zp ➔ Q/Z exp(2,ry'=I*) ex. 

We have a trivial cancellation G (x, 1/J K) • G (x-1, 1/J K) = x( -1). We have also 
(see [6, p.130, Th.3]) 

Theorem 3.4.2 If K / E is a quadratic field extension such that xlEx = 1, then 

where K = E(c:) with c:2 E Ex. 

After a lots of cancellation amog Gauss sums, we have 

Theorem 3.4.3 w(cp,Ad) = 0(-1). 

On the other hand, the special central element E of Sp2n(F) is E = -l2n, 
and we have 

So we have 

Corollary 3.4.4 The root number conjecture is valid for 1f(3,0 and r.p of (3.3.1). 
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4 Relations with the theory of Kaletha 

4.1 Elliptic torus 

Let K + / F be a finite extension, K / K + a quadratic extension with a non-trivial 
element T of Gal(K/K+)- Let us denote by La Galois extension over F con­
taining K in general for which let us denote by 

Embp(K,L) = {o-lK I a- E Gal(L/F)} 

the set of the embeddings over F of K into L. 
Put OK= OK+ EBwOK+ with w7 +w = 0. Then ordK(w) = e(K/K+)-1. 

Let us denote by V the F-algebra of the functions v on Embp(K, F) with values 
in F which is endowed with a symplectic F-form 

D(u, v) = ~ L ( w- 1 ro~~+ r u(T'Y). v('Y) 
1 EEmbp(K,F) 

(u,v E V) where 'D(K+/F) = p';t+ is the difference of K+/F. The action of 

a- E Gal(F / F) on v E V is defined by vo- ('Y) = v('Yo-- 1 )o-. Then fixed point 
subspace vGal(F/L) = V(L) is the set of the functions on Embp(K,L) with 

values in L, and vGal(F/F) = V(F) is identified with K via v c-+ v(lK)-
- -1 

The action ofo E Gal(F / F) on g E Sp(V, D) is defined by v·go- = (vo- ·g)o-. 
Then the fixed point subgroup Sp(V, D)Gal(F/ F) is identified with Sp(K, D) via 
gc-+glK-

Put S = ResK/F(Gm which is identified with the multiplicative group vx. 
Then S(F) is identified with the multiplicative group Kx. 

Let T be a subtorus of S wich is identified with the multiplicative subgroup of 
vx consisting of the functions son Embp(K, F) to Fx such that s(T'Y) = s('Y)- 1 

for all 'Y E Embp(K, F). In other words T is a maximal torus of Sp(V, D) by 
identifying s E T with [v c-+ v · s] E Sp(V, D). The fixed point subgroup 
TGal(F/F) = T(F) is identified with 

4.2 Building 

Fix a finite Galois extension L/F such that K C L. A function a : V(L) --+ 
lR U { oo} is called a norm if 

1) a(u+v) ::>: Max{a(u),a(v)} for all u,v E V(L), 

2) a(.;v) = ordL(l) + a(v) for all .X E L,v E V(L), 

3) a(v) = oo if and only if v = 0. 

A norm a on V(L) is split over a £-basis {vi,··· ,V2n} ofV(L) if 
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2n 

for all v = L~ivi E V(L). An ordering a:::; (3 among norms a,(3 on V(L) is 
i=l 

defined by a(v) :S (3(v) for all v E V(L). A norm a on V(L) is maximinorante 
with respect to the symplectic form D if a is a maximal norm among the norms 
on V(L) such that 

a(u)+a(v) :SordLD(u,v) 

for all u,v E V(L). The set Nv(V(L)) of the maximinorantes norms on V(L) 
with respect to D is identified with the Bruhat-Tits building of Sp(V(L), D) 
([1, Th. 2.12]). The action of g E Sp(V(L), D) on a E Nv(V(L))is defined by 
(g · a)(v) = a(v · g). 

Let T' C Sp(V(L), D) be a maximal £-split torus defined by a symplectic 
£-basis { V±ih:c;i:c;n, that is 

and 
T' = {g E Sp(V(L),D) I (vi)Lg = (vi)L, -n :Si :Sn} 

Then the set Nv(V(L); T') of the norm a E Nv(V(L)) splitting over { vi}-n<i<n 
is identified with the apartment X(T')@zlR of Sp(V(L), D) associated with T'. 

The action of <Y E Gal(L/F) on a E Nv(V(L)) is defined by a"(v) = 
o:(v"- 1

). Then the fixed point subset Nv(V(L); T)°al(L/F), with the elliptic 
torus T defined in subsection 4.1, consists of the single element a such that 

. 1 
a(v) = mf ordL(v('y))--e(L/K)-{e(K/K+)(d+ + 1) -1} (v E V(L)), 

7EEmbp(K,L) 2 

and the corresponding element in Nv(K) is 

ax = e(L/F)- 1alx 
1 

= e(K/F)-1ordx - 2e(K/F)-1 · {e(K/K+)(d+ + 1) -1}. 

If K / F is a tamely ramified extension, then the fixed point subgroup 

Sp(K, D)OI.K = {g E Sp(K, D) I g. 0:K = 0:K} 

is the intersection of Sp(K, D) with an hereditary order 

{ 

An 
'1VF~21 

tvFAel 

of M 2n(F) with respect to a suitably ordered symplectic F-basis of K which is 
an Op-basis of Ox. Here we put e = e(K/F) and f = f(K/F). Then the open 
compact subgroup T(F) · Sp(K,D)aK is a subgroup of Sp2n(Op). Kaletha-Yu 
theory gives supercuspidal representations as compact inductions to Sp(K, D) = 
Sp2n(F) of irreducible representations of open compact subgroups of T(F) · 
Sp(K, D)aK. This means that the compact induction passes through the open 
compact subgroup Sp2n ( 0 F) and that the supercuspidal representation is the 
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compact induction to Sp2n(F) of an irreducible representation 8 of Sp2n(OF ). It 
seems provable that this 8 is the representation 813,0 given in subsection 3.1. But 
the exact matching of the two representations needs rather delicate arguments 
because, first of all, the correspondence of Theorem 2.1.1 is not canonical, and 
also because the construction of Kaletha-Yu contains certain uncertainties, for 
example the Howe factorization of (T, 0), not saying about recent modification 
by Fintzen-Kaletha-Spice [5]. For that reason, although it is provable that 
the supercuspidal representation given in Theorem 3.1.2 is the one which is 
parametrized by (T, 0) in the theory of Kaletha [10], I have not yet proved it at 
the moment of writing this report. 

In the following subsections, we will see that the £-parameter of Kaletha cor­
responding to (T, 0) is exactly the candidate of Langlands parameter considered 
in subsection 3.3. 

4.3 Local Langlands correspondence of torus 

The group X(S) of the characters over F of Sis a free Z-module with Z-basis 
{b,5}8EEmbp(K,F) where b,5(s) = s(8) for s ES. The dual torus S~= X(S)@zex 
is identified with the group of the functions s on EmbF(K, F) with values in 
ex. The action of c, E WF c Gal(F / F) on S induces the action on X(S) such 
that b6 = b,5u, and hence the action ons E S~is defined by sa(,) = s(,c,- 1 ). 

Then the local Langlands correspondence for the torus S is the isomorphism 

(4.3.1) 

given by [a] c-+ [pc-+ a(p)(lK)]. Being restricted to continuous group homo­
morphisms, we have an isomorphism 

( 4.3.2) 

via ( 4.3.1) combined with the isomorphism of the local class filed theory 

The restriction from S to T gives a surjection X(S) ➔ X(T) whose kernel 
is the subgroup of X(S) generated by {b,5 + br8 I 8 E EmbF(K, L)}. Then 
the dual torus r = X(T)@zex is identified with the group of the functions 
s on EmbF(K,F) with values in ex such that s(ry) = s(,)- 1 for all, E 
EmbF(K, F). The inclusion re ~gives a canonical inclusion HJonti.(WF, T1 C 
HJonti.(WF, fT). On the other hand, the surjection x c-+ x 1-r of Kx onto UK/F 
gives a canonical inclusion HomcontdU K/ F, ex) C HomcontdKX' ex). Now 
the restriction of the isomorphism ( 4.3.2) to these included subgroups gives the 
isomorphism 

Hlonti(WF, T") ➔ Homconti(Ux;F, ex). (4.3.3) 

See [20] for the details. 
Put ur = WF I>( r. Then a cohomology class [a] E HJontJWF, Tl defines 

a continuous group homomorphism 

( 4.3.4) 

and a c-+ a induces a well-defined bijection 

HJontJW F, T1 ➔ Hom~ontJW F, L T) / "r-conjugate" 
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where Hom~onti (W F, L T) denotes the set of the continuous group homomor­

phisms 'I/; of WF to LT such that WF Y!.+ LT proj. WF is the identity map. 

4.4 Howe factorization 

From now on we will assume that K / F is a tamely ramified Galois extension 
and put r = Gal(K/F). 

Let <I>(T) be the root system of Sp(V, D) with respect to T, that is 

<I>(T) ={a,• a,,, a; I,,,' Er,, =f.,'}, 

where a, E X(T) such that a,(s) = s(,). Note that ar, = a~ 1 . Put 

for any positive real number k (1 + p~ = O~), where av is the co-root of 
a E <I>(T). If 1 < f < 2n, then 

Then the Howe factorization of (T, 0) is 

: k > r -1, 

1 
: r - 1 - - < k ::::; r - 1, 

e 

1 
:k<r-1--

- e 

G0 = T ¾ G1 ¾ G2 = Sp2n 

with character 

r/Jo : G0 ➔ Gm realized by diag((,8 - ao)'),Er, 

r/;1 : G 1 ➔ Gm realized by diag(aJ),Er, 

r/;2 = id : G 2 ➔ Gm, 

where G 1 is a twisted Levi subgroup of Sp2n such that 

G 1®FK = GLe X · · · X GLe 

f+ 

e-1 

U+ = f(K+/F) = f /2) 

and we put ,8 = L a 0 rok with ai E OKa and WK E K+ being a prime ele­
i=O 

ment of K ( note that K / K + is unramified in this case). So, in this case, our 
supercuspidal representation 1r0,13 may not be toric. 

If f = 2n, then 

4>k(T) = { :(T) 

Then the Howe factorization of (T, 0) is 

: k > r -1, 

:k'.Sr-1. 

G0 = T ¾ G1 = Sp2n 
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with character c/Jo = 0, cp1 = id. 
If f = l so that K / F is totally ramified, then 

1 
:k>r-l--, 

r 
:k<r-l--. 

- e 

Then the Howe factorization of (T, 0) should be 

G0 = T ~ G1 = Sp2n 

with character c/Jo = 0, cp1 = id. But the genericity condition on the character 
cp0 = 0 implies that K/ Fis unramified. So this case is excluded. 

4.5 x-data 

Let us denote by S02n+l ( q the complex special orthogonal group with respect 
to the symmetric matrix 

and put 

a maximal torus of S02n+i(C). We have an isomorphism T"'...:+rgiven by 

s f----t diag(s(,1), · · · , s(,n), s(,n+i), · · · , s(,2n), 1) 

where Embp(K, F) = bi}1<i<2n where 11 = lK and 1'n+i = T1'i (1 :Si :Sn). 
The action of Wp on T"'induces the action on 1I'~which factors through r. 

The Weyl group W('l17 = Nso2n+i(IC)(11'1/ron ris identified with a sub­
group of the permutation group S2n generated by 

n n+l 
a-(n) n+a-(1) 

( 1 2 
n+ l 2 

n n+l n+2 
n l n+2 

Then any w E W (11'1 is represented by 

d tO[ ]] E Nso2n+1(1C)(11'1, e w 

2n) 
2n · 

where [w] E GL2n(Z) is the permutation matrix corresponding tow E W('l17 C 
S2n-

For any 8 E Embp(K, F) = r, let us denote by a8 an element of X(Tl such 
that a/S(s) = s(8) for alls ET"'. Then 

<I>(Tl = {alS · a1S 1 ,a1S I 8,8' Er, 8 -1- 8'}. 
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is the set of the roots of SO2n+1(C) with respect to T'= 'F'with the simple 
roots 

~ = {ai = a,i • aT,;+i,Qn = a,n 11:::: i < n}. 

Let {Xa,X-a,Ha} be the standard triple associate with a simple root a E ~­

Then Sa E W (r) is represented by 

n(sa) = exp(Xa) · exp(-X-a) · exp(Xa) E Nso2n+i(IC)(']['J 

and W(r) is generated by S = { sa}aE.6.· For any w E W(Tl, let w = s1s2 ···Sr 

(si E S) be a reduced presentation and put 

n(w) = n(s1)n(s2) · · · n(sr) E Nso2n+i(<C)(TJ. 

Then r(w) = w- 1n(w) Er: 
The action of u E WF on X('J1 induced from the action on T'is such that 

a8 = afo for all /j E EmbF(K, F), and it determines an element w(u) E W(r). 
Then [11] shows that the 2-cocycle t E Z 2 (WF, r) defined by 

t(u, u') = n(w(uu'))-1n(w(u)) · n(w(u')) (u, u' E WF) 

is split by r P : W F ➔ ']['~ defined by x-data as follows. 
For any). E <I>(T'), put 

and put F>, = Lr"', F±>, = Lr±>-_ Then (F>, : F±>.) = 1 or 2 , and). is called 
symmetric if (F>,: F±>.) = 2. 

The Galois group r acts on <I>(T1 and 

If ). = a1 K ac1, then ). is symmetric if and only if /j -/- T. If further 52 -/- 1, then 
F>, =Kand F±>, = K+ and choose a continuous character X>-: F{ = Kx ➔ ex 
such that X>-IFx : K~ ➔ {±1} is the character of the quadratic extension 

±>-

K/K+· We may assume that Xa1Ka,-1 = x-;;11Ka,· 

If 52 = 1, then F>, = K 8 and F±>- = E = K 8 n K+ and choose a continuous 
character X>-: F{ = K; ➔ ex such that X>-IFx : Ex ➔ {±1} is the character 

±>-
of the quadratic extension Kc1/ E. 

If).= a1 K then F>, =Kand F±>, = K+ and choose a continuous character 
X>- : F{ = Kx ➔ ex such that X>-IFx : K~ ➔ {±1} is the character of the 

±>-
quadratic extension K/K+. 

These characters are parts of a system of x-data X>- : F>, ➔ ex (>. E <I>(r)) 
such that 

1) X->- = x:;:1 and X>.a = n(xa-l) for all (J Er, and 

2) X>- = l if). is not symmetric. 

With this x-data and the gauge 

p: <I>(Tl ➔ {±1} s.t. p(>.) = { 1 
-1 

: ). > 0, 

: ). < 0, 
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the mechanism of [11] gives a rp: WF---+ rsuch that 

and 

X IT 

IT 
oEr,o2=1 0<>.E{a1Ka,}r 

ojil,T 

if a= (1,x) E Wx;F = r l><°'K/F Kx, where {a}r is the r-orbit of a E <I>('IT'l 
and A is the co-root of>... Then we have a group homomorphism 

(4.5.1) 

If we put r(a-) = r(w(a-)) for a- E WF, we have 

t(a-, a-')= r(a-)a' r(a-a-')- 1r(a-') 

Now Xp(a-) = r(a-) ·rp(a-)-1 (a- E WF) define an element of Z 1 (WF, 'IT'l and the 
group homomorphism (4.5.1) is 

(4.5.2) 

Let c E Homconti(Ux/K+, ex) be the character corresponding to the cohomology 
class [Xp] E H 1 (WF, 'IT'l by the local Langlands correspondence of torus (4.3.3). 
Then we have 

Proposition 4.5.1 1) c(x) = 1 for all x E Ux/K+ n (1 +Pi), 

2) c(-1) = { 1 9..::::..l,J 
-(-1) 2 + 

: l{a- Er I a-2 = 1}1 = 2, 

: I { a- E r I a-2 = 1} I = 4 

Remark 4.5.2 Note that we have excluded the case of K / F being totally ram­
ified when we consider the Howe factorization of (T, 0). 

4.6 Langlands parameter 

The continuous character 0 of Ux/K+ which parametrizes the irreducible repre­
sentation 813,0 of Sp2n(OF) determines the cohomology class [a] E H;onti (WF, Tl­
Then we have a group homomorphism 

W a LT (4.5.2) SO (rr) 
If! : F --+ --'--------'-t 2n+l "-' · (4.6.1) 

The construction of 'P shows that 1.p(a-) E SO2n+i(C) is of the form 
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(4.6.1) shows that 

tnp(o-) = 
-yEEmbp(K,F),-yc,=-y 

L Xp(o-)(r) · a(o-(,) 
7EWx\WF,'Y"'Y- 1 EWx 

L 1Pc. 1/Je(,o-"(-1) 
i'EWx\WF,'Y"'Y- 1 EWx 

where 1/Jc (resp. 1/Je) is the element ofHomconti(WK, q corresponding to c (resp. 
0) ofHomconti(UK/K+,cx) '-+ Homconti(Kx,cx). More strictly we have 

tr1jJ(a-,x) = {O L ;;:e(x'Y) 
-yEGal(K/F) 

:o-=/=1, 
: O" = 1 

for (o-,x) E WF/[WK, WK] = Gal(K/F) t><°'K/F Kx where ;;:g(x) = c- 0(x1-r) 
(x E Kx). Being compared with (3.4.1), this shows that parameter <p defined 
here is identical to the parameter (3.3.1) in the subsection 3.3. 

5 Additional remarks 

We have excluded the case of K / F being totally ramified because of 

1) the assurance of the connectivity of the centralizer G fi, and 

2) the genericity condition of the character appearing in the Howe factoriza­
tion of (T, 0). 

In fact, we can prove the surjectivity of the canonical homomorphisms 

which is enough to make work the arguments for Theorem 2.1.1, and the argu­
ments in section 3. In this case, the condition on the character c at the beginning 
of subsection 3.3 is 

1) c(x) = 1 for all x E UK/K+ n (1 + p~), 

{
(-1)~ : n = even, 

2) C(-1) = !1.-=.!,n+l 
( -1) 2 2 : n = odd 

Note that if K / F is totally ramified, then q - l is divisible by e = 2n. 
Recently [5] gives a remedy for a gap, which is pointed out by Fintzen [4], 

in the argument of [19]. On the other hand [4] shows that Yu's original method 
gives supercuspidal representations. So the situation is rather complicated, and 
we need further studies for putting properly our results of Section 3 in the 
framework of Kaletha-Yu theory. 

Finally it should be noted that Schwein [15] shows that the formal degree 
conjecture is valid with respect to the regular supercuspidal representation and 
£-parameter constructed by Kalethat [10]. 
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