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Local Saito-Kurokawa A-packets and £-adic 
cohomology of Rapoport-Zink tower for GSp( 4): 

announcement 
Yoichi Mieda 

1 Introduction 

This is an announcement of a recent joint work of Tetsushi Ito and the author 
on the £-adic cohomology of the Rapoport-Zink tower for GSp4 • The Rapoport
Zink tower for GSp4 is a p-adic local counterpart of the Siegel threefold. Its C-adic 
cohomology Hhz is naturally equipped with actions of three groups; the Weil group 
of Qp, GSp4 (Qp) and a non-trivial inner form J(Qp) of GSp4 (Qp)- These actions 
are expected to be strongly related with the local Langlands correspondence, but 
they are not fully understood yet. In this work, we focus on a certain class of 
non-tempered local A-packets of J(Qp), called the local Saito-Kurokawa A-packets. 
We determine how these A-packets and the associated £-packets contribute to the 
GSp4 (Qp)-supercuspidal part of Hhz• See Theorem 3.1 for the precise statement. 

The outline of this article is as follows. In Section 2, we give a brief review of 
the local Langlands correspondence. We also recall the Lubin-Tate tower, which 
is essential to prove the local Langlands correspondence for GLn. In Section 3, we 
introduce the Rapoport-Zink tower for GSp4 , which is a GSp4-version of the Lubin
Tate tower. After that, we state our main theorem and explain the ideas of the 
proof. 

2 Local Langlands correspondence 

Throughout this article, we fix a prime number p. In this section, we briefly recall 
the local Langlands correspondence. Let G be a connected reductive group over 
Qp. We assume that G is an inner form of a split group for simplicity. We write 
II( G) for the set of the isomorphism classes of irreducible smooth representations 
( over <C) of G(Qp), and <I>( G) for the set of the G-conjugacy classes of £-parameters 
W!Qp x SL2 (<C) ----+ G. Here W!Qp denotes the Weil group of Qp, and G denotes the 
dual group of G over C. The local Langlands correspondence for G is a conjectural 
map LLC: II( G) ----+ <I>( G) with finite fibers. The fiber IIi of r/; E <I>( G) is called the 
£-packet of rp. The map LLC is expected to be surjective when G is split. 

If G = GLn, then G equals GLn(<C), and an £-parameter W!Qp x SL2 (<C)----+ G is 
identified with an n-dimensional semisimple representation of W!Qp x SL2 (<C). The 
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local Langlands correspondence for GLn has been proved by Harris-Taylor [HTOl] 
(see also [Hen00] and [Sch13]). In this case, every £-packet is a singleton; in other 
words, the map LLC: II(GLn) -+ <I>(GLn) is bijective. Let us briefly recall the 
construction of LLC(7r) for a supercuspidal 7r E II(GLn)- It is given by using the 
Lubin-Tate tower { Mx} KcGLn(Zp), which is a projective system of rigid spaces over 

ij~r indexed by compact open subgroups of GLn(Zp)- Here are basic geometric 
properties of the Lubin-Tate tower: 

McLn(Zv) = Ilz((n - 1)-dimensional open unit disk over ij~r). 

- MK/McLn(Zv) is a finite etale covering. In particular, each MK is an (n -

1 )-dimensional smooth rigid space over ij~r. If K is an open normal sub
group of GLn(Zp), then Mx/McLn(Zv) is a Galois covering with Galois group 
GLn(Zp)/ K. 

The group GLn(Qp) acts on the projective system {Mx}KcGLn(Zv); it is a local 
analogue of the Hecke action. The group Dx also acts on the tower, where D 
is the central division algebra over Qp with invariant 1/n. Now we fix a prime 
number f, and an isomorphism Qe ~ <C. We put HLT = ~K H~(Mx ®ijr <Cp, Qe)
It is equipped with an action of GLn(Qp) x Dx x WQp· Roughly speaking, the 
£-parameter LLC(7r) for a supercuspidal 7r E II(GLn) is constructed by using the 
irreducible decomposition of HEi 1 • 

Theorem 2.1 ([Car86], [HTOl], [Boy09]) Let 1I" be an irreducible supercuspi
dal representation of GLn(Qp)- We put p = JL(7r), where JL denotes the Jacquet
Langlands correspondence between GLn(Qp) and Dx. Then LLC(7r) is a unique 
irreducible n-dimensional representation of WQv (which is regarded as a representa
tion of WQv x SL2 (<C) by the first projection) satisfying the following: 

Homnx (HEi1, p)sm ~ 1I" ~ LLC(7r) (n; l). 
Here (-)sm denotes the smooth part with respect to the GLn(Qp)-action, and (n;1 ) 

denotes the Tate twist. 

Remark 2.2 If i #- n - 1, we have Homnx (HLT, p)sm = 0. See [Boy09]. 

The key of the proof of Theorem 2.1 is to relate {Mx}KcGLn(Zv) to a certain 
Shimura variety. Let us explain it in the case n = 2. In the following we write 
A for the ring of adeles of Q. For a compact open subgroup K' C GL2 (A00 ), let 
Shx, denote the modular curve over Q with level K'. We write Sh~, .niur for the rigid 

''-'P 

space over ij~r associated with Shx,,ijPr = Shx, ®QQ~r. We fix a sufficiently small 

compact open subgroup KP of GL2(A 00 ,P). We write Sh0 L cz )KP zur for the integral 
2 p ' p 

modular curve over z~r with level GL2(Zp)KP. The supersingular locus of its mod 
p fiber Sh0 L2(zvJKv,iFv is denoted by Sh~L2(zvJKv,iFv. We have the specialization map 

sp: Sh~nL2(Zp)KP,ijpr -+ ShGL2(Zp)KP,Fp · Let Sh~z=~p)KP,ijpr be the rigid analytic open 
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subset of Sh~0L2 (Zv)Kv,ij~r obtained as the inverse image of Sh~L2 (Zv)Kv,lFv (strictly 
speaking, we are in fact working in the framework of adic spaces, so we need to 
take the interior of the inverse image). The open subset Sh~z:tzp)KP,ij~r is called 

the supersingular reduction locus, since its classical point corresponds to an elliptic 
curve with good supersingular reduction. Finally, for a compact open subgroup K 
of GL2(Zp), let Sh~-;;1,nmr be the inverse image of ShsGszed(Z )KP in,u, in Sh~KP in,ur· Then 

,'l.J!.p 2 p ,-...e:p ,'l.J!.p 

the following holds: 

Proposition 2.3 (p-adic uniformization) We have an isomorphism 

Shss-red - ~ fJx \(M X GL (A oo,p)/KP) 
KKP,<Q)~r K 2 , 

where D is the quaternion division algebra over Q which ramifies exactly at oo and 
p. 

In this work, we use the local Langlands correspondence for G = GSp4 and its 
non-trivial inner form J. Both of the dual groups G and J are equal to GSp4 (C). 
The local Langlands correspondence for G and J are due to Gan-Takeda [GT11] and 
Gan-Tantono [GT14], respectively. Unlike the GLn-case, no geometry is needed in 
the proofs of them. They used the local theta lifting to reduce the local Langlands 
correspondence for G and J to that for GL2 and GL4 • However, the author is still 
interested in how the local Langlands correspondence for these groups interacts with 
geometry. 

Let cp: W<Qiv x SL2(C) ----+ GSp4 (C) be an element of <I>(G) = <I>(J). The corre
sponding £-packets IIt and IIi are not necessarily singletons. We are particularly 
interested in the case where IIt contains a supercuspidal representation. Such £
parameters are classified as follows: 

Proposition 2.4 Let r: GSp4 (C) '-----+ GL4 (C) denote the natural embedding. If 

rr; contains a supercuspidal representation, then one of the following holds: 

(i) There exists a 4-dimensional irreducible representation cp0 of W<Qiv such that 
r o cp = cp0 ~ 1, where 1 denotes the trivial representation of SL2 ( q. In this 
case, each of IIt and IIi consists of one supercuspidal representation. 

(ii) There exist distinct 2-dimensional irreducible representations cp0 and cp1 of W<Qiv 
such that r o cp = ( cp0 ~ 1) El:l ( cp1 ~ 1). In this case, each of rr; and IIi consists 
of two supercuspidal representations. 

(iii) There exist a 2-dimensional irreducible representation cp0 ofW<Qiv and a character 
x of W<Qip such that r o cp = (cp0 ~ 1) El:l (x ~ Std), where Std denotes the 
standard representation of SL2 (C). In this case, each of rr; and IIi consists 
of one supercuspidal representation and one non-supercuspidal discrete series 
representation. 

(iv) There exist distinct characters Xo, x1 of W<Qip such that r o cp = (xo ~ Std) El:l 
(x1 ~ Std). In this case, IIt consists of one supercuspidal representation and 
one non-supercuspidal discrete series representation, and IIi consists of two 
non-supercuspidal discrete series representations. 
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In this article we focus on the case (iii). We write 1fsc (resp. 7rctisc) for the su
percuspidal (resp. non-supercuspidal) representation belonging to IIf Similarly, we 
write Psc (resp. Pctisc) for the supercuspidal (resp. non-supercuspidal) representation 
belonging to IIi. 

We also need to consider the A-parameter 'ljJ obtained as the composite of 

WIQip X SL2((['.) X SL2((['.) swap SL2 factors WIQip X SL2((['.) X SL2((['.) ,f,1811 GSp4((['.). 

Let IIg (resp. II~) be the local A-packet attached to 1/J. We should clarify what IIg 
and II~ mean, since local A-packets for J has not been fully constructed yet ( see 
[GT19] for the construction of local A-packets for G). Recall that our </; satisfies 
r o </; = (<Po~ 1) EB (x ~ Std). This implies that det</;0 = x2. Therefore, the A
parameter 1/J' = 'ljJ ® x-1 factors through Sp4(C) C GSp4(C). Since Sp4(C) = SC\, 
1/J' can be regarded as an A-parameter for both Gad = SO5 (Qp) and Jad_ Local 
A-packets for SO5 (Qp) was fully constructed by Arthur [Art13]. In particular we 
have the local A-packet II!?5, which can be regarded as a subset of II(G). We put 

IIg = {K' ® (x o sim) I Jr' E II!?5 }, where sim: G(Qp)--+ Q; denotes the similitude 
character and x is regarded as a character Q; --+ (C x by the local class field theory 

WQ~ ~ Q;. As for Jad, the local A-packet II~;d for the particular A-parameter 1/J' 
was constructed in [Gan08]. Therefore we get the local A-packet II~ in the same 
way as above. 

We call IIg and II~ the local Saito-Kurokawa A-packets. The structure of them 
are as follows: 

- IIg consists of 1fsc and a non-tempered representation 1I"nt· 

- II~ consists of a supercuspidal representation P~c and a non-tempered represen-
tation Pnt· As a consequence of our main theorem, P~c turns out to be equal to 
Psc (see Remark 3.2 (ii)). 

3 Main Theorem 

We continue to write G for GSp4 and J for its unique non-trivial inner form over 
Qp. To state our main theorem, we introduce the (basic) Rapoport-Zink tower for 
GSp4, which is the GSp4-version of the Lubin-Tate tower. It is a projective system 
of rigid spaces over ij~r indexed by compact open subgroups of G(Zp)- Here are 
basic geometric properties of the Rapoport-Zink tower for GSp4: 

- MaczvJ is a 3-dimensional smooth rigid space over ij~r ( unlike the Lubin-Tate 
case, we do not have an elementary expression of it). 

- MK / Ma(Zp) is a finite etale covering. In particular, each MK is a 3-dimensional 

smooth rigid space over ij~r. If K is an open normal subgroup of G(Zp), then 
MK/Ma(Zv) is a Galois covering with Galois group G(Zp)/ K. 

As in the Lubin-Tate case, the tower { MK} KcG(Zv) is equipped with an action of 

G(Qp) x J(Qp)- We put H}i,z = ~K H~(MK®fj,1,r(Cp, Qc), which is a representation of 
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G(Qp) x J(Qp) x WQp· For an irreducible smooth representation p of J(Qp), we put 
Hk{[p] := (Exti(Qpi(H~z, p)Vcsm)sc, where (-)sc denotes the G(Qp)-supercuspidal 

part. For the definition of (-)Vcsm, see [Mie14, Notation]. Note that Hk{[p] is a 
representation of G(Qp) x WQp· Since the split semisimple rank of J is 1, we have 

Hk{[p] = 0 for j 2: 2. 
Let <p E <I>( G) be an £-parameter satisfying Proposition 2.4 (iii); namely, there 

exist a 2-dimensional irreducible representation cp0 of WQp and a character x of WQp 
such that r o <p = (cp0 ~ 1) EB (x ~ Std). We use the same notation as in the previous 
section. We are interested in how IIg, IIi, IIi and II~ contribute to H~z- Now we 
can state our main theorem: 

Theorem 3.1 (joint work with Tetsushi Ito) We have the following: 

(.) Hi,O [ ] C:,,! {1fsc ~ </>o(i) i = 3, Hi 1 [ ] O 1 RZ Psc - O RZ Psc = , 
i # 3, 

Hi,0[ '] ~ {1fsc~</>o(i) i=3, Hi,1[ '] O 
RZ Psc O i # 3, RZ Psc = · 

('") Hi,O [ _ ] C:,,! {1fsc ~ x(l) i = 3, 
11 RZ P<l1sc - Q 

i # 3, 
Hi,1 [ . l C:,,! {1fsc ~ x(2) i = 4, 

RZ P<l1sc - Q 
i # 4. 

( ... ) Hi,O [ ] C:,,! {1fsc ~ x(2) i = 4, 
111 RZ Pnt - Q 

i # 4, 
Hi,1 [ l C:,,! {1fsc ~ x(l) i = 3, 

RzPnt - O 
i # 3. 

Here are very rough summary of the main theorem: 

- A piece of the local Langlands correspondence for G and J appears in H!z
This is similar to the Kottwitz conjecture (see [Rap95]). 

- The non-tempered local A-packet II~ contributes to H!z-

- There exists a supercuspidal representation of G(Qp) appearing outside the 
middle degree. In fact, it happens only when its £-parameter has non-trivial 
SL2 (C)-part (see Remark 3.2 (iv)). 

Remark 3.2 (i) By working in a suitable derived category, we may also consider 
the derived version Hiiz[P] := (Ext~(Qp)(RrRz, p)Vcsm)sc of Hk{[p]. We can 
recover <p and 'ljJ from the W Qp -action and the Lefschetz operator on Hiiz [P<lisc] 
and Hiiz[Pntl, respectively (cf. [Dat12] in the GLn case). 

(ii) By using Theorem 3.1, we can prove that the semisimple £-parameters attached 
to 1fsc, Psc and P~c by Fargues-Scholze [FS] are equal to </>lwQp. This implies that 
Psc ~ P~c· 

(iii) By using recent results of Fargues-Scholze [FS], we can improve the theorem 
above. We will explain it elsewhere. 

(iv) For the £-packets of type (i) and (ii) in Proposition 2.4, we can obtain similar 
results as Theorem 3.1 (i). On the other hand, up to now we cannot treat the 
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£-packets of type (iv) in Proposition 2.4. The reason is that the theory of local 
A-packets for J ( or Jad) is not available in this case. 

The proof of Theorem 3.1 is given by combination of local and global methods. 
First we recall some results obtained from local geometry. 

Theorem 3.3 ([IM]) Unless 2 ~ i ~ 4, Hhz,sc = 0. 

Here 2 (resp. 4) appears in the statement since it is equal to dim Ma(Zv) - dim Mred 
(resp. dimMa(Zv) + dimMrea), where M is the natural formal model of Ma(Zv)· 

The equality dim Mred = 1 is related to the fact that the supersingular locus of the 
Siegel threefold is 1-dimensional. The method of the proof of Theorem 3.3 is similar 
to the author's proof of HLT sc = 0 for i -=/- n - l ( see [MielO]), but it is much more 
complicated, mainly becaus~ connected components of M are not affine ( even not 
quasi-compact). 

Theorem 3.4 The representation Hlz,sc of J(Qp) does not contain non-supercuspidal 
subquotient. 

This is a consequence of Theorem 3.3 and the fact that Hiz,G(IQlv)-sc,J(IQlv)-non-sc and 

Hiz,G(IQlv)-sc,J(IQlv)-non-sc are related by the Zelevinsky involution (see [Mie]). 

Theorem 3.5 ([Mie20]) Assume that the central character of 'lrsc is trivial on 
p2 C GSp4 (Qp) (we can always twist 'lrsc by a character so that it satisfies this 
condition). Then, the representation (fu~x H!((Mx/p2 ) ®ijir Cp, Qe))[1r~-;J of J(Qp) 
has finite length. 

This was proved by using the duality isomorphism between the Rapoport-Zink tower 
for G and that for J due to [KW] and [CFS]. 

Next we discuss the global aspect. As in the Lubin-Tate case, we use the relation 
between the Rapoport-Zink tower { Mx} KcG(Zv) and the Siegel threefold. For a 
compact open subgroup K' C G(A=), let Shx, denote the Siegel threefold over Q 
with level K'. We put H!(Sh) = ~K' H!(Shx, ®IQIQ, Qe), which is a representation 

of G(A=) x Gal(Q/Q). This representation is rather understood by using the global 
Langlands correspondence for GSp4 (see [Tay93] and [Wei09]). 

Let us fix a sufficiently small compact open subgroup KP C G(A=,P). As in 
Section 2, for a compact open subgroup K c G(Qp) we can define a rigid analytic 
open subset Sh;-;1 .nur of Sh~Kv .nu,, which is called the supersingular reduction locus. 

,-....ep ,'V!.p 

The following is an analogue of Proposition 2.3: 

Proposition 3.6 (p-adic uniformization, [RZ96]) We have an isomorphism 

where J is a sui_!;,able inner form of GSp4 ov~ Q such that J ®IQI lR is anisotropic 
modulo center, J ®IQI A,_=,P ~ G ®IQI A,_=,P and J ®IQI Qp ~ J. 
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nr t Hi(Shss-red) 1· Hi (Shss-red ff' lfl\ ) h" h · t vve pU n.ur = llmKK KKP n.ur C>9ijur\l.,p, '\£.£ , W IC IS a represen a-
1\!p ----+ ' p ,"lp p 

tion of G(Qp) x WIQlp· By Proposition 3.6, we have the Hochschild-Serre spectral 
sequence 

E;,s = Ext~(IQlp)(H~z8(3), A(])i)sc =? Hr+s(Shij~:ed)sc, 

which is due to [Far04]. Here A(])i is the space of automorphic forms on J(A) 
which are trivial on ](R). By Boyer's trick and a result in [IM20] or [LS18], we have 
Hr+s(Sh~-red) ~ Hr+s(Sh) Therefore we obtain· (Qir SC C SC• • 

Proposition 3. 7 We have a spectral sequence 

Now we are ready to sketch the proof of Theorem 3.1. The point is that we begin 
with Hk{[Pnt]- By using Can's result [Gan08], we can choose 

- a cuspidal automorphic representation II of G(A) 

- and a cuspidal automorphic representation E of J(A) 
such that 

- IIP ~ nsc and II00 contributes to H;(Sh) and H:(Sh). 

- if II' is an automorphic representation of G(A) such that II~ ~ IIv for all places 
v =/- p, oo and II; is supercuspidal, then II = II'. It is a kind of the strong 
multiplicity one theorem. 

- EP ~ Pnt and E 00 ~ 1. 

- if E' is an automorphic representation of J(A) such that E~ ~ Ev for all places 
v =/- p, then E = E'. It is a kind of the strong multiplicity one theorem. 

- II00 ,P = E 00,P; recall that we have G(A.00,P) = ](A.00 ,P). 

By taking the II00,P-isotypic part of the spectral sequence in Proposition 3. 7, we get 
a short exact sequence 

0-+ Hi~l,l[Pnt]-+ 'ifsc ~ H~-i(Sh)[II00](3)-+ Hk~[Pnt]-+ 0. 

By assumption, H~-i(Sh) [II00] (3) =/- 0 only if i = 2, 4. On the other hand, by 
Theorems 3.3 and 3.4, we have H~i[Pnt] = H~~[Pnt] = 0. Hence we conclude 

Next we investigate Hk{[Pctisc]- We choose II and E similarly as above, but so 
that II00 contributes to HJ(Sh). Then we get a short exact sequence 

Since HJ(Sh)[II00](3) is 2-dimensional indecomposable as a WIQlp-representation, it 
suffices to determine dim Hk{ [PctiscH'ifsc]. This is done by using the following facts: 
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[Pnt] + [Pctisc] = [induced] in the Grothendieck group of finite length representa
tions of J(Qp)-

- I::0(-l)i dim Ext:,(IQip)/p"(V, induced) = 0 for every J(Qp)/p2 -representation 
V of finite length ([SS97]). 

To apply the second fact, we need the finiteness result in Theorem 3.5. 
We can treat H~{ [Psc] and H~{ [P~cl in the same way. These cases are the simplest 

b H i,l [ ] Hi,l [ , ] 0 ecause RZ Psc = RZ Psc = . 
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