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NONTEMPERED RESTRICTION PROBLEMS FOR CLASSICAL 
GROUPS 

WEE TECK GAN 

1. Introduction 

This short note is based on a talk given at the RIMS conference "Automorphic forms, 
Automorphic representations, Galois representations, and its related topics", held at Kyoto 
in January 2021. We thank Takuya Yamauchi for his kind invitation to deliver a talk at this 
conference. Being based on a talk, the style of this note will be somewhat informal. 

The restriction problem referred to in the title is that arising in the Gross-Prasad conjec­
ture. Let Gn = GLn, Un or SOn over a local field F. For 7r E lrr(Gn) and O' E lrr(Gn-1), 
define a branching multiplicity 

m(1r,a-) = dimHoman_ 1 (1r,a-). 

One has the following multiplicity-at-most-one result, due to Aizenbud-Gourevitch-Rallis­
Schiffman [AGRS] and Sun-Zhu [SZ]: 

Theorem 1.1. 

m(1r,a-) ~ 1. 

The GP conjecture [GGPl] proposes a determination of m(1r, a-) when 1r and a- belong to 
generic L-packets. 

In the case of GLn x GLn-1, one has: 

Theorem 1.2. If 1r and a- are both generic (i.e. supports nonzero Whittaker functionals}, 
then 

m(1r,a-) = 1. 

In particular, the theorem covers every tempered irreducible representation of GLn, This 
leads to the natural question: 
Question: What if 1r 0 a- is not generic? 

In the recent paper [GGP2], Gross, Prasad and I proposed an answer to this question 
for representations in the automorphic spectrum. The purpose of this note is explain this 
conjecture. After some preliminaries in §2, we discuss the case of GL in §3 before moving to 
the classical groups in §4. 

2. Preliminaries 

In this section, we introduce some basic notions needed to formulate our conjecture. 
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2.1. Automorphic Spectrum. The automorphic spectrum of GLn(F) is the subset of the 
unitary dual consisting of those unitary representations of GLn ( F) which occur in the spectral 
decomposition of 

L~(GLn(k)\ GLn(A)) 

for some global field k with F = kv for some place v. Here X denotes a fixed (but arbitrary) 
unitary central character. 

For G = GLn, denote the automorphic spectrum by 

ctemp C Gaut C cunit (Unitary dual). 

Arthur's conjecture give a description of the elements of caut in terms of the notion of A­
parameters. 

2.2. Arthur Parameters. A local A-parameter for GLn over a p-adic field Fis a conjugacy 
class of maps 

such that 
1P(WF) is bounded in GLn(C). 

One may write the irreducible decomposition of 1P as: 

1P = ffi Mi® [ai] ® [bi] 

where M; an irreducible representation of WF (with bounded determinant) and [a] denotes 
the irreducible representation of SL2 of dim. a. Sometimes, we will also consider the decom­
position 'Ip= tBdMd ® [d], as [d] runs over the irreducible representations of SL2(C)A. 

The restriction of 'Ip to SL2(C)A corresponds to a unipotent conjugacy class in GLn(C), 
i.e. a partition of n. We call this the type of '/P· More precisely, if 'Ip= tBdMd ® [d], then the 
type of 1P is the partition 

(ddimMd) = (ldimM1 2dimM2 ) 
d2:l , , ········ · 

For example: if 'Ip is trivial on SLf, then 'Ip is simply a tempered L-parameter, and its type 
is trivial. 

One can view the maximum d occurring in 1P = tBdMd® [d] as a measure of nontemperedness 
of '/P· 
2.3. L-parameter associated to an A-parameter. To each A-parameter '/P, we can as­
sociate an L-parameter 

</>,p : WF X SLf ---+ WF X SLf X SL} ---+ GLn(C) 

given by 

( ( lwl1;2 )) 
</>,p(w,g)=1P w,g, lwl-1;2 . 

The map 1P c-+ </>,p gives an injection 

{ tempered £-parameters} Y {A-parameters} Y {£-parameters} 

whose image (i.e. the L-parameters of the form</>,;,) are L-parameters of Arthur type. 
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2.4. Arthur Packets. Arthur's conjecture postulates that to each 'lj;, one can associate a 
finite (multi-)set II,t, of irreducible unitary representations (in the automorphic spectrum). 
One basic property that II,t, should have is 

II,t, :) IIi,i, (L-packet associated to ef>,t,)­

For GLn, it turns out that 

and in particular is a singleton. Hence 
-aut 
GLn = {II,t, : 1/; an A-parameter}. 

LJ -aut 
= GLnp (finite partition). 

type P 

The representations in II,t, are said to be of Arthur type and can be constructed as follows. 

2.5. Representations of Arthur type. Suppose first that 'lj; is irreducible: 

1/; = p@ [a] 0 [b]. 

Let 
St(p, a) = unique irred. submodule of 1rpl - l(a-l)/2 x ... x 1rpl - 1-(a-l)/2 

be the generalized Steinberg representation with L-parameter p@ [a]. Then II,t, is the unique 
irreducible quotient Speh(p, a, b) of 

St(p,a)l - l(b-1)/2 x ····· x St(p,a)I - 1-(b-1)/2_ 

If 1/; = EB;'l/;; with 'lj;; irreducible, then 

II,t, = II,t,1 x .... x II,t,, (parabolic induction). 

As an example, 1/; = [n] gives trivial representation of GLn(F). 

2.6. Unitary Restriction Problem. We are essentially ready to formulate our conjecture. 
Before that, it is useful to recall a result of Clozel and Venkatesh which concerns a unitary 
versiopn of our restriction problem. 

More precisely, consider the direct integral decomposition of II,t, restricted to GLn-1: 

II,t,IGLn-1 = r - unit m(a-). O"dµ,t,(a-) 
jGLn-1 

One is interested in understanding the support of the spectral measure dµ,t,: 

---- unit 
supp(dµ,t,) c GLn-1 

Theorem 2.1 (Burger-Sarnak). 
---.. aut 

supp(dµ,t,) c GLn-1 . 

Theorem 2.2 (Clozel). All representations in supp(dµ,t,) are of the same type Q,t,- Moreover, 
Q,t, depends only on the type P of 'lj;. 
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Clozel's theorem implies there is a map 

f : {Partitions of n} ---+ {Partitions of n - 1} 

such that any Arthur type representation of GLn of type P is supported on Arthur type 
representations of type f(P) when restricted to GLn-1· Venkatesh [V] explicated this map: 

Theorem 2.3 (Venkatesh). 

f(n1, n2, .. , nr) = (n1 - 1, n2 - 1, ... , nr - 1, 1, ... 1) 

Here we discard those n;-1 which are 0, and we add the appropriate number of l's. Indeed, 
Venkatesh considered a number of such problems: restriction from GLn to GLm, induction 
from GLm to GLn and tensor product of two representations of GLn. Since the unitary 
restriction problem is a coarser version of the restriction problem in smooth representation 
theory, Venkatesh's theorem serves as a first approximation to the answer for the smooth 
restriction problem. 

3. Conjecture and Theorem: GLn case 

In our paper [GGP2], Gross, Prasad and I made the following conjecture 

Conjecture 3.1. Let 'I/; (resp. 'lj;') be an A -parameter of GLn (resp. GLn-1)- Then 

m(II,t,, II,t,') = 1 ~ ( 'I/;, 'I/;') is a relevant pair of A-parameters 

We verified our conjecture when, for example, '1/;lsLD and '1/;'lsLD are trivial. Subsequently, 
2 2 

Max Gurevich [G] showed 

m(II,t,,II,t,,) = 1 ===} ('l/;,'1/;') is relevant, 

and shortly after, Kei Yuen Chan [C] showed 

Theorem 3.2 (KY Chan). The above Conjecture holds. 

In this section, we shall explain the notion of "relevance" which occurs in the conjecture 
and various ways of understanding it. 

3.1. Relevant A-parameters. Given A-parameters 'I/; and '1/;1 of GLn and GLn-1, we say 
('I/;, 'I/;') are relevant if we may write 

'I/;= (E9 <Pi® [b;]) EB (E9 PJ ® [cj - 1]) 
iEJ JEJ 

and 

with b;, CJ 2 1. 

For example: 

• when all b; and CJ= 1: the pair ('I/;, 'I/;') is always relevant; this is the tempered/generic 
case; 

• when all Cj = 1: here 'I/;' is related to 'I/; as in Venkatesh's theorem above. 
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In general, we may think of 'lj; and 'lj;' as "within distance 1 of each other". 

Here is another formulation. Write 

and 'I/J' = ffiNd 0 [d]. 
d 

Then ('lj;, 'l/J') is relevant if there are decompositions of WDp-modules: 

Md = Mt CD Mi and Nd = Nt CD Ni 

such that 

Mt = Ni+i and Mi = N;J:_ 1 . 

This formulation is more convenient for extending the notion of relevance to classical groups. 

Examples: 

(1) When 'ljJ = [n], II,p is the trivial representation of GLn, so we know its restriction to 
GLn-1· The only 'lj;' such that ('I/J,'lj;') is relevant is 

'l/J' = [n-1]. 

(2) Now take 'lj;' = [n - 1], so that II,p, is the trivial representation of GLn-1· The only 
'lj;'s for which ( 'lj;, 'l/J') is relevant are: 

- 'l/J= [n] 

- 'ljJ = [n - 2] + p, with 2-dim tempered p. 
This corresponds to the fact that "GLn-1-distinguished nontrivial reps of GLn are 
theta lifts from GL2". 

3.2. Relevance and Correlator. Zhiwei Yun has given a more conceptual formulation of 
the notion of relevance. Given 

'ljJ: WDp x SL1--+ GL(V) and 'I/J': WDp x SL1--+ GL(W), 

the maximal torus of SL1 gives a ex-action and hence a WDp-stable Z-grading on V and 
W. Then End(V), End(W), Hom(V, W) and Hom(W, V) also inherit a grading. 

The unipotent elements 

are elements of degree 2. 

Lemma 3.3. The pair ('lj;, 'l/J') is relevant if and only if there exists degree 1 elements T E 

HomwvF(V, W) and SE HomwvF(W, V) such that 

e = S o T and e' = T o S. 

The map T in the above lemma is called a correlator between 'ljJ and 'lj;'. 
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3.3. Relevance and Moment Map. One can reformulate Yun's interpretation in more 
geometric terms, in terms of a moment map arising in theta correspondence. The group 
GL(V) x GL(W) acts on the symplectic variety 

T*(V* ® W) = (V* ® W) x (V ® W*). 

This action is Hamiltonian and thus give rise to moment maps: 

Hom(V, W) x Hom(W, V) 

~ ~ 
gl(V) gl(W) 

where 

p(T, S) = So T and q(T, S) = To S. 

Hence ( 'l/;, 1//) is relevant if and only if there exists a W D F-invariant degree 1 element (T, S) 
such that p(T, S) = e and q(T, S) = e'. 

3.4. Philosophy of Sakellaridis-Venkatesh. We can view the previous discussion through 
the philosophy of Sakellaridis-Venkatesh [SV] in the relative Langlands program. In the 
relative Langlands program, one considers the following 

Problem: If X = H\G is a G-spherical variety, describe 

• the decomposition of L2 (X); 
• the subset Irrx(G) = {7r E Irr(G): 71" <--+ C 00 (X)}. 

The monograph [SV] formulates a conjectural answer: 

• there is a dual group xv equipped with i : xv x SL2 ➔ cv; 
• there is a Z-graded finite-dimensional representation Vx of xv, 

so that 

• representations in L2 (X) or Irrx(G) are those whose A-parameters factor through i; 
• the spectral measure of L2 (X) is described by the L-function associated to Vx. 

In our case, X = (GLn x GLn-1)/ GL~_1 and xv= cv = GLn x GLn-1 

Recently, Ben-Zvi-Sakellaridis-Venkatesh reformulated the above as a duality between cer­
tain Hamiltonian G-varieties. More precisely: 

• Starting from a Hamiltonian G-variety Y, one can attach a dual Hamiltonian cv -
variety yv; 

• A Hamiltonian G-variety can be quantized to a unitary rep. Ily of G; 
• the spectral decomposition of Ily, or the description of 

Irry( G) = { 7r E Irr( G) : Homa(IIy', 7r) =/= O}, 

is governed by the symplectic geometry of yv. 
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One thus have a picture: 

{Hamiltonian G-var. Y} -- {Hamiltonian cv -var. 

I >< I 
{Unitary rep. Ily of G} {Unitary rep. Ilyv of cv} 

where the vertical arrows denote quantization, the horizontal arrows denote the purported 
duality of Hamiltonian varieties and the diagonal arrows indicate that the spectral problem 
in the bottom row is governed by the symplectic geometry of the Hamiltonian variety in the 
top row. 

Let us give some examples of quantization here: 

• If Y = T*(X) (X a G-variety), then Ily = L2(X). 
• If Y = O* '----+ g* a coadjoint orbit, the 1Ty E Irr(G) (Orbit method). 
• If Y = W = X + X* (symplectic space with Lagrangian X) with G 

Ily = L2 (X) is a Weil representation of Sp(W). 
Sp(W), 

It is reasonable to expect that the decomposition of Ily is controlled by the underlying 
geometry of Y, e.g. through its moment map 

µy: y---+ g*. 

Indeed, in the unitary setting, one would expect the spectral support of Ily to be described 
by the image of the moment map µy, through the orbit method. As another example, one 
has the process of symplectic reduction: 

Given O* C g*, µ-1 (O*)//G is a symplectic variety 

The quantization of this process is the extraction of the multiplicity space of 1ro• in the 
spectral decomposition of Ily. 

What I find intriguing about the BZSV-philosophy are: 

• Instead of using the geometry of Y, they propose that the spectral decomposition of 
Ily is related to the geometry of yv. 

• They highlighted that period or branching problems come in pairs: Ily and Ilyv. 

One can thus examine the period problems that have been studied in the literature and try 
to identify their other half. What new insights does one get? 

The above discussion is largely conjectural, because of the following: 
Problems: 

• there is as yet no clear geometric definition of which class of Hamiltonian G-variety 
to consider for the duality theory; 

• there is as yet no natural geometric construction of Y H yv. 

There is one case when one has a good idea what yv should be. When X is a G-spherical 
variety, let Y = T*(X). Then the quantization of Y is 

Ily = L2 (X) and IIy' = C~(X). 
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In this case, yv is something like 

at least when t(SL2) is trivial. 

3.5. Our example. In our case, X = (GLn x GLn-1)/ GL~_1, 

Xv= Gv = GLn X GLn-1 and Vx = V* @W XV Q9 W*. 

So 

Y = T*(X) and yv = Vx = V*@ W x V@ W* = T*(V*@ W). 

Our conjecture can be viewed as giving a precise formulation of the expectation: 

The symplectic geometry of yv (via its moment map) governs the decomposition of the 
quantization of Y. 

We may exchange the role of Y and yv. The quantization of yv is 

L 2(V*@ W) = a Weil representation of GL(V) x GL(W). 

So we expect the theta correspondence to be governed by the symplectic geometry of Y! 
Hence, in the sense of the BZSV-philosophy, 

Gross-Prasad periods is dual to theta correspondence. 

4. Classical Groups 

For the rest of this note, we consider the case of G x H = S02n+1 x S02n, though one can 
consider the general case: S02n+1 x S02m- So cv = Sp2n(IC) and Hv = S02n(C). Hence an 
A-parameter for G is a symplectic representation 

'I/;: WDp x SLf---+ SP2n(C) 

whereas an A-parameter for His an orthogonal representation 

'I/;': WDp x SLf---+ 02n(C). 

We may write 

and 1/;1 = ffi Nd@ [d]. 
d 

4.1. Relevance and Moment Map. The notion of relevance of the pair ('I/;, 'I/;') can be 
imported verbatim from the GL case, provided we use the appropriate formulation. More 
precisely, with 'I/; and 1/;1 decomposed as above, we say that ('I/;, 'I/;') is relevant if there are 
decompositions of W Dp-modules: 

Md = M;J: EB Mi and Nd = N;J: EB Ni 

such that 
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We can also formulate this notion in terms of a moment map. With cv = Sp(W) and 
Hv = SO(V), Gv x Hv acts naturally on the symplectic variety W* @V, giving the moment 
map diagram: 

e E sp(W) e' E so(V) 

The pair of A-parameters ( 'lj;, '1//) is relevant if and only if there exists a degree 1 element 
(correlator) TE HomwoF(W, V) such that 

T* o T = e and T o T* = e' 

where T* E HomwDp(V*, W*) ~ HomwDp(V, W) is the adjoint map. 

4.2. A-Packets. Given A-parameter 'lj; of G = S02n+l, Arthur associates an A-packet II,i, 
of finitely many unitary reps in the automorphic spectrum. Though one knows much less 
about II,i, compared to the case of GLn, one does know the following: 

• If </.i,t, is the L-parameter associated to 'lj;, then II~'" C II,i,. 

• Let 
A,i, = 1ro(Zcv('lj;)). 

Then II,i, is a representation of G x A,i,: 

II,i, = E9 T/ @ 11" '7 

7]Elrr(A,µ) 

where 11"'7 is a unitary rep. of G of finite length (maybe 0). Moeglin has shown that 
II,i, is multiplicity-free in the p-adic case. 

The complications for A-packets of classical groups include 

• II,i, is not a singleton, in general. 
• while 

(jaut = LJ II,i,, 
,t, 

these unions are not disjoint. So a representation 1r E (jaut may have multiple types. 

For example, a nongeneric supercuspidal rep. belongs to a tempered L-packet but may 
also belong to a nontempered A-packet, such as a Saito-Kurokawa A-packet for S05 • 

However, a result of Moeglin says that an unramified rep. in (jaut has a well-defined type. 

4.3. Questions. Given 1r E Irr( G) and r7 E Irr(H) of Arthur type, we would like to determine 

m(1r,r7) = dimHomH(1r,r7). 

We may consider this at various levels: 

• For which A-parameters ('lj;, 'lj;') is 

m('lj;,'lj;1) = dimHomH(II,i,,II,i,,)-/- O? 
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• If m('lj;, 1//) is nonzero, for which (rp/) is 

m(7rrJ,u'l,) =/- O? 

• Determine m ( 7r 'I, CT rJ') precisely. 

Given the results in the GL setting, one might expect the following implication: 

m('lj;, 'l/J') =/- 0 ===;, ('lj;, 'l/J') is relevant. 

It turns out that this is not true. 

4.4. A Counterexample. To give a counterexample to the above naive expectation, we will 
consider A-parameters 'ljJ and 'lj;' which are trivial on Wp, so they are just representations of 
SLf x SLt. For any subset JC {1, 2, 3, ... , n }, set 

'l/JJ = ffi[2i]@ [1] EB ffi[l]@ [2j]. 
jEJ 

This is an A-parameter for some S02N+l· We will take 

'lj;1 = ([1] + [3] + ... + [2n - 1])@ [l]. 

so that 'lj;' is a discrete series L-parameter for some S02M-

We shall show that there is a supercuspidal representation 

7r E nrr,t,J, such that m(7r,'I/J1) = 1. 
J 

Hence, m('l/JJ.'l/J') =/- 0 for any J, but 

('l/JJ,'l/J1) is relevant~ J = 0 or {1}. 

How does one show the existence of 7r? Let ~ : SLf ---+ SLf x SL1 be the diagonal map 
and set 'l/J'y = 'l/JJ o ~- Observe: 

n 

'lj;'y = p := E9[2j] (a discrete series L-parameter indept. of J) 
j=l 

We now use two results of Moeglin: 

• The L-packet of Wp has a unqiue supercuspidal member 7r. 
• 7r lies in any A-packet II,t, for which 'lj;t!. = p. 

This gives the desired supercuspidal 7r E nJ II,t,r To show m( 7r, 'lj;') = 1, one applies the GP 
conjecture (proved by Waldspurger) to the tempered parameters (p, 'l/J'). 

4.5. The Conjecture for L-packets of Arthur Type. In view of this beautiful but un­
fortunate counterexample, what can we expect in the case of classical groups? Given A­
parameter ('l/J,'l/J'), consider its associated L-packet II~,i, x II~,i,,· Then we conjectured the 

following in [GGP2]: 
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Conjecture 4.1. 

m( 1>,i,, if>,i,,) -f= 0 <;==} ( 'lj;, 1j/) is relevant, 

in which case 

m( 1>,i,, if>,i,,) = 1 

Moreover, the unique representation in the L-packet with nonzero contribution is given as a 
character of the component group by the same recipe as in the generic case of [GGPl]. 

Thus, this conjecture may be viewed as the natural extension of Gross-Prasad conjecture 
from the class of tempered L-packets to the larger class of L-packets of Arthur type. 

4.6. The Conjecture for A-packets. What can we expect for the whole A-packet? We 
believe: 

• If 'lj; and 'lj;' are both trivial on SLf, then 

m('lj;,'lj;') -f= 0 <;==} ('lj;,'lj;') is relevant. 

• If 1r and a- are reps of Arthur type, then m( 1r, a-) -f= 0 implies 

there exists relevant ( 'ljJ, 'lj;') such that 1r E II,i, and a- E II,i,, 

Observe that this conjecture is still far from answering the list of questions we listed earlier. 
So much work remains to be done fora full understanding! 

4. 7. Example: Automorphic Descent. We conclude this note with an explanation of how 
the theory of automorphic descent (by Ginzburg-Rallis-Soudry) and its extension (twisted 
automorphic descent by Jiang-Zhang [JZ]) is explained by our conjectures. 

Start with an elliptic global L-parameter for, say S02n+1: 

II= EBiIIi with L(l, IIi, A2) = oo for each i. 

The goal of automorphic descent is to produce the generic cuspidal representation in the 
associated L-packet, and more generally the whole L-packet. For this, one may think of II 
as a cuspidal representation of fL GLni, which is a Levi factor M of a parabolic subgroup of 
S04n· From this, one constructs the descent as follows: 

• consider iterated residue at (1/2, ... , 1/2) of the Eisenstein series of S04n associated 
to the induced rep II on M. The residue is a square-integrable automorphic form 
Res(II) with A-parameters 

II 0 [2] = EB IIi 0 [2]. 

• Consider the Bessel descent to S02n+1 and ask: for which elliptic A-parameter ~ of 
S02n+1 is 

Bessel(Res(II), ~) -f= O? 

The global analog of our conjecture says that the A-parameters of Res(II) and ~ should be 
relevant for this nonvanishing to happen. This can hold only if ~ = II and explains why 
automorphic descent produces elements in the L-packet associated to II. 
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