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MODULAR FORMS ON EXCEPTIONAL GROUPS 

AARON POLLACK 

ABSTRACT. The purpose of this note is to give an update about some of our results on the so-called 
modular forms on quaternionic exceptional groups. 

1. INTRODUCTION 

Suppose G is a reductive adjoint exceptional group over Q, with G(R) quaternionic. This means 
that G(R) is one of the adjoint groups G2,2, D4,4, F4,4, E6,4, E1,4, Es,4, where the notation means 
that in case G(R) is of type G2 then it is of rank two, and otherwise it is of rank four. These 
groups possess special cohomological automorphic forms, called the quaternionic modular forms. 
They were singled out for study by Gross-Wallach [GW96] and Gan-Gross-Savin [GGS02]. 

One feature of quaternionic modular forms is that they possess a robust Fourier expansion and 
Fourier coefficients, similar to the holomorphic Siegel modular forms; this is the main result of 
[Pol20a], which follows an earlier result of Wallach [Wal03] in the same direction. With this semi­
classical notion of Fourier expansion in hand, one can ask about the Fourier coefficients of some 
special quaternionic modular forms. Below we describe this Fourier expansion, and some results 
about the Fourier coefficients of special modular forms, from our papers [Pol20b, Pol21b, Pol20c]. 
These papers include results about 

(1) [Pol20b]: The minimial modular form on Es, and a distinguished modular form on E5; 
(2) [Pol20c]: The next-to-minimal modular form on Es; 
(3) [Pol21b]: Some cuspidal modular forms on G2. 

2. THE QUATERNIONIC EXCEPTIONAL GROUPS 

We begin by describing the internal structure of the quaternionic exceptional groups. A reference 
for this section is [Pol20a, sections 2,3,4] and the course notes [Pol21a]. 

Assume J is rational cubic norm structure, with J ® R having a positive-definite trace form. We 
assume the reader is familiar with these notions. For details, see the above references. In particular, 
it follows that J ® R is one of the following: 

(1) 
(2) 
(3) 

(4) 

R· 
' RxRxR; 

H3(C), the Hermitian 3 x 3 matrices with values in the positive composition algebra C, 
where C = R, C, H, 0 is the real numbers, the complex numbers, Hamilton's quaternions, 
or the octonions with positive-definite norm form; 
Rx V, where Vis a quadratic space of signature (1, n - 3). 

Out of J one can create a rational reductive adjoint group that has G(R) quaternionic. We 
will briefly review this construction. It is exactly the positive-definiteness condition on J ® R 
that corresponds to the fact that G(R) is quaternionic. The groups one obtains for G(R) are 
G2,2,D4,4,F4,4,E6,4,E7,4,Es,4, and a group isogenous to S0(4,n) in the corresponding order for J 
from above. For example, from J =Rone obtains a group of type G2 and from J = H3(C) one 
obtains a group of type E5. 
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Thus, suppose J is as above a rational cubic norm structure. Set WJ = Q EB J EB JV EB Q; we put 
on WJ Freudenthal's symplectic form and quartic form. See [Pol20a, section 3] or [Pol21a, chapter 
3] for this. Let HJ denote the group that preserves these forms up to similitude, and v : HJ ➔ 
GL1 this similitude. Thus if g E HJ, (, ) is Freudenthal's symplectic form and q : WJ ➔ Q is 
Freudenthal's quartic form, then (gv,gw) = v(g)(v,w) and q(gv) = v(g) 2q(v) for all v,w E WJ. 
Now, if H} is the subgroup of HJ with similitude equal to 1 and b(J)0 its Lie algebra, then in fact 
g(J),::,, sl2 EB b(J)0 EB V2 ® WJ, and this is a Z/2Z-grading. The Lie bracket in terms of this grading 
can be found in [Pol20a, section 4] or [Pol21a, chapter 4]. 

The Lie algebra g(J) also has a 5-step Z-grading, which we will require. It is as follows. Let e, f 
the standard basis of V2, and ( g 6) , ( 6 --91) , ( ~ g) in sl2 the usual sb-triple. Then 

• In degree 2: Q ( g 6) 
• In degree 1: e ® WJ 
• In degree 0: Q (5 __9i) EB b(J)0 

• In degree -1: f ® WJ 
• In degeee -2: Q (~ 8)-

We define GJ to be the rational reductive adjoint group associated to the Lie algebra g(J). Let 
PJ be the parabolic subgroup of G J whose Lie algebra consists of the elements in non-negative 
degrees in the above Z-grading. As a Levi subgroup, one may take HJ, which has Lie algebra the 
elements in degree 0. The unipotent radical NJ of PJ has Lie algebra consisting of the elements of 
positive degree. We set Z = [NJ, NJ] which is the subgroup of PJ whose Lie algebra consists of 
the elements of degree two. Note that NJ/Z can be identified with WJ via the exponential map. 

The maximal compact subgroup KJ of GJ(R) is isomorphic to (SU(2) x L~)/µ2, where L~ is a 
compact group whose Lie algebra is isomorphic to b(J)0 over C. We remark that the symmetric 
space G J (R) / K J does not have complex structure. 

3. THE DEFINITION OF QUATERNIONIC MODULAR FORMS 

We now give the definition of quaternionic modular forms. We will define them on the simply­
connected quaternionic groups. Our definition is essentially a paraphrase of the one in [GGS02]. 

Thus suppose G'., is the simply-connected Q-group associated to the Lie algebra g(J), where J is 
a cubic norm structure with J ® R having positive-definite trace form. Then G'.,(R) is connected, 
and the maximal compact subgroup KJ of G'.,(R) has a surjection to SU(2)/ µ2 which we fix in 
[Pol20a]. 

For a positive integer£, denote by ½ the representation Sym2e(C2) of KJ, so that the action 
factors through the surjection to SU(2)/µ2. 

Definition 1. A modular form for G'., of weight £ is a moderate growth automorphic form 'P on 
G'.,(Q)\G'.,(A), valued in½, that satisfies the following properties: 

(1) 'P(gk) = k-1 · 'P(g) for all g E G'.,(A) and all k E KJ; 
(2) Dei.p(g) = 0, for a certain linear differential operator De that we are about to define. 

To define the differential operator De, we first recall the Cartan decomposition of g(J)@R. Over 
C, we have g(J) ® C = tJ EB PJ, with PJ =Vi~ WJ as a representation of KJ. Note that PJ,::,, Pi 
and ½®Pi,::,, Sym2e+l(Vi) ~WJCDSym2e- 1(Vi) ~WJ. Denote by pr the KJ-equivariant projection 
½®Pi ➔ Sym2e-1(Vi) ~ WJ. 

Now, let {Xy},y be a basis of PJ and {X~},y the dual basis of Pi- Define De'P as 
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Here Xy<p denotes the right regular action; De(<p) is a function on GJ(A) valued in½® Pi and is 

independent of the choice of basis {X-y},,- Finally, we define Dt =pro fJ,. Thus Dt('P) is, by its 
definition, valued in Sym21- 1 (Vi) l8J WJ. 

For representation-theoretic reasons, one should think of the annihilation equation V1<p = 0 
as an analogue of the Cauchy-Riemann equations to the (non-complex) symmetric space XJ = 
GJ(R)/ KJ. That the modular forms satisfy this equation gives them their rigid structure and is 
the crucial part of the definition. 

Following [GGS02], one can make an essentially equivalent definition in terms of discrete series 
representations of the Lie group GJ(R): For£ sufficiently large depending on GJ, there is a discrete 
series representation 7f£ of the Lie group GJ(R) whose minimal KJ-type is ½- In this framework, 
a modular form of weight£ is a (Lie(GJ(R)),KJ)-module map 1re ➔ A(GJ(A)) from 7f£ to the 
space of automorhpic forms on GJ(A). In other words, one considers minimal KJ-type vectors in 
automorphic representations 7r = ®v7rv on GJ(A), when the archimedean component 1r00 is the 
discrete series representation 7r£. In terms of Definition 1, the two conditions of that definition are 
another way of saying that the KJ-type ½ occurs in 7r and that it is the minimal KJ-type at the 
archimedean place. 

4. THE FOURIER EXPANSION OF QUATERNIONIC MODULAR FORMS 

We now describe the Fourier expansion of quaternionic modular forms, following [Pol20a]. 
Suppose x: NJ(R) ➔ ex is a unitary character. One can consider all functions Fx: GJ(R) ➔ ½ 

satisfying 

(1) Fx(ng) = x(n)Fx(g) for all n E NJ(R), g E GJ(R) 
(2) Fx(gk) = k-1 · Fx(g) for all g E GJ(R) and k E KJ 
(3) DtFx(g) = 0. 

There is a notion of positive semi-definiteness of such characters of NJ(R), which we denote by 
X 2 0. See [Pol20a] for this. 

One has the following theorem. 

Theorem 2 ([Pol20a]). Suppose x: NJ(R) ➔ ex is a nontrivial unitary character. 

(1) If x is not positive semi-definite, then the only moderate growth function Fx as above is the 
0 function. 

(2) If x is positive semi-definite, then there is unique e-line of moderate growth functions 
Fx : GJ(R) ➔ ½ satisfying the three properties above. 

When x is a generic character of NJ and £ is sufficiently large, this was proved by Wallach 
[Wal03]. 

When x is trivial, one can also explicitly describe the space of all such functions Fx. They are 
closely related to holomorphic functions on the symmetric space for HJ(R), which is a Hermitian 
tube domain. See [Pol20a] for this. 

In fact, the main theorem of lac cit gives an explicit function Wx in the above e-line. This 
explicit function is defined in terms of the K-Bessel functions. Using it, we can describe the Fourier 
coefficients of a modular form, as follows. 

Thus suppose <p: GJ(Q)\GJ(A) ➔ ½is a weight£ modular form. Let <pz(g) = fz(Q)\Z(A) <p(zg) dz 
denote the constant term of <p along Z = [NJ, NJ]. One has the following immediate corollary of 
Theorem 2. 
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Corollary 3. For every nontrivial character x : NJ(Q)\NJ(A) ➔ ex there are locally constant 
functions ccp(X) : G J(AJ) ➔ C so that 

cpz(gJg=) = 'PNJ(gJg=) + L ccp(X)(g1)Wx(g=) 
x11,x2:o 

for gf E GJ(A1) and g= E GJ(R). Here 'PNJ is the constant term of cp along NJ. Moreover, the 
constant term 'PNJ can be related to holomorphic modular forms on HJ. 

If R <:;; C is a ring, one says that the modular form cp has Fourier coefficients in R if the following 
conditions hold: 

(1) The locally constant function ccp(X), when restricted to HJ(A1), are valued in R for every 
nontrivial character x of NJ(Q)\NJ(A); 

(2) The classical Fourier coefficients of the holomorphic modular form associated to 'PNJ has 
Fourier coefficients in R. 

We remark that, using the aforemented result [Wal03] of Wallach, Gan-Gross-Savin had previously 
succeeded in defining Fourier coefficients of modular forms on G2 associated to generic characters 

X· 
It is a perhaps surprising fact that, with the above definition, there exists modular forms on 

quaternionic exceptional groups with Fourier coefficients in small rings, such as Z, Q, Q. 
The idea of the proof of Theorem 2 is simple: One considers a general function Fx as above. 

When one writes down, in explicit detail, the differential equation DtFx = 0, and considers the 
two other equivariance properties, one finds that there is a unique moderate growth solution, up 
to constant multiple if x is positive semi-definite. And if x is not positive semi-definite, one finds 
that there are no moderate growth solutions. 

5. SOME SINGULAR AND DISTINGUISHED MODULAR FORMS 

In this section we describe our results on singular and distinguished modular forms on quater­
nionic exceptional groups. These results can be found in the papers [Pol20b, Pol20c]. 

First let us recall the definition of singular and distinguished Siegel modular forms. A Siegel 
modular form f(Z) of genus n with Fourier expansion f(Z) = I:r>o a1(T)e21ritr(TZ) is said to be 
singular if a1(T) f= 0 implies det(T) = 0. In other words, f is said to be singular if its nonzero 
Fourier coefficients are supported on matrices T with rank strictly less than n. The Siegel modular 
form f is said to be distinguished if the following two properties hold: 1) there exists T with 
det(T) f= 0 and a1(T) f= O; 2) there exists a square class KE Qx /(Qx)2 so that if a1(T) f= 0 and 
det(T) f= 0 then det(T) = K modulo (Qx)2. The papers [Pol20b, Pol20c] contain results about 
certain special quaternionic modular forms which are singular and distinguished, a notion we are 
about to define for the groups GJ. 

Note that the characters x of NJ(Q)\NJ(A) are parametrized by elements of (NJ/Z)(Qt = 
WJ(Qt ~ WJ(Q) where we have used that WJ is isomorphic to its dual by virtue of Freudenthal's 
symplectic pairing. For w E WJ(Q) and cp a quaternionic modular form on GJ, we will consequently 
write acp(w) for its Fourier coefficients. 

Definition 4. A modular form cp on GJ(A) is said to be singular if its Fourier coefficients satisfy 
acp(w) f= 0 implies q(w) = 0 for all w E WJ(Q). The modular form cp is said to be distinguished if 

(1) there exists w E WJ(Q) with q(w) f= 0 so that acp(w) f= O; 
(2) there exists a (unique) square class KE Qx /(Qx) 2 so that if acp(w) f= 0 and q(w) f= 0 then 

q(w) = K modulo (Qx) 2. 

Thus singular and distinguished quaternionic modular forms are analogous to singular and dis­
tinguished Siegel modular forms. 
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To describe the special modular forms we construct, we begin with a family of Eisenstein se­
ries. Thus let £ be a positive even integer. In [Pol20b] we study a family of ½-valued Eisenstein 
series EJ(g, s; £) on the groups G~ = Es. These Eisenstein series are associated to the induced 

representation (non-normalized induction) Ind~J(r5;f_}9 ), where 6pJ is the modulus character of PJ. 

Proposition 5. Suppose £ ~ 30. Then the sum defining the Eisenstein series EJ(g, s = £ + 1; £) 
converges absolutely. The value EJ(g; s = £ + 1;£) is a modular form on G~ of weight£. 

When£= 4, 8 the Eisenstein series EJ(g, s; £) are of interest at the special point s = £ + 1, even 
though this point is outside the range of absolute convergence: 

Theorem 6. Let EJ(g, s; £) be the Eisenstein series on G~ = Es just described. 

(1) {Gan [Gan00], Gan-Savin [GS05]) The Eisenstein series EJ(g, s;4) is regular at s = 5. 
The value 0min(g) = EJ(g,s = 5;4) is a square integrable automorphic form, which is a 
quatemionic modular form of weight 4. 

(2) (P. [Pol20c]) The Eisenstein series EJ(g, s; 8) is regular at s = 9. The value Bntm(g) = 
EJ(g, s = 9; 8) is a square integrable automorphic form, which is a quatemionic modular 
form of weight 8. 

To describe the special properties of these objects, we recall the notion of rank of elements 
of WJ. Let (, , , ) denote a polarization of the quartic form q on WJ, so that it is a symmetric 
four-linear form on WJ. 

Definition 7. All elements of WJ have rank at most 4. An element w of WJ has rank at most 3 
if q(w) = 0. An element w of WJ has rank at most two if (w,w,w,x) = 0 for all x E WJ. The 
element w has rank at most one if (w,w,x,y) = 0 for ally E WJ and all x E WJ with (w,x) = 0. 
Finally, 0 is the unique element of rank zero. 

Note that the rank is an invariant the HJ orbits on WJ. 
The following result is an application of theorems of Savin, in the context of Theorem 6. 

Theorem 8 (Savin). The modular forms 0min and Bntm are singular. Moreover, 

(1) [Sav94] The Fourier coefficients of 0min satisfy aem,Jw) c/= 0 implies w has rank at most 
one. 

(2) [Pol20c, Appendix] The Fourier coefficients of Bntm satisfy aentm(w) i= 0 implies w has rank 
at most two. 

The results of Savin from [Sav94] and [Pol20c, Appendix] are really about the wavefront set 
of certain spherical subrepresentations of degenerate principal series. We have simply stated the 
consequence of these results for 0min and Bntm for our own convenience. 

The modular forms 0min and Bntm are anologues to Es,4 of the singular modular forms constructed 
by Henry Kim on E703 [Kim93]. In fact, Kim's singular modular forms on GE7,3 = HJ(R) appear 
in the constant terms to HJ of 0min and Bntm• 

One can in fact say more about the Fourier coefficients of these special modular forms: 

Theorem 9 ([Pol20b],[Pol20c]). The singular modular forms 0min and Bntm have rational Fourier 
coefficients. 

We now briefly indicate the steps in the proof of this theorem, in the case of Bntm• The following 
steps constitute the paper [Pol20c]. 

(1) We develop a theory of "modular forms" on groups of type SO(3, n), n ~ 4, similar to the 
theory of modular forms on the quaternionic exceptional groups, and a theory of Fourier 
coefficients for these objects; 
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(2) We prove that a certain family of Eisenstein series on the groups SO(3, n) that are modular 
forms have rational Fourier coefficients; 

(3) We prove that rank one and rank two Fourier coefficients of 0ntm are equal to the Fourier 
coefficients of one of the above Eisenstein series, thus are rational; 

( 4) Applying the above result of Gordan Savin, the rank three and rank four Fourier coefficients 
of 0ntm are 0, thus giving the full rationality. 

The following corollary of Theorem 9 is proved in [Pol20b]. It follows almost immediately from 
the theory of Fourier coefficients on the groups G~ with results on arithmetic invariant theory from 
[Pol18]. 

Corollary 10 ([Pol20b]). There are nonzero singular and distinguished modular forms on E1,4 and 
E6,4, respectively. In more detail: 

(1) Fix a quaternion algebra B over Q that is ramified at infinity. Let G~3 (B) be the simply­

connected group of type E1,4 constructed out of B. The group G~3 (B) embeds in G~ = Es,4• 

Let 0B be the pullback of 0min under this embedding. Then 0B is a weight four modular 
form with rational Fourier coefficents. These Fourier coefficients satisfy a08 (w) i= 0 implies 
w has rank at most two. 

(2) Fix an imaginary quadratic field K. Let G~3 (K) be the simply-connected group of type E6,4 

constructed out of K. The group G~3 (K) embeds in G~ = Es,4- Let 0K be the pullback of 
0min under this embedding. Then 0K is a weight four modular form with rational Fourier 
coefficients. Moreover, it is distinguished: if a0K (w) i= 0 and w is rank four then q(w) = [K] 
in Qx /(Qx)2, where [K] is the square class corresponding to K. 

6. CUSPIDAL MODULAR FORMS ON G2 

The modular forms 0min and 0ntm are not cuspidal. Thus, one can ask if there exists cuspidal 
modular forms with algebraic Fourier coefficients. On G2, we have answered this question positively. 

Theorem 11. [Pol21b] Let w ~ 16 be even. Then there are nonzero cuspidal modular forms on 
G2 of weight w with all Fourier coefficients in Q. 

The outline of the proof of Theorem 11 is as follows. 

(1) First, we consider the theta lift, from Sp4 to SO(4,4). If f is an automorphic form on Sp4 , 

let 0(/) be its theta lift to SO(4, 4). Using very special data for the Weil representation 
that we write down, we show that if f is a Siegel modular form, then 0(/) is a quaternionic 
modular form on SO(4,4). 

(2) Next, we prove a simple formula for the Fourier coefficients of 0(!) in terms of those of f. 
In particular, if f is a level one Siegel modular form with Fourier coefficients in the subring 
R of C, then we prove that the quaternionic Fourier coefficients of 0(!) are all valued in R. 

(3) One next pulls back 0(/) to G2, under the embedding G2 ~ SO(4, 4). One shows that the 
Fourier coefficients of the pullback are finite sums of the Fourier coefficients of 0(!), and 
thus again live in R. 

(4) By a result of Rallis, 0(!) is cuspidal, and using the robust theory of quaternionic Fourier 
coefficients, it is easy to check that its pullback to G2 remains cuspidal. 

By taking the Siegel modular form f to have Fourier coefficients in Q, which can be done because 
GSp4 has a Shimura variety, one obtains cusp forms on G2 with all algebraic Fourier coefficients. 
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