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COHOMOLOGY OF IGUSA CURVES - A SURVEY 

SUG WOO SHIN 

ABSTRACT. We illustrate the strategy to compute the R-adic cohomology of Igusa varieties in the 
setup of ordinary modular curves, with updates on the literature towards a genrealization. 

1. INTRODUCTION 

Igusa curves were introduced by Igusa [Igu68] to understand the mod p geometry of modular 
curves when the level is divisible by p, for each prime p. As a generalization, we have lgusa varieties 
in the setup of Shimura varieties of Hodge type thanks to [HTOl, Man05, Haml 7, Zha, HK19] Igusa 
varieties shed light on the mod p and p-adic geometry of Shimura varieties via the so-called product 
structure. Moreover they play a vital role in the applications to the Langlands correspondence, 
vanishing results on the cohomology of Shimura varieties, and p-adic automorphic forms. We refer 
to [KS, §1] for a detailed introduction to Igusa varieties and further references. For an application 
to (an extension of) the Kottwitz conjecture on the cohomology of Rapoport-Zink spaces, see 
[Shi12, BM]. 

A fundamental problem on Igusa varieties is to compute their £-adic cohomology (with or without 
compact support) for primes C f= p. To this end, the Langlands-Kottwitz (LK) method for Shimura 
varieties has been adapted to Igusa varieties in [HTOl, Shi09, MC21], at least when the level 
structure at p is hyperspecial. (In [HT0l], one can go a little further.) While there are excellent 
exposotions1 on the LK method for modular curves (with good reduction mod p) by Clozel [Clo93, 
§3] and Scholze [Schll, §5], in addition to Langlands's original papers [Lan73, Lan76], there is no 
counterpart for Igusa curves. The goal of this article is to spell out the LK method for Igusa curves 
in a somewhat informal style, thereby to serve as a friendly entry point for the subject. 

Acknowledgments. The author was partially supported by NSF grant DMS-1802039 and NSF 
RTG grant DMS-1646385. He is grateful to Takuya Yamauchi and Kazuki Morimoto for inviting 
him to speak on cohomology of Igusa varieties at the RIMS conference "Automorphic forms, Au
tomorphic representations, Galois representations, and its related topics" in January 25-29, 2021. 
The present article works out the details of that talk in the simpler setup of elliptic modular curves. 
The author thanks Yoichi Mieda for giving him an opportunity to present the contents as part of 
the "Berkeley-Tokyo lectures on Number Theory", January 12-15, 2021. 

Notation and Conventions. When R is a commutative ring with unity, we often use R to mean 
SpecR when there is no danger of confusion. For example, a scheme X over R means a scheme 
over SpecR, and X XR S means X XspecR SpecS when a ring homomorphism R ➔ Sis given. By 
(Set) (resp. (Sch/R)) we denote the category of sets (resp. schemes over R). We also write Xs for 
X XR S if R ➔ Sis clear from the context. Similarly if X is a scheme, we write (Sch/X) for the 

Date: July 4, 2021. 
1There arc also several valuable surveys on the LK method for more general Shimura. varieties with different 

emphases, such as [BR94, Clo93, GN09, Zhu20]. 



167

category of schemes over X. Write P := ~(N,p)=l Z/N'll., and ft.00 ,P := P ®z !QI for the ring of 

adeles away from oo,p. By C,;'°(X), we mean the space of smooth compactly supported functions 
on a locally compact group X (with values in C or Qt)-

2. MODULAR CURVES 

Let NE 'll.,c'.3· Consider the moduli functor 

YN: (Sch/Z[l/N]) --+ (Set) 

sending S to the set of isomorphism classes of pairs (E, a), where Eis an elliptic curve over S, and 
a: (Z/NZ)2 ➔ E[N] is an isomorphism of group schemes over S. 

Theorem 2.1 (Igusa, Deligne-Rapoport). The functor YN is represented by a smooth affine curve 
over Z[l/N]. 

We keep writing YN for the curve it represents. Denote by£ ➔ YN the universal elliptic curve. 
Consider the following inverse limit 

Ye := ~ YN Xz[1/N] C, 
Nc'.3 

which exists in the category of CC-schemes as the transition maps are finite etale. We have 

1ro(Yic) := ~ 1ro(YN,ic) = ~ (Z/NZf = zx. (2.1) 
Nc'.3 Nc'.3 

From now on, fix a prime p once and for all. We restrict the level N to integers coprime to 
p. Recall that an elliptic curve E over a field k of characteristic p is said to be supersingular if 
#E[p](k) = 1. Otherwise Eis said to be ordinary, in which case #E[p](k) = p. Accordingly we 
have a partition of the topological space 

y _ yard II yss 
N,JFp - N,Fp N,"JFp, (2.2) 

where yNorlFd (resp. yNsslF ) is the subset of x E YNJF such that the fiber Ex is an ordinary (resp. su-
' p ' p ' p 

persingular) elliptic curve. Thus we can view yNorlFd as an open subscheme of YNJF (and yNsslF as a 
' p ' p ' p 

closed 0-dimensional subscheme). As NE 'll.,c'.3 varies over prime-to-p integers, the transition maps 
are finite etale and compatible with the partition (2.2). 

In this survey we will concentrate on the ordinary case though there is a parallel story in the 
supersingular case. 

Remark 2.2. The stratification (2.2) admits a vast generalization to general Shimura varieties. The 
reader is referred to excellent articles such as [Man20, HRl 7]. 

3. !GUSA CURVES 

We keep fixing a prime p and let N ~ 3 be an integer coprime to p. We still write £ for 
the universal elliptic curve over YAti . For each integer m ~ 1, we have the slope filtration 

, p 

0 ➔ E[pm]o ➔ £[pm] ➔ E[pmiet ➔ 0 such that E[pm]et is the maximal etale quotient. We introduce 
the Igusa functor of level N pm as 

Ig0rd : (Sch/Yord ) --+ (Set) N,m N,Fp , (3.1) 

where j~: Z/pmz ➔ E[pmm and j-:,.: µpm ➔ £[pm]'.:, are isomorphisms of groups schemes over S. 
A fundamental theorem by Igusa (reproduced by Katz-Mazur) is the following. 
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Theorem 3.1. The functor lg%'';, is represented by a scheme, which is an etale GL1(Z/pmz) x 

GL1(Z/pmz)-torsor over Y,Wi . ' 
, p 

As N E Z>3 and m E Z>o vary, {lg%'';,} forms a projective system with finite etale transition 
maps, equippd with a prim;-to-p Hecke ~ction of GL2(A.00 ,P) defined in the same way for modular 
curves. Define a IQ)p-group J := GL1 x GL1, so that J(IQ)p) = IQ); x IQ); is the automorphism group 
of IQ)p/Zp x µp= in the isogeny category of p-divisible groups. The obvious action of z; x z; on 

lg%''.;,i by translating (j~, j;:,,) induces an action on 

H i(I ord ini ) 1· Hi(J ord ini ) 
c goo '"££ := ~ c g N,m,Fp' "££ ' 

N?_3, (N,p)~l, 

i 2: o, (3.2) 

rn~l 

which uniquely extends to an action of J(IQ)p)- (Mantovan [Man05] proved that the action extends. 
The same also follows from Caraiani-Scholze's approach [CS17, CS].) The J(IQ)p)-action turns out 
to commute with the GL2(A00,P)-action. Finite-dimensionality of cohomology for each N and m 

tells us that H~(lg~d, ij1) is an admissible representation of GL2(A.00,P) x J(IQ)p)- Now we can state 
the goal of this article: 

Goal: Compute (3.2) as a representation of GL2(A00,P) x J(IQ)p)-

Caraiani and Scholze [CSl 7, CS] defined another version oflgusa varieties directly at level N p00 • 

In our case, their definition specializes to the following functor, where (Perf/YNri ) means the 
, p 

category of perfect schemes over yNri : 
, p 

Jgord : (Perf/yord ) ----+ (Set) N,oo N,Fp , 

sending S to the set of isomorphisms IQ)p/Zp x µp= ➔ E[p00 ]s between p-divisible groups over S. 
This can be compared with the scheme 

where the "level-decreasing" transition maps are finite etale. As lg%'~ form a projective system 

with finite et ale transition maps as N varies, we can take the limit scheme lg~d. 

Theorem 3.2 (Caraiani-Scholze). The functor Jg%'~ is represented by a perfect scheme over yNri 
, , p 

and canonically isomorphic to the perfection of lg%''.;,o. 

Since perfection does not affect topological information such as etale cohomology or the set of 
Fp-points, we can use either lg%''.;,o or Jg%''.;,o- Since the former is built out of finite-level lgusa 

curves, it is useful for applying a fixed point formula. On the other hand, Jg%''.;,o is a little more 

convenient for defining group actions and describing the Fp-points. 

Remark 3.3. We can define lg~ 00 and Jg~ 00 in analogy with the ordinary case. Then lg~,oo is 
already perfect and lg~,oo = Jg~,00 - ' 
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4. 1Fp-POINTS OF IGUSA CURVES 

In order to achieve the aforementioned goal via a fixed-point formula, we need to describe the 
set of iF p-points of Igusa curves 

Jg~d(Fp) = ~ Jg~d(Fp) = ~ lg~d(Fp) 
(N,p)=l, N'23 (N,p)=l, N'23 

with the GL2(A oo,p) x J(Qp)-action. 

Let us set up some more notation. Write Zp := W(Fp) and Qp := W(Fp)[l/p]. Denote by Ell0 

the set of isogeny classes of elliptic curves over Fp. Those of ordinary elliptic curves define a subset 
En°,0rd . We identify En°,0rd with a set of representatives by fixing a representative in each isogeny 
class. 

When Eis an elliptic curve over Fp, define 

• I(E) := (Endwp (E) ®z Q) x, 

• TP(E) := ~(N,p)=l E[N](Fp), 

• Tp(E) to be the covariant Dieudonne module of E[p00]. 

As we are concerned with the ordinary case, I(E) = px for an imaginary quadratic field F. (As 

an algebraic group over Q, I(E) = Resp;QGm.) A standard fact is that TPE is a free V'-module 

of rank 2, and TpE is free of rank 2 over Zp (which is the Zp-linear dual of Hfris(E/Zp)). At p, we 
have the extra structure of semi-linear maps p-1, v-1 on TpE such that p-l v-1 = v-1 p-l = p. 

(The minus sign comes from the covariant convention.) It is useful to think ofTPE as a V'-lattice 
in the free A00,P-module VPE := TPE ®z Q of rank 2. Similarly TpE is an p-1 , v- 1-invariant 
lattice in ½,E := TpE ®z Q. (We have linear extensions of p-l, v-1 to self-bijections on VpE.) 

Now we start our analysis ofiFp-points from (3.1). 

{ 
E : eEipti: curve/iFp, } 
a:(V)2 -+TPE, /c::: 
j : Qp/Zp X µpoo ➔ E[p00] 

II { (E, a,j) as above, } / c::: 
s.t. :3 an isogeny f : E ➔ Eo 

EoEEllo,o,d 

In the last expression, qJ' and c/Jp are respectively V'-linear and Zp-linear. Each equality above is 
natural and equivariant with respect to the natural action of G(A oo,p) x J(Qp)- To see the last 
equality, one starts from (E, a, j) and chooses an isogeny f : E ➔ Ea. Then take £P = f (TP E) 
and Lp = f(TpE). We leave it as an exercise to give qJ' and c/Jp from (E, a, j) and to show that the 
left quotient by I(Eo) cancels out the choice of f (so that the quotient set is independent of the 
choice). 
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To proceed, we give more convenient parametrizations of (LP, <P) and (Lp, c/Jp)- We describe the 
right GL2(A00,P)-set (which is a torsor for the action) 

XP(Ea) := {(LP,<fP) as above}= {(A00,P)2 ➔ VP Ea}, 

where GL2(A00,P) acts on the last set through its natural action on (A00,P)2. To obtain the inverse 
map, notice that an isomorphism (A 00 ,P) 2 ➔ VP Ea determines (LP, <P) by restriction to (P)2. The 
above identification is also equivariant for the left action of I(Ea), which naturally acts on VP Ea. 

Similarly we have a bijection of right J(Qip)-sets (which are J(Qip)-torsors) 

Xp(Ea) := {(Lp , c/Jp) as above}= {(Qp)2 ➔ ½,Ea, s.t. (1,p-1)u ++ F}, 

where J(Qip) acts as automorphisms of the isocrystal ((Qp)2, (1,p-1)u) associated with the p
divisible group Qip/7i.,p X µp=· The above equality is equivariant for the left action of I(Ea), which 
acts as automorphisms of the isocrystal (½,Ea, F). 

The progress so far may be summarized as follows. As right GL2(A00,P) x J(Qip)-sets, 

( 4.1) 

By choosing a base point, we can identify the right GL2(A oo,p) x J(Qip)-torsor XP(Ea) x Xp(Ea) 
with GL2(A00,P) x J(Qip) equipped with an embedding of groups 

I(Ea) '--+ GL2(A oo,p) x J(Qip), 

well defined up to GL2(A00,P) x J(Qip)-conjugacy. On the other hand, a special case of Honda
Tate theory over Fp (cf. [HTOl, V.2] or [Shi09, §8]) tells us that Ella,ord is in bijection with the 
set IQF(p)(p) of imaginary quadratic fields (up to isomorphism) in whic p splits, where we assign 
End(E) ®zQI (which is an imaginary quadratic field since Eis ordinary) to each EE Ella,ord . Thus 
we can rewrite ( 4.1) as follows. 

Proposition 4.1. As right GL2(A oo,p) x J(Qip)-sets, 

Jg~d(JFp) = II Fx\ (GL2(Aoo,p) X J(Qip)), 
FEIQF(p) 

where the quotient is taken with respect to the embedding of I(Ea) = px above. 

Remark 4.2. Mack-Crane [MC21] recently obtained the analogue for Igusa varieties in the setup of 
Hodge-type Shimura varieties with hyperspecial level at p, generalizing [Shi09] on the PEL case. 

5. FROM JFp-POINTS TO THE TRACE FORMULA 

Before we go from Proposition 4.1 to compute the £-adic cohomology, we need some preparation. 
Let N 2". 3 and m 2". 1. Define 

KP = KP(N) .- ker(GL2(ZP)-+ GL2 (ZP/NZP)) C GL2(A00,P), 

Kp = Kp,m .- (1 + pm7i.,p) X (1 + pm7i.,p) C J(Qlp)-

Then Ig0rd = Ig0rd/KP x K Let N,m CX) p· 

We say that gp is acceptable if the additive p-adic valuations satisfy the inequality vp(9p,1) > vp(9p,2)-
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Write lKPgPKP and lKpgpKp for the characteristic functions on the corresponding double cosets, 
viewed as elements of Hecke algebras for GL2(A00,P) and J(Qp), respectively. Let [KPgPKP] and 
[KpgpKp] denote the double coset operators on the set oflFp-points or cohomology oflg%';,. Denote 

by He the alternating sum I:i>□ (-l)iH~ in the Grothendieck group of representations. To achieve 
the goal stated in §3, we compute 

tr ( IKPgPKP x IKpgpKp I Hc(Ig~d, ij£)) , 

which is equal to (the volume of KP x Kp times) 

tr ( [KP gP KP] X [KpgpKp] I Hc(Ig~:!,.,wp' Qp)) . (5.1) 

Let Fix(AIB) denote the set of fixed points of an operator A acting on a mathematical object B. 
We apply the fixed-point formula for non-proper varieties a la Fujiwara and Varshavsky2 to obtain 
the following. 

(5.1) 

Pr~4.1 

#Fix ([KPgPKP] x [KpgpKp] I Ig%'.;i(Fp)) 

#Fix ([KPgPKP] X [KpgpKp] I L Fx\(GL2(A00,P) X J(Qp))/KP X Kp) 
FEIQF(p) 

The details are omitted, but this is turned into the following via the combinatorial lemma of [Mil92, 
§5]: 

where 

L L # (Fx\(YP(a) x Yp(a))), 
FEIQF(p) aEFx 

YP(a) .- {yP E GL2(A00,P)/KP: yPgP = ayP in GL2(A00,P)/KP} 

{yP E GL2(Aoo,P)/KP: (yP)-layP E KPgPKP}' 

Yp(a) .- {yp E J(Qp)/Kp: ypgp = ayp in J(Qp)/Kp} 

{yp E J(Qp)/Kp: y:;;1ayp E KpgpKp}. 

(5.2) 

Of course y;;1ayp = a in our setup since J(Qp) is abelian, but we chose to write y;;1ayp since this 
is the correct expression for general Igusa varieties where J is not a torus. Thus we can rewrite 
(5.2) as 

= L L 1 1KPgPKP((yP)-1ayP) x 1KpgpKp(y;;1ayp)d(yP,yp)-
FEIQF(p) aEFx FX\GL2(Aoo,P)xJ((Qlp) 

Since the integrand depends only on the F,Z00 -coset of (yP, Yp), we can rewrite fFx\GL 2 (Aoo,p)xJ(Qp) 

as vol(Fx\F,Z00 ) fFx\GL2(A00 ,P)xJ((Qlp)' and then express the integral as an orbital integral at a: 

L L vol(Fx\F,Zoo)o_;L2 (Aoo,pl(1KPgPKP)o[(Qp)(lKpgpKp). 
FEIQF(p) aEFx 

2To apply this formula, we need to twist the double coset operator by a sufficiently high power of Frobenius. In 
this article we will gloss over this point, but this turns out to be harmless for computing the cohomology. See [HTOl, 
V.1] or [Shi09, §6] for details. 
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Now we reparametrize the pairs (F,a) in the sum. We will view J(Qp) = GL1(Qp) x GL1(Qp) 
as the diagonal subgroup of GL2(Qp) below. Recall that an element 'Yo E GL2(Q) is said to be 
"!R-elliptic if 'YO is either central or has imaginary eigenvalues. We use the symbol ~ to designate 
the conjugacy relation. Then 

Lemma 5.1. There is a natural bijection between the following two sets: 

{i) {(F, a) : FE IQF(p), a E px, s.t. a is conjugate to an acceptable element of J(Qp)}, 
{ii) CtJ' := {('Yo,5): 'Yo E GL2(Q)/ ~ "JR-elliptic, 5 E J(Qp)/ ~ acceptable}, 

given as follows. For each pair (F, a), write a= (a1, a2) E FQp ~ Q; x Q;; then vp(ai) =I= vp(a2) by 
the condition on a. The pair is sent to (a, 5), where 5 = (a1, a2) if vp(a1) > vp(a2), and 5 = (a2, a1) 
otherwise. 

Proof. Left as an exercise. □ 

We apply the lemma to the preceding formula to obtain 

(5.1) = L vol(Fx \Floo)05;,L2 (Aoo,p) (lKPgPKP )Of(Q/p) (lKpgpKp). 

ho,6)E'ilf 

As we can take finite linear combinations of test functions of the form lKPgPKP (resp. lKpgpKp), we 
arrive at the following. 

Theorem 5.2. Let fP E C~(GL2(A00 ,P)), J; E C~(J(Qp)), and assume that J; is supported on 
acceptable elements. Then 

tr (JP X J; I Hc(lg~d, Qc)) = L vol(Fx\Fl00 )05;,L2 (Aoo,pl(JP)Of(Q/p)(f;). 

ho,6)E'ilf 

6. £-ADIC COHOMOLOGY OF !GUSA CURVES 

To achieve the goal stated in §3, the final step is to extract spectral information about the 
cohomology from the trace formula above. We need some input from the theory of automorphic 
forms. There are two key ingredients, local and global, which we state without proofs but include 
references. We fix an isomorphism l : Qc ~ IC to identify Qc and IC coefficients of representations. 

(Local) There exists a "transfer" from J; E C~(J(Qp)), supported on acceptable elements, to 
fp E C~(GL2(Qp)) such that for every semisimple element 'YE GL2(Qp), 

d;/L2 (Q/p)(fp) = {of(Q/p)U;), if:3 acc~ptable 5 E J(Qp) s.t. 5 ~ 'Y, (6_1) 
0, otherwise. 

Moreover a character identity is satisfied by J; and /p: 

tnp(fp) = tr (JNoP(7rp) 0 5Xtp))U;), V1rp: irred. adm. representation of GL2(Qp), (6.2) 

where P is the upper triangular Borel subgroup of GL2, N°P is the unipotent radical of the opposite 
parabolic of P, 5P(Q/p) is the modulus character on P(Qp), and JNop is the normalized Jacquet 
module relative to N°P from representations of GL2(Qp) to those of J(Qp)- We remark that [ShilO, 
Lem. 3.9] proves this local fact in a more general setup. (See the proof of [KS, Lem. 3.1.2] for a 
small correction to the statement and proof of [ShilO, Lem. 3.9].) 
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{Global) There exists an Euler-Poincare function J 00 E C~{GL2{R)/R;0), which encodes the 
"weight 2 condition" for classical modular forms in the following sense: for each irreducible unitary 
representation 7r00 of GL2(R) whose central character is trivial on R;0 , 

{
-1 

tr1roo(foo) = 1, , 

0, 

if 7r 00 is the weight 2 discrete series representation, 

if 1r 00 = x o det for x = 1 or x = sgn, 

otherwise. 

(6.3) 

Here we have written sgn for the sign character on Rx. Moreover, a simiple trace formula of the 
following form holds: 

tr (JP JpJoolLaisc(GL2(1Q)\GL2(A)/R;0)) 

L (volume)• o;L2 (A"°)(JPJp) + (error terms). 
-yEGL2(Q)/~ 

R.-elliptic 

(6.4) 

When ry is noncentral so that it generates an imaginary quadratic field F over IQ, the volume term 
is precisely vol(Fx\Fl'00 ) that we saw before. (The existence of J00 and the simple trace formula 
are respectively due to Clozel-Delorme [CD85] and Arthur [Art89] in quite a general setup.) 

Write A1(GL2) for the set of 1-dimensional automorphic representations 7r of GL2(A) such that 
1r00 E {1, sgn o det}. By Awt2(GL2) we denote the set of cuspidal automorphic representations 
1r of GL2(A) arising from weight 2 modular forms. By ( )88, we mean the semisimplification of a 
representation with respect to the given action. 

Theorem 6.1. As GL2(A00,P) x J(Qp)-representations, we have: 

Hc2(1go00rd, ii'l\0 ) ffi oo p P, (J ( ) P, ,1/2 ) 
"'ls W 7r ' VY NOP 'lrp VY UP(IQip) , 

1rEAt(GL2) 

EB 1r00'P ® (JNoP(7rp) ® ,sj/(~p)) + (error terms), 
1rEAwt 2(GL2) 

HJ(lg'(;,d, Qe) = 0. 

Remark 6.2. One can think of ,sj/(~p) as "raising weight by 1". So when 'lrp is tempered (thus so 

is JNop(1rp)), we expect JNop(1rp) ® ,sj/(~p) to appear in H; (except that H~ need not be pure of 

weight i due to non-properness). When dim 'lrp = 1 (nontempered), JNoP(7rp) is not unitary but 

has "weight 1", so JNop(1rp) ® ,5x~p) is expected to contribute to H'/;. To make the use of weight 

precise, the point is that Ig'(;,d is defined over 1Fp (not just iFp) and the geometric Frobenius action 

coincides with the action of (1,p) E J(!Qp)- Notice that indeed ,sj/(~pi((l,p)) = p. 

Remark 6.3. The error terms in H; arise from spectral interpretation of the geometric error terms 
(on the proper Levi subgroup GL1 x GL1 of GL2) in (6.4) as can be seen in the proof below. We 
invite the reader to explicitly describe the error terms in HJ. 
Remark 6.4. The top-degree cohomology with compact support classsifies the set of irreducible com
ponents; in our setup, this coincides with the set of connected components by (formal) smoothnes. 
We leave it to the reader to notice the following: the description of H;(Ig';',;;d,ije) implies that 
1ro(Ig';',;;d) is in GL2(A oo,p) x J(!Qp)-equivariant bijection with 1ro(Yc) = zx, cf. (2.1). 
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Proof. Since Ig'fS~ is affine of dimension 1, we have H~(Ig~d, ijf) 
understand 

H;(Ig~d,ijf) - H}(Ig~d,ijf) 

0 unless E {1, 2}. To 

in the Grothendieck group of admissible GL2(A 00•P) x J(Qp)-representations, we rewrite the formula 
in Theorem 5.2 in terms of automorphic representations. 

tr (!PX 1; I Hc(Ig~d, Qf)) 

L vol(Fx \FI.oo )05!aL2(A"°,P) (jP)of(Oip) u;) 
ho,J)E'if 

(6.1) L vol(Fx \F't.oo )05!aL2(A"°,P) (JP)d/L2(Qp) (/p) 

"/0EGL2(Q)/~ 

(6.4) ( 2 X ) tr lplploo I Ldisc(GL2(Q)\GL2(A)/JR>0) + (error terms) 

C5•2l tr (!p1;100 I JNOP (Laisc(GL2(Q)\GL2(A)/1R;o)) ® 8Xtpi) + (error terms) 

(6.3) tr (IP 1; I L Iroo,p ® (JNop(Irp) ® 6Atp))) 
rrEA1(GL2) 

-tr (IP 1; I L Ir00'P ® (JNoP(Irp) @8j(tp))) + (error terms) 
rrEAwt 2(GL2) 

At this point, we can remove the assumption that 1; is supported on acceptable elements. In
deed, [Shi09, Lem. 6.4] tells us that the trace identity between the first and last expressions in 
the displayed formula above holds for all IP and all 1;. Therefore, we have the identity in the 
Grothendieck group 

H;(Ig~d,ijf) - H}(Ig~d,ijf) (6.5) 

L 1r00'P@ (JNop(Irp) ® 8Ati) - L 1r00•P@ (JNop(Irp) ® 8Atp)) + (error terms). 
rrEA1(GL2) rrEAwt2(GL2) 

To separate H; from H}, the basic idea is that there is no cancellation between H; and H} since 
the geometric Frobenius action (encoded by (1,p) E J(Qp); see Remark 6.2) has weight=2 in HJ 
and weight~ 1 in H}. There are at least a couple of ways to proceed. 

(i) Show that the geometric Frobenius action has weight=2 in the first summation and <2 
apart from it. (This method generalizes to study the top-degree He, or dually H 0 , of Igusa 
varieties in the Hodge-type setting, as carried out in [KS].) 

(ii) Verify that everything in the error terms has the negative sign. (This is harder to generalize 
to higher dimensions when there are many cohomological degrees.) 

Either way, we obtain 

H;(Ig':,d, Qf) = L Jroo,p ® (JNop(Irp)@ 6Xtp)) 
rrEA1(GL2) 

in the Grothendieck group. Since distinct 1-dimensional representations of GL2(A00,P) x J(Qp) 
have no extensions between each other, we obtain the formula for H; in the theorem. From this, 
we can compute HJ up to semisimplification from (6.5). □ 
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Finally we remark that endoscopy complicates the whole computation when considering general 
Igusa varieties, just like endoscopy intervenes in the computation of cohomology of Shimura vari
eties. See [Shi20] for an illustrative account of endoscopic calculation for Igusa varieties associated 
with certain unitary similitude groups. Endoscopy does not show up in the present artcile only 
because we are restricting to the GL2-case. 
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