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TWISTED ENDOSCOPIC CHARACTER RELATION FOR TORAL 
REGULAR SUPERCUSPIDAL £-PACKETS: 
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This note is an announcement of a recent result of the author. The details will 
be presented in a forthcoming article which is in preparation. 

Let F be a p-adic field. For a connected reductive group Gover F, it is generally 
expected that there exists a natural map ( local Langlands correspondence) 

LLCG: II(G) --t <I>(G) 

from the set II(G) of equivalence classes of irreducible admissible representations 
of G(F) to the set <I>(G) of equivalence classes of £-parameters of G. 

Recently, Kaletha proposed an explicit way of constructing the map LLCG for 
a wide class of supercuspidal representations called "regular supercuspidal repre­
sentations" of tamely ramified connected reductive groups ([Kal19]). He checked 
that the correspondence for those representations indeed satisfies various proper­
ties which are usually expected. Especially, he proved that the standard endoscopic 
character relation holds when the supercuspidal representations satisfy the torality, 
which is a certain kind of extremal regularity. 

To be more precise, let H be an endoscopic group of G and we assume that 
both G and H are tamely ramified. Suppose that an £-parameter cp of G factors 
through the £-embedding of LH into LG and is toral in the sense of Kaletha (see 
[Kal19, Definition 6.1.1], here we assume that the torality as both an £-parameter 
of G and H is satisfied). Then, according to [Ka119], we obtain the £-packets II~ 

and II: (namely, the finite sets which should be the fibers of LLCG and LLCtt 
at cp), which consist of toral supercuspidal representations of G(F) and H(F), 
respectively. Then the standard endoscopic character relation, which was proved 
by Kaletha, is as follows: 

Theorem 1 ([Kal19, Theorem 6.3.4], standard endoscopic character relation). As­
sume the residual characteristic p is sufficiently large. For each 1r E II~, there 
exists a constant ~~e~ ( cp, 7r) E C such that the following identity holds for any 
strongly regular semisimple elliptic element 6 E G(F): 

L ~~~~(c/>,1r)8 1r(6) = L ~:~;~:~tt,Gb, 5) L 8 1rtth), 

1rEili "/EH/st 7rttEil~ 

where 

• 81r (resp. 81r8 ) is the Harish-Chandra character of 1r (resp. 7rtt), 
• 1 runs over the stable conjugacy classes of norms of 6 in H = H(F), 
• DG and Dtt are the Weyl discriminants, and 
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• ~H,G is the Langlands-Shelstad transfer factor. 

Remark 2. In [Kal19, Theorem 6.3.4], it is stated that the identity holds for a 
strongly regular semisimple element of G(F) which have a "normal r-approximation". 
In fact, any elliptic regular semisimple element satisfies this condition. Thus we 
can state the theorem as above. 

Our main result is a generalization of the above theorem to the case of twisted 
endoscopy. More precisely, we assume that G is quasi-split and consider an F­
rational automorphism 0 of G which preserves an (fixed) F-pinning of G. Then 
we obtain a twisted space G = G ~ 0, which is a bi-G-torsor over F whose double 
G-action is given by g1(g ~ 0)g2 = (g1g0(g2)) ~ 0. We suppose that the order of 
0 is finite. For an endoscopic group H for the pair (G, 0), we consider the same 
situation as before; let rri and rrr be toral L-packets corresponding to a toral 
£-parameter cp. 

Theorem 3 (Main result, twisted endoscopic character relation). Assume the resid­
ual characteristic p is sufficiently large. For each 1r E rri, there exists a con­
stant ~;r~ ( cp, 1r) E C such that the following identity holds for any strongly regular 

semisimple elliptic element o E G(F): 

Here, 

L ~~~~(cp,1r)81r(6) = L ~~g~:~H,G(,,6) L 87rH(,). 
1rEII:j; ,EH/st G 7rHEII~ 

• 81r is the 0-twisted character of 1r, which is a function on (the regular 
semisimple locus of} G(F) and can be defined when 1r is 0-stable, 

• Da is the twisted Weyl discriminant, and 
• ~H,G is the Kottwitz-Shelstad transfer factor. 

Remark 4. By linear independence of 0-twisted characters, a family { ~~e~ ( cp, 1r)} 1rEIIG 
, ef, 

of constants as in Theorem 3 is unique if exists. When 1r is not 0-stable, we put 
~~~ ( cp, 1r) to be zero. Hence, although the symbol 81r does not make sense in 
such a case, we may understand that the summand ~~~(cp, 1r)81r(6) is zero. On 
the other hand, the definition of ~~e~(cp, 1r) for a 0-st~ble 7r is very subtle and 
related to the computation of the twisted characters 81r and the transfer factors 
~H,G(,, o) deeply. 

Remark 5. According to [Kal19], each regular supercuspidal L-packet or £-parameter 
is naturally associated to a pair (S, iJ) of 

• a tamely ramified torus S and 
• a "regular" character iJ: S(F)-+ ex 

equipped with certain auxiliary data (called "regular supercuspidal L-packet da­
tum", see [Kal19, Definition 5.2.4]). By Kaletha's construction, members of a 
regular supercuspidal L-packet rr; are parametrized by the set (say Jfj) of the 
G-conjugacy classes (where G := G(F)) in a stable G-conjugacy class of embed­
dings of S into G. In fact, under the assumption that the toral (or, more generally, 
regular supercuspidal) £-parameter cp of G factors through the L-group LH of H, 
we can show that the corresponding L-packet rri is 0-stable, that is, stable under 

the 0-twist as set (rri o 0 = rri). Furthermore, we can describe explicitly the 
0-stable members of rr; in terms of the parametrizing set Jfj. 
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Theorem 3 is proved by imitating Kaletha's proof of Theorem 1 in the framework 
of twisted spaces. In the following, we would like to give a few comments on our 
proof of Theorem 3. In the following, for an algebraic variety J defined over F, we 
let J denote the set J(F) of its F-valued points. 

The first step of the proof is to establish an explicit formula of the twisted 
characters of toral supercuspidal representations. On the endoscopic side, where the 
group H is not twisted, each character 81r8 is described by the Adler-DeBacker­
Spice formula ([AS09, DS18]). To explain it, let us take a member 7rH of II~, 
which is a toral supercuspidal representation of H, and put r to be the depth of 
7rH. Let (SH, 19H) be the pair (a part of the regular supercuspidal L-packet datum) 
associated to the toral L-packet II~. When 7rH is associated to an embedding 

JH: SHY H under the parametrization in Remark 5 (jH E :ff/), we get a maximal 
torus SH,fo := JH(SH) of H. According to Yu's construction, 7rH is obtained by 
the compact induction of an irreducible smooth representation CTH of a certain open 
compact subgroup Ku8 (see [AS09, Section 2] for the details): 

7rH = c-lnd~ CTH-att 

Proposition 6 ([AS09, DS18]). When a strongly regular semisimple element 'Y E 

H(F) has a normal r-approximation "( = 'Y<r'Y?.r, we have 

81r8 ('Y) = ~ 8u8 (h'Y<rh- 1)µ:!&8 h(exp- 1 ('Y?.r)), 
hEStt,j 8 \H/ H-,<r 
h,<rh-l EStt,jH 

where XH is an element of the dual of the Lie algebra of H,<r (the connected 
centralizer of 'Y<r in HJ determined by 19H (see [AS09, Section 2] for the details) 
and µ denotes the Fourier transform of the orbital integral. 

Roughly speaking, a normal r-approximation to 'Y is a nice product decomposi­
tion of"( into two parts: one is 'Y<r, whose root-values are p-adically shallower than 
r; the other one is 'Y?.r, whose root-values are p-adically deeper than or equal tor 
(see [AS08, Definition 6.8] for the precise definition). We note that the deeper part 
'Y?.r belongs to the connected centralizer H,<r of 'Y<r in H. The important fea­
ture of the above character formula is that these two parts 'Y<r and 'Y?.r contribute 
to summands separately. Especially, the contribution of 'Y?.r is expressed by the 
quantity on the group H,<r. 

In fact, by formulating the notion of an r-approximation in the twisted space 
G appropriately, we can reproduce the arguments of Adler-DeBacker-Spice for the 
twisted characters. If we introduce the similar notations to above ( 1r E IIi, (S, 19), 

j E .:J!]-, a, X*), then we obtain the following formula: 

Proposition 7. When a strongly regular semisimple element o E G has a normal 
r-approximation o = O<rO?_r, we have 

8,i-(0) = ~ 8a(gO<rg- 1 )µ~_"&.g(exp- 1 (02r)). 
gESj\G/Go<r 

g8<r9- 1 ES 

We note that when o E G has a normal r-approximation o = O<rO?_r, the shal­
lower part O<r (resp. the deeper part O>r) belongs to G (resp. G). We also remark 
that S extends to a "twisted maximal torus" § of G in the sense of Waldspurger 
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(see, e.g., [MW16, Section 1.1.3]) when 7r is 0-stable. For these reasons, we may 
discuss whether gO<rg- 1 belongs to S or not for g E G and thus the index set of 
the above formula makes sense. 

By Propositions 6 and 7, in order to get the identity of Theorem 3, we are 
reduced to compare the G-side of the desired identity 

L ~~~~(<j),1r) L f\,(gO<rg- 1)µ~_8,'cX*g(exp- 1 (<5;:,:r)) 
1rEIIi gESj\G/Go<r 

g8<r9- 1 ES 

with the H-side 

This can be done by utilizing the result of Waldspurger and Ngo ([Wal97, Wal06, 
Wal08] and [Ng610]) on the Lie algebra transfer, which basically enables us to com­
pare the Fourier transforms of orbital integrals on the Lie algebras of a connected 
reductive group and its endoscopic group. However, for this, we have at least two 
difficulties to overcome: 

(1) Fourier transforms of orbital integrals themselves cannot be compared di­
rectly. They must be stabilized (summed up within its stable conjugacy 
class) to be compared. 

(2) Furthermore, the stabilized sums must be weighted by the transfer factors. 

On (1), we consider rearranging the double sums on the G-side or H-side of 
the endoscopic character relation. By combining the sum over IIf with the sum 

over {h E Stt,jH\H/H,<r I hr'<rh- 1 E Stt,jH} and dividing it again, we can create 
the sum over rational H,<r = H,<r (F)-conjugacy classes within a stable H,<r -
conjugacy class of XH. Doing the same process on the G-side, we also get the sum 
over an index set needed for the comparison via Waldspurger-Ng6 transfer. 

On the other hand, the key to (2) is computing the contribution of the shallower 
part in the character formula (80-(go<rg- 1 ) on the G-side and eUH (hr'<rh- 1 ) on 
the H-side) explicitly. For the untwisted characters (8uH (hr'<rh- 1 )), this part 
was firstly computed in [AS09] and rewritten in [DS18] and [Ka119] via several 
endoscopic quantities such as the transfer factors or Kottwitz signs. The compu­
tation for the twisted side ( 8u (gO<rg- 1 )) can be done in basically the same way 
as the untwisted case. The twisting process of the computation in [AS09] is even­
tually reduced to establish a twisted version of Gerardin's character formula for 
the Heisenberg-Weil representations over finite fields. Once we establish this, we 
next have to relate it to the transfer factors. This can be done by utilizing Wald­
spurger's machinery on the descent in the twisted endoscopy [Wal08], instead of 
the Langlands-Shelstad descent [LS90] in the untwisted case. 
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