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1 Introduction 

The purpose of this survey paper is to discuss mathematically the formation of a 

plasma sheath near the surface of materials immersed in a plasma, and to study qualitative 

information of such a plasma sheath layer. In fact we summarize the results [8, 11, 13] 

investigating the stationary solutions to the Euler-Poisson equations in a half-space or 

perturbed half-space. 

The plasma sheath appears when a material is immersed in a plasma and the plasma 

contacts with its surface. Since the thermal velocities of electrons are much higher than 

those of ions, more electrons tend to hit the surface of the material than ions do, which 

makes the material negatively charged with respect to the surrounding plasma. Then the 

material with a negative potential attracts and accelerates ions toward the surface, while 

repelling electrons away from it, and this results in the formation of non-neutral potential 

region near the surface, where a nontrivial equilibrium of the densities is achieved. Con

sequently, positive ions outnumber electrons in this region and this ion-rich layer near the 
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boundary is referred to as the plasma sheath. This boundary layer shields the plasma from 

the negatively charged material. For the formation of sheath, Langmuir in [6] observed 

that positive ions must enter the sheath region with a sufficiently large kinetic energy. 

Bohm in [3] derived the original Bohm criterion for the plasma containing electrons and 

only one component of mono-valence ions, which states that the ion velocity u at the 

plasma edge must exceed the ion acoustic speed for the case of planar wall. For more 

details of the sheath formation, we refer the readers to [4, 7, 9, 10]. 

The motion of positive ions in a plasma is governed by, after suitable nondimension

alization, the Euler-Poisson equations: 

Pt+v'·(pu)=O, 

Ut + (u · V)u + Kv'logp = v'</>, 
/:),,</J=p-e-1>, 

(1.la) 

(1.lb) 

(1.lc) 

where the unknown functions p, u = (u1 , u2 , u3 ) and -</> represent the density, velocity 

of the positive ion and the electrostatic potential, respectively. Moreover, K > 0 is a 

constant of temperature of the positive ion. The first equation describes the mass balance 

law, and the second one is the equation of momentum in which the pressure gradient and 

electrostatic potential gradient as well as the convection effect are taken into account. The 

third equation is the Poisson equation, which describes the relation between the potential 

and the density of charged particles. For this equation, the Boltzmann relation stating 

that the electron density is given by Pe = e-1> is assumed. 

Let us mention the mathematical results which studied the sheath formation by using 

the Euler-Poisson equation (1.la)-(1.lc). The planar wall case have been well investi

gated. Ambroso, Mehats, and Raviart did a pioneering work [2] where the unique exis

tence of monotone stationary solutions was proved in a bounded interval, provided that 

the Bohm criterion holds. Furthermore, Ambroso [1] numerically checked that solutions 

to initial-boundary value problems approach the stationary solutions constructed in [2] as 

the time variable becomes large. Suzuki [11] derived a necessary and sufficient condition, 

including the Bohm criterion, for the unique existence of monotone stationary solutions in 

a half-space. Furthermore, he showed the asymptotic stability of stationary solutions by 

assuming a condition slightly stronger than the criterion. After that, the stability theo

rem was shown under the Bohm criterion in [8]. For a multicomponent plasma containing 

electrons and several components of ions, similar results to [8, 11] were obtained in [12] 

under the generalized Bohm criterion derived by Riemann in [10]. These results validated 

mathematically the Bohm criterion and defined the fact that the sheath corresponds to 

the stationary solution. 

For the planer wall cases, the formation of the sheath has been well-understood as 

above. It is of greater interest to study the cases that walls are nonplanar, and to know 

how the Bohm criterion depends on the shape of walls. For this direction, Jung, Kwon, 
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and Suzuki in [5] studied the existence of stationary solutions in an annulus. They focused 

only on spherical symmetry solutions and then proposed a Bohm criterion for the annulus, 

which essentially differs from the original Bohm criterion. Recently, Suzuki and Takayama 
in [13] showed the existence and stability of stationary solutions in a perturbed half-space, 

and found out a Bohm criterion for the perturbed half-space. 

This paper provides an overview of the results in [8, 11, 13] which studied the stationary 

solutions in a half-space or perturbed half-space, and also observes how the Bohm criterion 

varies. We consider an initial-boundary value problem of (1.la)-(1.lc) in a perturbed 
half-space 

00 

D := {x = (x1, X2, x3) = (x1, x') E JR3 I X1 > M(x')} with ME n Hk(JR2). 
k=l 

We remark that D with M = 0 is just a half-space JR!. The initial and boundary data 

are prescribed as 

(p, u)(0, x) = (Po, uo)(x), 

lim (p, U1, U2, U3, cp)(t, X1, x') = (1, U+, 0, 0, 0), 
x1➔00 

cp(t, M(x'), x') = cpb for x' E lR2 , 

where u+ and cpb are constants. 

(l.ld) 

(1.le) 

(l.lf) 

Note that limxi--+oo p(x1 , x') = 1 is necessary owing to (1. lc) and limxi--+oo cp(x1 , x') = 0 
in the construction of classical solutions to (1.lc). We seek solutions in the region, where 

the following two conditions hold: 

inf p(x) > 0, 
xE!1 

inf u(x) · V(M(x') - x1) _ vK > 0 
xE8!1 Jl + IV M(x')l 2 ' 

by assuming the same conditions for the initial data (p0 , u 0): 

inf Po(x) > 0, inf uo(x). V(M(x') - x1) - vK > 0. 
xE!1 xE8!1 Jl + IV M(x')l 2 

(1.2) 

(1.3) 

(1.4) 

The second condition in (1.4) is necessary for the well-posedness of the problem (1.1). 

The stationary solutions (ps, us, cps) to (1.1) solves the equations 

V · (psus) = 0, 

(us· V) Us+ KV(logps) = Vcps, 
!:,.cps = PS - e_q,s 

(1.5a) 

(1.5b) 

(1.5c) 
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with the conditions 

inf p8 (:r) > 0, 
xEn 

lim (p•, uL u~, u~, q\)(t, x1 , x') = (1, u+, 0, 0, 0), 
x1➔00 

rp•(t,M(x'),x') = <Pb for x' E JR:.2. 

(1.5d) 

(1.5e) 

(1.5f) 

Before closing the introduction, we present several notations to be used throughout 

this paper. For a nonnegative integer k and n c IR3 , Hk(n) is the kth order Sobolev 

space in the L2 sense, equipped with the norm II • Ilk• We also define weighted Sobolev 

spaces H!(D) and H!,;..(D) for a> 0 and>..~ 2 by 

H!(n) := { 1 E Hk(n) i 11111ta = t.1 eaxi lv'j 112 dx < 00} ' 

H!,;..(n) := { 1 E Hk(n) i 11111ta,>.. = t.1 Wa,>..lv'j 112 dx < 00} ' 
where 

Wa,>..(x1) := (1 + min { a, (1 + IMIL=(IR.2))-1 } x1)>... 

Furthermore, Ck([0, T]; Ji) denotes the space of k times continuously differentiable func

tions on the interval [0, T] with values in some Hilbert space Ji. 

2 Results on the half-space IR! 
In this section, we review the results on the existence and stability of stationary solu

tions in the half-space n = IR!. The paper [11] derived a necessary and sufficient condi

tion for the existence of planar stationary solutions (p•, u•, rp•) = (p, u, J) = (p, u, 0, 0, J). 
They are solutions to (1.5) independent of the tangential variable x', and thus satisfy the 

equations 

(pu)Xl = 0, 

(~u2 + Klogj5 tl = <Px1, 

Jx1x1 = j5- e-4>, 

and the conditions 

(2. la) 

(2.lb) 

(2.lc) 

(2.ld) 

(2.le) 

(2.lf) 
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The existence is summarized in the following theorem. 

Theorem 2.1 ( [11]). (i) Let the end state u+ satisfy K < u! < K + l. If c/>b -1- 0, 
stationary problem (2.1) does not admit any solutions as 

(2.2) 

If <Pb = 0, the end state (p, u, J) = (1, u+, 0) is the unique solution. 

(ii) Let the end state u+ satisfy eitheru! s Kor K +1 s u!. Then stationary problem 
(2.1) has a unique monotone solution (p, u, J) as (2.2) if and only if the boundary data 

c/>b satisfies conditions 

(2.3) 

where the Sagdeev potential V and the function f is defined by 

u2 u2 
f(p) := Klogp + 2; - 2+, 

and the inverse function 1-1 is defined by adopting the branch which contains the end 

state (p, c/>) = (1, 0). Moreover, if K + 1 < u! and <Pb> f(lu+I/../K), the solution (p, u, J) 
belongs to C 00 (lR+) and satisfies 

where a and C are positive constants independent of c/>b-

Theorem 2.1 ensures that the planer stationary solution exists under the original Bohm 

criterion: 

u! > K + 1, u+ < 0. (2.4) 

We remark that the conditions in (2.3) are valid for c/>b with lc/>bl « 1 provided that the 
criterion holds. 

From now on we study the stability of monotone stationary solutions assuming (2.4). 

First let us mention the reason that we require (2.4) in the stability analysis. We introduce 

7/J := p - 1, r, := u - (u+, 0, 0), CJ:= q; 

and linearize (1.la)-(1.lc) around the end state (1, u+, 0, 0, 0) as 

1Pt + U+1Px 1 + div77 = 0, 

7/t + U+ 1Jx1 + K'V 1/J = 'V CJ, 

~(J = 1/J + (J. 

(2.5a) 

(2.5b) 

(2.5c) 
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Then we consider (2.5) in the whole space JR.3 , and calculate the spectrums: 

We see that the real part of all the spectra are zero, and thus there is no dissipative 

structure in this framework. To make a dissipative structure, we introduce new unknown 

functions 
(w, H, ~) := (ef3xif2 'lj;, ef3xif2"1, ef3xi/2 CJ) for (3 E (0, \1'2), 

and rewrite the equations (2.5) for (w, H, ~). The spectrums are given by 

where 

132 
( := 1 + ltl 2 - 4 + i/36. 

It is shown in [8, Proposition 1.2] that 

sup Re(µ(it)) = max{Re(µ(O))} = I}_ (u+ + JK + (1-(32/4)-1). (2.6) 
~EJRN 2 

The equations for (w, H, ~) is linearly stable if and only if the rightmost of (2.6) is 

negative. Furthermore, the negativity holds if and only if (2.4) holds and (3 is suitably 

small. Consequently, the original Bohm criterion (2.4) is a reasonable assumption for the 

stability analysis. 

We are now in a position to mention the stability theorems. 

Theorem 2.2 ([8]). Let M = 0 and u+ satisfy (2.4). There exist positive constants (3 and 

8 such that if ll(Po - p, uo - u)ll3,/3 + lc/!bl ::::; 8, then initial-boundary value problem (1.1) 
has a unique time-global solution (p, u, cp) with (1.2) and (1.3) in the following space: 

Moreover, it holds that 

sup l(P - p, u - u, cp - J)(t, x)I::::; ce-,t fort E [O, oo), 
xEJRt 

where C and I are positive constants independent of cpb and t. 
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Theorem 2.3 ( [8]). Let M = 0, >. ~ 2, v E (0, >.], and u+ satisfy (2.4). There exist 

positive constants /3 and 6 such that if 11 (p0 - j5, u 0 - u) 11 3,;,,>.. + I <Pb I :s; 6, then initial

boundary value problem (1.1) has a unique time-global solution (p, u, qi) with (1.2) and 

(1.3) in the following space: 

(p - p", u - u," - J,) E [O C'([O, T]; Hl;;'(Rrn r X C([O, T]; HJ;;'(R!) ). 

Moreover, it holds that 

sup l(P - j5, u - u, q> - J)(t, x)I :s; C(l + t)->..+v fort E [0, oo), 
xEIRt 

where C is a positive constant independent of <Pb and t. 

3 Results on the perturbed half-space S1 

This section is devoted to the study of the stationary solutions in the perturbed half

space rl. Besides the original Bohm criterion (2.4), we require the supersonic outflow 

condition for the end state u+: 

-U+ . fu 
inf ----;c===== - v K > 0. 

xEBfl Jl + IV M(x')l 2 
(3.1) 

This condition follows from replacing u 0 by (u+, 0, 0) into the well-posedness condition in 

(1.4). Therefore, it is necessary ifwe seek the solutions to problem (1.1) in a neighborhood 

of the end state (p, u1 , u2 , u3 , qi) = (1, u+, 0, 0, 0). We remark that (2.4) ensures (3.1) for 

the case M = 0 i.e. rl = ~t-
The stationary solution (p8 , U 8 , q>8 ) is constructed by regarding it as a perturbation of 

(j5, u, J)(M(x)) = (j5, u, 0, 0, J)(M(x)), where (jj, u, J) is the planer stationary solution in 

~i and 

M(x) := x1 - M(x'). 

The result is summarized in the following theorem. It is worth pointing out that we do 

not require any smallness assumptions for the function M representing the boundary an. 

Theorem 3.1 ([13]). Let m ~ 3 and u+ satisfy (2.4) and (3.1). There exist positive 

constants (3 :s; a/2, where a is being in Theorem 2.1, and 6 such that if l<Pbl :s; 6, then 

stationary problem (1.5) has a unique solution (p•, u•, qi•) as 

(p•, u•, qi•) - (j5 o M, ii o M, Jo M) E [H;;"(rl)] 4 x H;;"+l (rl), 

ll(p• - j5 ° M, u• - ii O M)ll;,,,/3 + IW - JO Mll;,,+1,/3 :s; Cl<i>bl, 

where C is a positive constant independent of <Pb· 
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We also discuss the stability of stationary solutions in both exponential and algebraic 

weighted Sobolev spaces. Note that the smallness of Mis not assumed in the exponential 

weight case. 

Theorem 3.2 ([13]). Let u+ satisfy (2.4) and (3.1). There exist positive constants fJ ~ 
a/2, where a is being in Theorem 2.1, and 6 such that if II (Po - ps, Uo - us) 113,/3 + l<Pbl ~ 6, 
then initial-boundary value problem (1.1) has a unique time-global solution (p, u, cp) with 

(1.2) and (1.3) in the following space: 

Moreover, it holds that 

sup l(P - ps, u - us, cp - <Ps)(t, x)I ~ ce-,t fort E [O, oo), 
xEO 

where C and I are positive constants independent of <Pb and t. 

Theorem 3.3 ( [13]). Let >. 2': 2, v E (0, >.], and u+ satisfy (2.4) and (3.1). There 

exist positive constants f30 ~ f3, where fJ is being in Theorem 3.1, and 6 such that if 

IIMll5 + II (Po - ps, Uo - us) 113,/3o,A + l<Pbl ~ 6, then initial-boundary value problem (1.1) has 
a unique time-global solution (p, u, cp) with (1.2) and (1.3) in the following space: 

(p - p', u - u', <I - f') E [[t'([O, T]; Hfi:i (n) if X G([O, T]; Hl,;;\ (n)) 

Moreover, it holds that 

sup l(P - ps, u - us, cp - <Ps)(t, x)I ~ C(l + t)-A+v fort E [O, oo), 
xEO 

where C is a positive constant independent of <Pb and t. 

Bohm originally derived the criterion (2.4) for the formation of sheaths only in the 

planer wall case. What most interests us in Theorems 3.1 and 3.2 is that his criterion 

with the supersonic outflow condition (3.1) also guarantees the formation of sheaths in 

any case that the shape of walls is drawn by a graph. Mathematically speaking, (2.4) 
and (3.1) are sharp conditions for the existence and stability of stationary solutions, since 

they are almost necessary conditions. Hence, it is reasonable to conclude that (2.4) and 

(3.1) are the Bohm criterion for the perturbed half-space. 
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