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REFINED POINTWISE ESTIMATES FOR A 1D VISCOUS COMPRESSIBLE FLOW 
AND THE LONG-TIME BEHAVIOR OF A POINT MASS 

KAIKOIKE 

ABSTRACT. We present results on the long-time behavior of a point mass moving in a ID viscous 
compressible fluid. In a previous work, we showed that the velocity V(t) of the point mass decays at 
least as 1-3/ 2 . In this note, we give a necessary and sufficient condition on the initial data for the decay 
rate 3 /2 to be optimal. This result is obtained as a corollary to refined pointwise estimates for solutions 
to the barotropic compressible Navier-Stokes equations. This note is a resume of the preprint [3] with 
some numerical results added. Our intention is to explain, in a concise manner, the core idea behind the 

somewhat lengthy calculations given there. 
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Phenomena arising from interaction of moving solids with fluid flows are studied intensively by many 
mathematicians. One of the reasons why such problems attract mathematicians is because coupling 
of equations of motion for fluid and solid creates new phenomena and impetuses for development of 
new theories. 

In this note, we consider the motion of a point mass in a viscous compressible fluid. In a previous 
work [4], we showed that the velocity V(t) of the point mass decays at least as t-312 . Here, we give a 
simple necessary and sufficient condition on the initial data for the optimality of the decay rate 3/2. 

In the rest of this section, we explain the formulation of the problem. Then, in Section 2, we state 
the main theorem and discuss its consequences. The idea of the proof is explained in Section 3. Here, 
we tried to reveal the scaffolding of the proof rather than to explain the proof in detail; for the detail, we 
refer to [3]. Finally, we report in Section 4 some numerical simulations related to the main theorem. 

1.1. Point mass motion in a viscous compressible fluid: Formulation. Let us imagine an infinitely 
long channel in which a fluid is filled; the channel is then separated into two chambers by a movable 
piston (see Figure 1). Although the figure is multi-dimensional, we stress here that we consider a 
one-dimensional problem: we assume that the fluid variables, i.e., the density p and the velocity field 
U only depend on the spatial coordinate X whose axis is parallel to the channel walls (the hatched 
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regions in Figure 1) and the time variable t. We also neglect the thickness of the piston. Hence, 
if we project the system onto the X-axis, we can regard the piston as a point mass moving in a 
one-dimensional flow. This justifies the title of this note. The word used depends on the authors: For 
example, in [9], the solid is called a piston, and in [10], it is called a point mass (or a point particle). 

We assume that the fluid is viscous, compressible, and barotropic. Here, barotropic means that the 
pressure P of the fluid is a function only of the density p, that is, P = P(p ). The barotropic assumption 
is valid, for example, if either the temperature or the entropy remains almost constant (isothermal or 
isentropic flows). This assumption is usually not so realistic but is assumed here for simplicity. As for 
the point mass, we assume that its motion is governed by Newton's second law. 

FIGURE 1. A movable piston separates an infinite channel into two semi-infinite cham
bers in which two fluids of the same kind flow. 

With these assumptions, we can write down the equations describing the motion of the fluid and 
the point mass: 

(1) 

Pt + (pU)x = 0, 

(pU)i + (pu2t +P(p)x = vUxx, 

U(h(tt, t) = U(h(t)-, t) = V(t), 

X E R\{h(t)}, t > 0, 

X E R\{h(t)}, t > 0, 

t > 0, 

mV'(t) = [-P(p) +vUx](h(t),t), t > 0, 

h(0) = ho, V(0) = Vo; p(X, 0) = Po(X), U(X, 0) = Uo(X), X E R\{ho}, 

Here, p = p ( X, t) and U = U ( X, t) are the density and the velocity of the fluid, and v > 0 and P = P (p) 
are the viscosity and the pressure; h = h(t) and V = V(t) = h'(t) are the position and the velocity 
of the point mass, and m is its mass. Hereafter, we set m = l for simplicity. The double brackets 
[J](X, t) are defined by [f] (X, t) := f (x+, t) - f (X-, t), where f (X±, t) = limy-,x± f (Y, t). 1 The 
first two equations are the one-dimensional barotropic compressible Navier-Stokes equations; the third 
equations are the boundary conditions for the Navier-Stokes equations, which say that the fluid does 
not penetrate through the point mass. The fourth equation is Newton's second law; the right-hand side 
is the net fluid force on the point mass. The final set of equations are the initial conditions. 

The equations above are posed in a time-dependent domain R \ { h ( t)}. For ease of mathematical 
analysis, we transform the domain into a time-independent one. To do so, we introduce the Lagrangian 

1 limy---;x+ and limy---;x- denote the limit from the right and the left, respectively. 
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mass coordinate. Fix x E R, := R\ {0} and t ;,: 0, and let X = X(x, t) be the solution to 

1X(x,t) 

x = p(X', t) dX'. 
h(t) 

Here, p is the solution to (1). We assume that p(x, t) ;,: po for some po > 0. Then the equation above 
is uniquely solvable and determines a one-to-one map 

R. 3x-x(x,t) ER\{h(t)}. 

The Lagrangian mass coordinate is this variable x. We also change the dependent variables as follows: 

v(x, t) = p(X(~, t), t), u(x, t) = U(X(x, t), t), p(v) = P ( ~) · 

Using the first equation in (1), we can show that 

ax(x, t) 
(2) 

ax 
= v, 

ax(x, t) 

at 
With these in mind, we can check that (1) is equivalent to 

(3) 

Vt - Ux = 0, 

ui+p(v)x=v(u;t, 

u(o+,t) = u(0-,t) = V(t), 

V' (t) = [-p(v) + VUxf V] (t), 

= u. 

x ER., t > 0, 

x ER., t > 0, 

t > 0, 

t > 0, 

V(0) = Vo; v(x, 0) = vo(x), u(x, 0) = uo(x), x ER,. 

Here, [f](t) := f(0+,t)- f(o-,t) and 

1 
vo(x) = Po(X(x, 0)), uo(x) = Uo(X(x, 0)). 

We note that (3) does not contain h(t), but we can recover it by h(t) =ho+ fo1 V(s) ds. 

1.2. Long-time behavior of the point mass: Question of optimality. In this note, we focus our 
attention on the long-time behavior of the point mass velocity V(t). In a previous work [4], we showed 
the decay estimate V(t) = o(t-312). For a special class of initial data, we even showed that this rate 
3/2 is optimal, that is, no faster decay estimates hold. However, we could not treat general initial data. 
To enable this is the purpose of the present work. 

The main tool we used to prove the decay estimate V(t) = o(t-312) is the method of pointwise 
estimates developed in [7, 11]. This method, through a detailed analysis of the fundamental solution to 
the linearized problem, allows us to prove pointwise estimates of solutions to quasilinear hyperbolic
parabolic systems including the barotropic compressible Navier-Stokes equations. Here, the term 
pointwise means that we obtain inequalities of the form If (x, t) I :.,; cp(x, t), where f is an unknown 
and <p is an explicit function. Although their works treat the Cauchy problem, we can also analyze 
initial-boundary value problems by using the Fourier-Laplace transform technique developed in [5, 6]. 
These methods are applied, for example, to analyze half-space problems of the barotropic compressible 
Navier-Stokes equations [2]. And in [4], we applied these methods to the free-boundary value 
problem (3) to show V(t) = o(t-312 ). 
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The necessity to prove pointwise estimates comes from the fact that the L 00-norm of ( v - 1, u ), 
where (v,u, V) is the solution to (3), decays as i-112 in general. This only implies V(t) = o(t-112), 

which is far from optimal. By studying the spatial structure of the solution by the method of pointwise 
estimates, we can show that the solution decays much faster, at least as t-3/ 2, around x = 0, and this 
implies V(t) = u(0±, t) = o(t-312). Physically, this faster decay around the location of the point mass 
is due to the compressibility of the fluid, which takes away the t-1/ 2 decaying parts of the solution 
away from the point mass as sound waves; in contrast, for the fluid governed by viscous Burgers' 
equation, the point mass velocity V(t) only decays as i-112 since this fluid lacks compressibility [10]. 
We also note that the rate 3/2 comes from the nonlinearity of the Navier-Stokes equations and that 
V ( t) decays exponentially fast if we neglect the nonlinearity. 

To tackle the problem of optimality, we refine the pointwise estimates obtained in [4]. Previously, 
as in [7, 11], we considered an approximation of the solution to (3) by diffusion waves - self-similar 
solutions to generalized Burgers' equations - and obtained error bounds of this approximation in a 
pointwise manner. Diffusion waves, which decay as t-1/ 2 in the L 00 -norm, provide a leading order 
approximation of the solution in the L 00-sense because the approximation error decays at least as t-3/ 4 

in the L 00 -norm. However, diffusion waves cannot give the leading order asymptotics of the solution 
around x = 0 since the diffusion waves decay exponentially fast there. Then, in order to understand 
the long-time behavior of V(t) = u(0±, t) more precisely, a natural question is to find out a leading 
order approximation of the solution around x = 0; we define such waves and dub them bi-diffusion 
waves. This is the line of thought we pursue, and we shall explain this in the next section. 

2. MAIN THEOREM: REFINED POINTWISE ESTIMATES OF SOLUTIONS 

In this section, we state the theorem on refined pointwise estimates of the solution to (3). Then, 
from this theorem, we deduce corollaries on the decay rate of V ( t). To state the theorem, we start with 
some preliminaries. 

First, we note that the first two equations in (3), the barotropic compressible Navier-Stokes equations, 
can be written in vector form as follows: 

(4) Ut + Aux = Buxx + (iJ, 
where 

2 V -1 
N = -p(v) + p(l) - c (v - 1) - v--ux. 

V 

Here, c > 0 is the speed of sound for the state (v, u) = (1, 0) defined by c2 = -p'(l); for c to be 
well-defined, we assume that p'(l) < 0. 2 The matrix A has two eigenvalues l1 = c and l2 = -c; as 
right and left eigenvector of A corresponding to l;, we can taker; and l; defined by 

2c (-1) 
Ti = p"(l) c ' 

2c (1) r2---
- p"(l) c 

2We consider small solutions around the state (v, u, V) = (1, 0, 0). The reference volume can be any v = v. > 0, but we 
set this to unity for simplicity. 
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and 

Ii= p':~l) (-1 1/c), l2 = p':~l) ( 1 1/c). 

Here and in what follows, we assume that p"(l) -::f:. 0. We then define u; (i = 1, 2) as components of u 
with respect to the basis (r1, r2), that is, 

(6) 

Taking into account the relation 

we can calculate u; by 

(7) u; = l;u. 

We next define diffusion waves. First, let us write down the i-th component of (4) obtained by 
multiplying l; to it: 

(8) 

where 

(9) 

We note that N; in fact does not depend on i; we add this subscript just to distinguish N; from N. By 
Taylor's theorem, we see that 

p"(1)2 1 
N; = -~(v-1)2+0(lv-ll3)+0(l(v-l)uxl) = - 2(-ui +u2)2+0(lv-ll 3)+0(l(v-l)uxl). 

Now, let i' = 3 - i (l' = 2 and 2' = 1) and neglect terms involving u;, and terms of the order of 
O(lv -113) and O(l(v - l)uxl) in (8); then we obtain, writing 0; instead of u;, 

(10) (0;) V 2 
ai0; + A;ax0i + ax 2 = 2ax 0;, X ER, t > 0. 

In this way, we find a connection between the barotropic Navier-Stokes equations and the generalized 
Burgers equation (10). Moreover, from the conservation laws 

1: u(x, t) dx + V(t) = 1: uo(x) dx + Vo, 1: (v - l)(x, t) dx = 1: (vo - l)(x) dx, 

we see that 

(11) 

where 

(
VO - 1) 

uo; = l; uo . 
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Taking this into account, we impose 

(12) lim 0;(x, t) = M;r5(x), 
t--->-l 

where r5(x) is the Dirac delta function. Note that the limit is limt--->-1 and not limt--->o; this is because 
we don't want 0; to have singularity at t = 0. By the Cole-Hopf transformation, we can solve (10) 
and (12) explicitly: 

yY ( !:!.i_ ) (x-,!;(t+l))
2 

[ ( !:!.i_ ) 1"" 2 i-l 0;(x,t) = -- e v -1 e 2v(t+l) '\{ii+ e v -1 e-Y dy 
_ ~ x-Ai(t+l) 

'VL,V T J.J ✓2v(t+l) 

We see from the formula above that 0; propagates with speed A; and spreads like solutions to a diffusion 
equation; hence we call 0; the i-th diffusion wave with mass M;. 

Our next task is to define bi-diffusion waves. It requires some detailed calculations to understand 
the motivation behind their definitions, so we postpone the explanation to Section 3 and give the 
definitions right away. Let g; be the solution to the following variable coefficient inhomogeneous 
convective heat equation: 

(13) 

with 

(14) 

xElR.,t>0 

t;(x,0) = 0, X E JR. 

Here, we remind that i' = 3 - i. We call g; the i-th bi-diffusion wave with mass pair (M1, M2). In 
Figure 2, we show graphs of fr The figure visually explains the reason why we call it a bi-diffusion 
wave. 

z 
~ 
,.;; 

0.0020 --- {M1,M2,t) - (l,l,SO) 

- (M1,M2,t) - (l,l,lOO) I 

0.0015 

0.0010 

0.0005 

0.0000 

\ V /-----' ' ' ' -0.0005 

'J 
-150 -100 -50 0 

X 

..... ,\ 

' ' ' ' '' 
' ' ' ' ~ ' ' ' ' ' ' 
' ' \ ' ' ' ' ' ' ' ' 
' ' \ ' ' ' ' ' ' ' ' 
~ T 

'' ,J 

50 100 150 

FIGURE 2. In this figure, we set c = 1, v = 1, and (M1 , M2) = (1, 1). The dotted and solid 
line represent 6 at time t = 50 and t = 100, respectively. We can see that the wave spreads in 
both directions although the right part is more dominant. 
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We add few more notations to state the theorem. First, let 

r/1114(x,t;J;) = [(x-J;(t+1))2+(t+l)]-718, 

if/(x, t; J;) = [Ix - J;(t + 1)1 7 + (t + 1)5r 114, 

and 

(15) 

An important property of 'I'; is that 'P;(0, t) = o(t-714) (note that 7 /4 > 3/2). We also have 
'P;(J;t, t) = O(r718) and 'P;(J;,t, t) = o(t-514). Secondly, let 

C2(v,u) := -p'(v)ux+2:'.(-p(v)+vux) -vu~-
v V XX V 

We note that if (v, u, V) is the solution to (3), then C2(v, u) = 81C1 (v, u). Next, we introduce 

(16) u0;(x) := 1: uo;(y) dy, ui;(x) := 1"" uo;(y) dy. 

Finally, let [f] := f(O+) - J(o-) and denote by 11 • Ilk (k E N) the Sobolev Hk (R.)-norm. 
Our main theorem reads as follows. 

Theorem2.1. Letvo-1,uo E H 6 (R.)andVo ER Assumethattheysatisfythefollowingcompatibility 

conditions: 

Under these assumptions, there exist 60, C > 0 such that if 

(17) 6 := t ~I luo;I 16 + :~if. { (lxl + 1) 714 luo;(x) I} + ~~b { (lxl + 1)514 (Iuo;(-x)I + 1ui;(x)I)} ~ ~ 60, 

then the unique global-in-time solution (v, u, V) to (3) satisfies the pointwise estimates 

(18) I (u; - 0; - c;; - y;,8x0;,)(x, t)I ~ C6'P;(x, t) (x E R., t ~ 0; i = 1, 2), 

where i' = 3 - i and 'Yi= (-l);v/(4c). 

We add some remarks. 

(i) We have not mentioned any result on the existence of solutions; for this, see [3, Theorem 2.1]. 
(ii) The decay rates of functions appearing in (18) are as follows: (I) In the O(1)-neighborhood 

of x = J;t, we have 0;(x, t) = o(t-112), c;;(x, t) = o(t-314), 8x0;,(x, t) = O(e-tfc), and 

'P;(x, t) = O(r718). (II) In the O(1)-neighborhood of x = 0, we have 0;(x, t) = O(e-tfc), 

c;;(x, t) = o(t-312), 8x0;,(x, t) = O(e-tfc), and 'P;(x, t) = o(t-714). (III) In the-O(1) 

neighborhood ofx = Ji't, we have 0;(x, t) = O(e-tfc), c;;(x, t) = o(t-1 ), 8x0dx, t) = o(t-1), 

and 'P;(x, t) = o(t-514). Hence, around x = J;t, the leading order term is 0;, and the second 
order term is c;;; around x = 0, the leading order term is c;;; around x = Ai't, the leading order 
terms are c;; and y;,8x0;,. 

(iii) In the previous work [4], we obtained pointwise estimates for u; - 0;. From (iii) above, we 
then lose the information on the leading order asymptotics of V ( t) = u ( O±, t). 
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By Theorem 2.1 , we have 

V(t) = u(0±, t) = 2c(
2

) (u1 + u2)(0±, t) = 2c(
2

) (f1 + f2)(0, t) + O(t-714 ). 
p" 1 p" 1 

From this, we obtain two Corollaries on the long-time behavior of V(t). 

Corollary 2.1. Define M; by (1 1) and assume that (M1 + M2)(M1 - M2) -:f:. 0, that is, 

~1:(vo-l)(x)dx~ · ~1: uo(x)dx+Vo~ -:f:.0. 

Then under the assumptions of Theorem 2.1, there exist 60 > 0, C > 1, and T(o) > 0 such that if( l 7) 
holds, then the solution (v, u, V) to (3) satisfies 

C-11Mf - MJl(t + 1)-312 S sgn(Mf - MJ)V(t) (t ~ T(o)). 

Jn particular, this implies 

C-11Mf- MJl(t + 1)-312 s IV(t)I (t ~ T(o)). 

Corollary 2.2. Define M; by (11) and assume that (M1 + M2)(M1 - M2) = 0, that is, 

~1: (vo - l)(x) dx ~ · ~1: uo(x) dx +Vo~ = 0. 

Then under the assumptions of Theorem 2.1, there exist 60, C > 0 such that if (17) holds, then the 
solution ( v, u, V) to (3) satisfies 

IV(t)I s co(t + 1)-714 (t ~ o). 

Again, we add some remarks. 

(i) From the two Corollaries above, we can conclude that the condition ( M1 + M2) ( M1 - M2) -:f:. 0 is 
a necessarily and sufficient condition for the optimality of the decay estimate V( t) = 0 (t-312). 

When (M1 + M2)(M1 - M2) -:f:. 0, we can even predict that the final sign of V(t) is Mf - Mr 
(ii) By (2), we can check that 

1: (vo - l)(x) dx = - 1: (po - l)(X) dX, 1: uo(x) dx = 1: (poUo)(X) dX. 

Therefore, the condition (M1 + M2)(M1 - M2) -:f:. 0 means that the initial perturbations of the 
density and the momentum are both non-zero. 

(iii) To deduce the corollaries above from Theorem 2.1 , we need to analyze the long-time behavior 
of f;(0,t). Corollary 2.1 is not so difficult to prove. On the other hand, the proof of 

Corollary 2.2 is not so straightforward and requires some care. 
(iv) We can also ask whether the decay estimate V(t) = o(t-714) is optimal under the constraint 

(M1 + M2)(M1 - M2) = 0. We have not proved this mathematically. However, this seems to 
be true. See Section 4 for a numerical evidence. 

We can also obtain similar results for the Cauchy problem: 

{

Vt - Ux = 0, X E R, t > 0, 

(19) u1 +p(v)x=v(u:L, xER,t>0, 

v(x, 0) = vo(x), u(x, 0) = uo(x), x ER. 
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Theorem 2.2. Let vo - 1, uo E H 6 (R), and define M; by 

(20) M; := 1: uo;(x) dx 

instead of (11). Under this setting, there exist 60, C > 0 such that if 
2 

(21) 6 := ft ~I luo;I 16 + ~~E { (lxl + 1) 714 luo;(x) I}+ ~~}d (lxl + 1)514 (1uoJ-x) I + lu~;(x)I)} ~ ~ 60, 

then the unique global-in-time solution (v, u) to (19) satisfies the pointwise estimates 

l(u; - 0; -t; - y;,ax0;,)(x, t)I ~ C6'¥;(x, t) (x ER, t 2 0; i = 1, 2), 

where i' = 3 - i and y; = (-l)iv/(4c). 

Corollary 2.3. Define M; by (20) and assume that (M1 + M2)(M1 - M2) f:- 0, that is, 

Then under the assumptions of Theorem 2.2, there exist 60 > 0, C > 1, and T(6) > 0 such that if(21) 
holds, then the solution (v, u) to (19) satisfies 

C-11Mf- M~l(t + 1)-312 ~ sgn(Mf- M~)u(0,t) (t 2 T(6)). 

In particular, this implies 

C-11Mf - M~l(t + 1)-312 ~ lu(0, t)I (t 2 T(6)). 

Corollary 2.4. Define M; by (20) and assume that (M1 + M2)(M1 - M2) = 0, that is, 

Then under the assumptions of Theorem 2.2, there exist 60, C > 0 such that if (21) holds, then the 

solution (v, u) to (19) satisfies 

lu(0,t)I ~ C6(t+ 1)-7/4 (t 2 0). 

3. IDEA OF THE PROOF 

In this section, we explain the idea of the proof of Theorem 2.2 for the Cauchy problem; combining 
the techniques developed in [4], we can prove Theorem 2.1 in a similar manner. We shall explain the 
idea of the proof somewhat heuristically rather than to show the details of the calculations; the focal 
point of our exposition is to explain the origin of the bi-diffusion wave g;. 

The proof starts by writing an integral equation for the solution to (19) in terms of the fundamental 
solution to the linearized problem. 
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3.1. Integral equation. We define the fundamental solution G = G(x, t) E JR.2X 2 to the linearized 
problem of (19) by 

la1a+(_~2 ~
1)axG=(~ ~)a;G, xElR.,t>0, 

G(x, O) = o(x) (~ ~)' X E JR., 

where 6(x) is the Dirac delta function. Then, by applying Duhamel's principle to (4), we obtain the 
following. 

Proposition 3.1. The solution ( u, u) to (19) satisfies the following integral equation: 

(u-l) 100 (uo-l) u (x, t) = _
00 

G(x - y, t) uo (y) dy 

+ fo 1 
1: G(x - y, t- s) (iJ (y, s) dyds. 

(22) 

To write down the corresponding integral equation for u; defined by (7), we introduce 

g; := l;G (r1 r2). 
Then, by multiplying l; to (22) and using 

we obtain 

(23) u;(x,t)=1
00 

g;(x-y,t)(:01 )(y)dy+ r1
00 

g;(x-y,t-s)(~1) (y,s)dyds. 
-oo 02 Jo -oo 2 X 

3.2. Pointwise estimates of the fundamental solution. To analyze (23), we need the pointwise 
estimates of the fundamental solution G proved in [8]. First, define G* = G* (x, t) E JR.2x2 by 

G*(x t) = ---.,..-e- vt C + ---,-e- 2vt C 
1 (x;tt) 2 ( 1 _l) 1 (x+ct) 2 (1 1) 

' 2(2nvt) 1/ 2 -c 1 2(2nvt) 1/2 c 1 · 

Then, for any integer k ~ 0, the following pointwise estimates hold [8, Theorem 1.3]: 

a}G(x, t) - a}G*(x, t) 

(x-ct) 2 (x+ct) 2 k 
k+l e-~ (-1 0) k+l e- 2vt (-1 0) _2_t "\""' (k-j) 

- 'Ylax (2nvt) 1/ 2 0 1 - 'Y2ax (2nvt)l/2 0 1 - e v ~ o (x)Qj(t) 

1/2 k+l (x-ct) 2 ( 1 _l) 1/2 k+l (x+ct) 2 (1 ,:11 ) = O(l)(t + 1)- t-2 e- c, c + O(l)(t + 1)- t-2 e------i:r 
-C 1 C 

(24) 

+ O(l)(t + 1)- t-2 e- c, + e- c, . 
l/2 k+2 ( (x-ct)2 (x+ct) 2 ) 

Here, 'Yi = (-l)iv / ( 4c), 0(1) denotes a scalar function f (x, t) satisfying If (x, t) I ~ C, o<k) (x) is the 
k-th derivative of the Dirac delta function, and Qj = Qj(t) is a 2 x 2 polynomial matrix. Additionally, 
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we have 

Qo = {~ ~), Q1 = (-~ -}) . 

For small t, we rather use the following pointwise estimates obtained in [1 1]: 

c2 k . l k+l ( (x-ct) 2 (x+ct) 2 ) 
(25) a;c(x,t)-a;c·cx,t)-e-v1 I.o(k-Jl(x)Qj(t) sC(t+l)-21-~ e- Ct +e- Ct • 

1=0 

We note that in the previous work [4], we only used (25); in the present work, we also need (24). 
We finally note that if we set 

then we have 

* ( * gl = gll ) 1 (x-ct) 2 ( ) 0 = ---e-~ 1 0 
(21rvt) 1/ 2 ' 

3.3. Origin of q; and y;,ax0;,: A heuristic argument. Our aim here is to find an appropriate function 
w; = w;(x, t) such that, if we set 

v; = u; - w;, 

then the following pointwise estimates hold: 

(26) lv;(x, t)I s C81¥;(x, t) (x ER, t ~ O; i = 1, 2). 

It turns out that w; = 0; + q; + y;,ax0;, will do the work. Here, we try to heuristically justify this choice, 
thus revealing the origin of q; and y;,ax0;,. This, we hope, helps the reader go through the detailed but 
somewhat long calculations in [3]. 

We first try the choice w; = 0;, and hence v; = u; - 0;. Such initial guess is not absurd. In fact, 
as we mentioned earlier, neglecting terms involving u;, and higher order terms in (8) leads to (10). 
Now, since (24) implies that the leading order asymptotics of g; is given by g;, we approximate (23) 
as follows: 

u;(x, t) ~ 1"" g;(x - y, t) (u01 ) (y) dy + ( 1"" g;(x - y, t - s) (Z1) (y, s) dyds 
(2?) -oo uo2 Jo -oo 2 x 

= 1"" g7;(x - y, t)uo;(y) dy + ( 1"" g7;(x - y, t - s)N;x(Y, s) dyds. 
-oo Jo -oo 

Here and in what follows, without giving a precise definition, we write f ~ g if the long-time behavior 
off and g are similar. Since 0; satisfies the integral equation 

(28) 0;(x, t) = 1: g7;(x - y, t)0;(y, 0) dy - fo 1 1: g7;(x - y, t - s) ( 0]) x (y, s) dyds, 
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we obtain 

v;(x,t) ~ 1: g;;(x-y,t)(u;-0;)(y,0)dy 

(29) 

+ 11 1: g;;(x - y, t - s) (N; + 0f t (y, s) dyds. 

For the term related to the initial data, we note that, by (10), (1 2), and (20), 

1: (u; - 0;) (x, 0) dx = 0. 

Therefore, the anti-derivative f 0Ju; -0;)(y, 0) dy of (u; - 0;)(x, 0) decays at spatially infinity.3 Then, 

we can gain time decay by integration by parts since axg;; decays faster than g;;· For the term related 
to N;, by (5), (6), and (9), we have 

p"(1)2 
N; = ---2-(v - 1)2 + O(lv - 113) + O(l(v - l)uxl) 

8c 
p"(1)2 2 1 2 

(30) - -~(v - 1) = - 2(-01 - v1 + 02 +v2) 

12 12 1 2 - - 201 - 202 + (-01 + 02)v1 + (01 - 02)v2 - 2(-v1 + v2) . 

Here, we neglected 0102 since it decays exponentially fast. Hence, we have 

01 1 2 1 2 
N; + 2 ~ - 20;, + (-01 + 02)v1 + (01 - 02)v2 - 2(-v1 + v2) . 

Let us set aside for the moment the terms involving v;. Then, the nonlinear term in (29) is principally 

(31) l;;(x, t) := -11 1: g;;(x - y, t - s) ( 0f t (y, s) dyds. 

It turns out, however, that this term cannot be bounded by the right-hand side of (26). Therefore, the 

choice w; = 0; is not enough. 
From the analysis above, we improve our guess by taking w; = 0; + (;. Setting v; = u; - 0; - I;;, we 

have, by (27), (28), and (31), 

v;(x, t) ~ 1: g;;(x - y, t)(u; - 0;)(y, 0) dy 

(32) rl(X) ( 02+02) + Jo _
00 

g;;(x - y, t - s) N; + T x (y, s) dyds. 

3The use of this anti-derivative explains the reason why we needed to introduce uii; see (16). 
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Similar to (30), we have 

p"(1)2 2 1 2 
N; ~ -~(u -1) = - 2 (-01 - (1 - u1 + 02 + (2 + u2) 

1 2 1 2 = -201 - 202 - 01(1 - 02(2 

1 2 1 2 
- 2(1 - 2(2 + 0102 + 01(2 + (102 + (1(2 

1 2 
+ (-01 -(1 +02 +(2)u1 + (01 +(1 -02 -(2)u2 - 2 (-u1 +u2) . 

Hence, we have 

0i + 0~ l 2 
N; + - 2- ~ -01(1 - 02(2 + (-01 - (1 + 02 + (2)u1 + (01 + (1 - 02 - (2)u2 - 2 (-u1 + u2) . 

Here, we neglected terms that are less important than 0;(;. Again, let us set aside for the moment the 
terms involving u;. Then, the nonlinear term in (32) is principally the sum of 

(33) 17}1l(x,t) := - (11 00 

g;;(x-y,t-s)(0;(;)x(y,s)dyds Jo -oo 

and 

- f11 00 

g;;(x - y, t - s)(0;,(;,)x(y, s) dyds. Jo -oo 

However, the latter term is less important compared to 17;1); to show this, we need to make use of the 

differential equation satisfied by (; (see (35) below and [3, Lemma C.1]). For 17}1), it turns out that 
it cannot be bounded by the right-hand side of (26). Therefore, the choice w; = 0; + (; is again not 
enough. 

We now repeat the argument above with the choice w; = 0; + (; + 17}1). Then, we find that we need 
to add 

tow;, that is, we upgrade the guess tow; = 0; + (; + 17}1) + 17;2). Repeating this, we come to define 17t) 
inductively by 

(34) 17t\x, t) := - [11 00 

g;;(x - y, t - s) ( 0;17;n-l)) (y, s) dyds (n ~ 2), Jo -oo X 

and set w; = 0; + (; + l:;;"=1 17;n). By (31), (33), and (34), we see that(; and 17in) satisfy 

(35) l (0~) V 2 
81(; + /4;~x(i + ax 2 = 2ax (;, X ER, t > 0, 

(,(x,O)-O, XER, 
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and 

{a (n) > 8 (n) 8 (0 (n-1)) - Va2 (n) m, 0 tT/; + /1.i xT/; + x iT/; - 2 x T/; , x E n, t > , 

T/t\x,0) = 0, x ER 

for n ;?: 2. Summing these up, we see that B; := /;; + L:1 T/?) satisfies 

{:E, + ;,~,:a, + 8,( 0,2,) + a, ( ·n = iia;' <,, XE R, t > 0, 

~,(x, 0) - 0, x ER. 

Hence, by (13) and (14), we conclude that B; = q;. 
We are almost done. But we also need to add y;,8x0;, to w;. This can be explained as follows. 

By (24), the right-hand side of (23) contains 

n· f {a,;;:::,} c, (::) (yl dy 

{ 

(x--<-, (t-s)) 2 } ( 1"" e 2v(t-s) (Ni) 
+ Yi' Jo -oo ax (2JTv(t - s))l/2 C; N2 X (y, s) dyds, 

(36) 

where 

Here, 81m is the Kronecker delta. As we saw in (30), N; contains the quadratic term -0;,/2. There
fore, (36) contains 

y,, f {a.;;:::,} •m•(y) dy - y,, [ f {a,(;,:;::~;:;,} ( ·;), (y, ,) dyd, 

It is not difficult to see that this term is well approximated by y;,8x0;,. This explains the choice 
W; = 0; + q; + y;,8x0;,. 

3.4. Estimates of the nonlinear terms. We now explain the final step of the proof. We set v; = 
u; - (0; + q; + y;,8x0;,). Since we already have the integral equations for u;, 0;, and q;, we can write 
down an integral equation for v;. 

What we now do is this. We set 
2 

P(t) := ,I sup Iv;(·, s)'P;(·, s)-1 100, 
i=l 0:<;;s:,;t 

Here, 'P; is defined by (15) and I · loo is the L ""(R.)-norm.4 We then have 

lv;(x, t) I ~ P(t)'P;(x, t) (x E R, t ;?: 0; i = 1, 2). 

4lt should be noted that we do not know a priori that P(t) is finite, but we do not go into this problem here. 
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Using this, we estimate all the terms appearing in the integral equation for v; to show 

P(t) s Cc5 + C(c5 + P(t)) 2 (t ~ 0). 

Here, c5 is defined by (21) and C is a positive constant independent oft. From this, by a standard 
argument, it follows that if c5 is sufficiently small, there exists a positive constant C' independent oft 
such that P(t) s C' c5 for all t ~ 0. We then conclude that 

lv;(x, t) I s P(t)'I';(x, t) s C''l';(x, t) (x E R, t ~ 0; i = 1, 2), 

which is what we wanted to prove. 
Now, it remains to bound numerous convolutions of functions appearing in the integral equation for 

v;. The required calculations are long, and these are done in [3]. We omitted this core calculations, 
but we now at least know the heart of the proof. 

4. NUMERICAL VALIDATION OF MATHEMATICAL RESULTS 

In this section, we present numerical simulations that support the results in Section 2. To avoid 
difficulties related to the treatment of the boundary, we consider the Cauchy problem (19) with the 
ideal gas law p(v) = 1/v and numerically validate Corollaries 2.3 and 2.4. In this section, we set 

V = 1. 

4.1. Pseudospectral scheme. We use a pseudospectral method (cf. [l ]) to numerically simulate (19). 
We describe the scheme below. 

Since (19) is posed on the whole space R, we take L > 0 large enough and consider instead the 

following equations: 

Vt - Ux = 0, x E (-L,L), t > 0, 

(37) 
u1+p(v)x = (u:t, x E (-L,L), t > 0, 

v(-L, t) = v(L, t), u(-L, t) = u(L, t), t > 0, 

v(x, 0) = vo(x), u(x, 0) = uo(x), xE(-L,L). 

Here, we impose periodic boundary conditions, and we expect that if L is large enough, the solution 
to (37) should give an approximation of the solution to (19); the effect of the finiteness of the domain 
should be assessed by varying Lin a certain range. 5 Moreover, to make the domain L-independent, 

we change the variables as follows: 
,r 

y = LX, v(y, t) = v(x, t), u(y, t) = u(x, t). 

Then, after replacing the symbols (v, u) by ( v, u), (37) becomes 

Vt - aLUy = 0, y E (-,r, ,r), t > 0, 

(38) 
U1+aLp(v)y=az(u:)Y, yE(-,r,,r),t>0, 

v(-,r, t) = v(,r, t), u(-,r, t) = u(,r, t), t > 0, 

v(y, 0) = vo(y/aL), u(y,0) = uo(y/aL), y E (-,r,,r), 

5When we consider initial data localized around the origin, L = 2cT = 2T is usually large enough (T is the maximum 
simulation time). 
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where aL = ,r / L. 
Spectral methods use discrete Fourier transforms to approximate solutions to differential equations. 

In our case, this means that we seek an approximation of the solution ( v, u) to (38) in the form 

(39) 
l n/2-1 

vn(y, t) =;; I (-llvi(t) exp(-vCiky), 
k=-n/2 

l n/2-1 

un(y,t)=;; I (-llui(t)exp(-vCiky) 
k=-n/2 

with sufficiently large n (an even positive integer). The task now is to determine the Fourier coefficients 
{vk(t), uk(t)} properly so that (vn, un) approximately satisfies (37). Concerning the initial condition, 
we use the following fact: if we set 

where 

l n/2-1 

v'j(t):=vn(yj,t)=;; I vk(t)exp(21r-v'=IJk/n), J=0,1, ... ,n-1, 
k=-n/2 

l n/2-1 

u'j(t) :=un(Yj,t)=;; I u'!c(t)exp(21r-v'=IJk/n), J=0,1, ... ,n-1, 
k=-n/2 

j-n/2 
Yj = 2,r---, 

n 
then we have 

n-l 

vk(t) = I v'j(t) exp(-21r-v'=IJk/n), 
j=0 

n-l 

u'!c(t) = I u'j(t) exp(-21r-v'=IJk/n). 6 

j=0 

Hence, it is natural to set 
n-l 

vk(O) = I vo(Yj) exp(-21r-v'=IJk/n), 
j=0 

n-l 

u'!c(O) = I uo(Yj) exp(-21r-v'=IJk/n). 
j=0 

Concerning the differential equations, we have an issue: functions of the form (39) cannot, in general, 
satisfy the first two equations in (37) due to the nonlinear terms. This is because 

(40) Fn(y, t) = -aLp(vn)(y, t) + az (:~) (y, t) 

contains modes of wave number k outside {-n/2, -n/2 + 1, ... , n/2 - 1}. However, 

l n/2-1 

F;s(y,t) =;; I (-l)kfrf(t)exp(-vCi'ky) 

with 

k=-n/2 

n-l 

Ff(t) = I Fn(Yj, t) exp(-21r-v'=IJk/n) 
j=0 

6After computing {v~(t), ui(t)}, we set i)~n/2 (t) = u~n;/t) = 0 to ensure that vn(y, t) and un(y, t) given by (39) are real 

numbers. We also do the same thing for F~(t) appearing below. The effect of such alternation is small when n is large. 
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gives an approximation of Fn(y,t) when n is large enough (the approximation is exact at y = y1); 
here, we can calculate Fn(y1, t) from {v;:(t), u;:(t)} using (39) and (40). It is then natural to define 

the time evolution of { v;: ( t), a;: ( t)} by 

{

dun 
d: = -v-l_aLkiik, t > 0, 

diik _ .,..-:; 'n dt - v-lkFk, t > 0. 

This system is then numerically solved using the classical fourth-order Runge-Kutta method (we 

denote by /1,.t the time step). 

From the computational point of view, it is important to note that P;(t) can be computed effectively 

from {v;:(t), u;:(t)} using fast Fourier transforms. Moreover, since the Fourier coefficients of a smooth 
function decay rapidly, this scheme is especially efficient when the solution to (19) is smooth (see [l ] 

for a more detailed account); this is the case when the initial data are smooth. 

4.2. Long-time behavior of the fluid velocity at the origin. We now numerically investigate the 

long-time behavior of U(t) := u(0, t) for the solution (v, u) to (19). We sett;= iM and 

U; := U~;2(t;) = un(o, t;) (i = 0, 1, ... , M := LT/ MJ), 

where {u1(t;)} are computed using the scheme explained in the previous section. We consider two 

initial data, one satisfying (i) Mf * MJ and the other (ii) Mf = MJ, corresponding to Corollaries 2.3 
and 2.4, respectively. Here, M; is defined by (20). Note that we have 

p"(l) 100 p"(l) 100 
(41) M2 + M1 = - 2- uo(x) dx, M2 - M1 = -- (vo - l)(x) dx. 

2c -oo 2c -oo 

We suppose that U(t) obeys a power-law of the form 

(42) 

for some O < a1 < a2 and c1 * 0. We then numerically evaluate the exponent a1 by the methods 
described in Appendix A. The first method is to apply (least squares) linear regression to the data 

(43) {(log10 t;, log10 IU;l)}~M'' 

where M' = L 0.95M J. 7 If the obtained linear fit is log10 I Ud "" -eh log10 t; + c (eh, c E R), then the 

slope ih is an estimator of a1; the second method is to compute 

U·-U-;2 
Y; = ' ' (i = 0 mod 4). 

U;;2 - U;;4 

Then y; = - log2 Y; is expected to converge to a1 as i - oo. These approaches, however, require the 
maximum computation time T to be rather large. Therefore, we also consider accelerated versions: 
for the linear regression method, instead of the data ( 43), we use Richardson extrapolation, that is, we 

apply linear regression to the data 

7More precisely, we use a subset of this data set: {(log10 t;, log10 IUd) IM'~ i ~ M, i = 0 mod P} with P = LM/160J. 
The effect of such omission is usually very small. 



27

where y is a positive number and 

(44) u?l = U; - TYU;12 (i = 0 mod 2). 

With an appropriate choice of y, the slope aiy) of the linear fit log10 1u/Yl I "" -aiy) log10 t; + c<Y) is 

expected to be a better estimator of a1 than a1; for the method using Y;, we apply Aitken extrapolation, 
that is, we use 

(Y; -1';12)2 
Z; = Y; - ----- (i = 0 mod 16) 

Y; - 21';12 + Y;J4 

instead of Y;. Then Z; = - log2 Z; is expected to converge to a1 faster than y;. 

4.2.1. Case (i): Mf * M?. For an example of initial data satisfying Mf * M?, we consider 

exp(-x2) 
(vo - l)(x) = uo(x) = ,,,f'ii . 

In this case, by (41 ), we have 

M?- Mf = (M2 + M1)(M2 - M1) -:f:. 0. 8 

We set the parameters of the numerical simulation as follows: 

(N, L, t,,.t, T) = (214, 3200, 10-3 , 1600). 

In particular, M = 1600000. 
From the obtained data of {U; = u~12 (t;)}:'!0 , we estimated the exponent a1 of the power-law (42); 

see Figure 3. The obtained estimators of a1 are 

ir1 = 1.4972179393, ai2) = 1.5007380639 

and 

YM = 1.4937167307, ZM = 1.4988693297. 

The choice y = 2 in (44) is based on the method described in Appendix A (see the third paragraph of 
Section A.I ). These support the theoretical result a1 = 3/2 (Corollary 2.3). 9 

To assess the accuracy of the results above, we vary the parameters (N, L, t,,.t, T) and compare the 
results obtained with the ones above. Let us denote the reference parameters by 

(No, Lo, Mo, To)= (214, 3200, 10-3 , 1600), 

and we consider parameters of the form 

(N,L,t,,.t,T) = (rNo,rLo,st,,.to,To/s). 

In Table 1, we list (a1, ai2), YM, ZM) for three values of (r, s). We see that the effect of the variations 
of the parameters are small. 

8More precisely, we have (M1 , M2 ) = (0, 1) and hence M? - M; = 1. By Corollary 2.3, this implies that the final sign of 
u ( 0, t) is negative, and our numerical results are consistent with this prediction. 
9We note that Case (i) is somewhat special in the sense that M 1 = 0. To avoid this particularity, we also analyzed initial 
data with (M1 , M2) = (2, 1) and still obtained results consistent with a 1 = 3/2. 
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4.2.2. Case (ii): Mf = Mf For an example of initial data satisfying Mf = M?, we consider 

(vo - l)(x) = 0, uo(x) = exp~x2
). 

In this case, by (41 ), we have 

M? - Mf = (M2 + M1)(M2 - M1) = 0. 

We set the parameters of the numerical simulation as follows: 

(N, L, At, T) = (216, 12800, 10-3, 6400). 

In particular, M = 6400000. 

From the obtained data of {U; = u~1/t;)}~0 , we estimated the exponent a1 of the power-law (42); 
see Figure 4. The obtained estimators of a1 are 

&1 = 1.7471572472, &i3) = 1.7501405988 

and 

YM = 1.7378867212, ZM = 1.7530938949. 

The choice 'Y = 3 in (44) is based on the method described in Appendix A. By Corollary 2.4, we 
conjecture that a1 = 7 / 4; the results above support this conjecture. 

To assess the accuracy of the results above, we vary the parameters (N, L, l'lt, T) and compare the 

obtained results with the ones above. Let us denote the reference parameters by 

(No, Lo, l'lto, To) = (216, 12800, 10-3 , 6400), 

and we consider parameters of the form 

(N,L,l'lt,T) = (rNo,rLo,sl'lto,To/s). 

In Table 2, we list (&1, &i3), YM, ZM) for three values of (r, s). We see that the effect of the variations 
of the parameters are small. 

TABLE 1. Estimated values of the power-law exponent with different parameters for 
Case (i). 

(r, s) &1 
A (2) 
al YM ZM 

(1.0, 1.0) 1.4972179393 1.5007380639 1.4937167307 1.4988693297 

(0.5, 2.0) 1.4972179582 1.5007381195 1.4937167305 1.4988693286 

(0.375, 2.5) 1.4972179512 1.5007381002 1.4937167305 1.4988693286 

Acknowledgements. This work was supported by Grant-in-Aid for JSPS Research Fellow (Grant 
Number 20100882). 
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FIGURE 3. Left: The dotted markers represent (log10 t;, log10 I U;I) and the star-shaped markers 
represent (log10 t;, log10 I u?> I) for Case (i); two lines have slope -1.5 and are displayed for 
comparison. Right: The dotted markers represent (t;, y; - 1.5) and the star-shaped markers 
represent (t;, z; - 1.5) for Case (i). 
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FIGURE 4. Left: The dotted markers represent (log10 t;, log10 I U; I) and the star-shaped markers 
represent (log10 t;, log10 I u?) I) for Case (ii); two lines have slope -1. 75 and are displayed for 
comparison. Right: The dotted markers represent (t;, y; - 1.75) and the star-shaped markers 
represent (t;, z; - 1. 75) for Case (ii). 

TABLE 2. Estimated values of the power-law exponent with different parameters for 
Case (ii). 

(r, s) <'h A (3) 
al YM ZM 

(1.0, 1.0) 1.7471572472 1. 7501405988 1. 7378867212 1. 7530938949 

(0.5, 2.0) 1.7471500891 1. 7501302295 1. 7378870349 1. 7530960383 

(0.375, 2.5) 1. 7 4 71533349 1. 750134 7961 1. 7378871839 1. 753096884 7 



30

APPENDIX A. POWER-LAW EXPONENT ESTIMATION METHODS WITH SEQUENCE ACCELERATION 

Suppose that we are given a function f = f (t) satisfying 

(45) 

with O < a1 < a2 < a3 and e1, e2 -:f:. 0. We present here some methods to evaluate the exponent 
a1 from numerical data off (t). We also demonstrate theoretically and empirically that sequence 
acceleration methods are useful for such purpose; the idea is simple and the tools used are classical, 
but we could not find these methods in the literature. Therefore, we thought it would be beneficial to 
present these methods in an appendix, given the ubiquity of this task in science. 

A. I. Linear regression method; acceleration by Richardson extrapolation. One simple way to 
evaluate a1 in (45) is to apply (least squares) linear regression to the data 

{ (log10 t;, log10 If (t;) I) }f!1, 

where O < T' = t1 < t2 < · · · < tM = T and t;+1 - t; = 1'1t. If 

log10 If (t;) I ::::< -a1 log10 t; + e 

is the obtained linear fit, since 

(46) loglO If (t)I = -a1 loglO t + loglO lei I+ o(t-(a2-"'1l), 

the slope a1 gives us an approximation of a1. We call this the linear regression method. 
This approach, however, might require T' and T to be rather large when a1 and a2 are close; this is 

because the error term O (t-(a2-a1l) in ( 46) may not decay fast enough. But if we have a guess of the 
exponent a2 in ( 45), say, a2 , we can partially overcome this problem using Richardson extrapolation, 
that is, we apply linear regression to the data 

{ (log10 t;, log10 IJC&2l (t;) I) }f!1, 

where 

Since 

j(&2l (t) = e1 (1 - 2a1-&2)r"'1 + e2(l - 2a2-&2)t-a2 + O(t-°'3), 

if I a 2 - a2 I is small, the coefficient of r"'2 becomes small; in particular, when a 2 = a2, we have 

log10 1JC&2\t) I = -a1 log10 t + log10 lei (1 - 2"'1-&2) I + o(t-(a3-a1l). 

Then, since a3 - a1 > a2 - a1, we expect that the slope at2l of the linear fit 

loglO 1JC&2) (t;) I ::::: -ai&2) log10 t; + e(&2) 

gives a better approximation of a1 than a1. We also note that unless a1 = a2, the leading order 
power-law exponent remains unchanged by altering f (t) to j(&2 ) (t). 

One problem with this method is that we don't necessarily have a good guess of a2. However, it is 
usually easier to have a guess of a 1, say, a 1. With such a guess, let us set 

j(&1l(t) = J(t) - ra1 J(t/2). 
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Then if la-1 - &11 is small, the coefficient of t-ai in 

J(ih) (t) = ci (1 _ 2a1-<h )ra1 + c2(1 _ 2a2-&1 )t-a2 + o(t-a3) 

is small; in particular, when a-1 = &1, we have 

log101J<&i)(t)I = -a2log10t + log10 lc2(l - 2a2-&1)1 + o(t-(a3-a2l). 

Therefore, the slope a~&i) of the linear fit 

log10 IJ<&i) (t;) I "" -&~&i) log10 t; + c(&i) 

is an estimator of a-2. In this way, we can numerically obtain a guess of a-2; in fact, the guesses &2 = 2 
and &2 = 3 in Section 4 are obtained in this way. 

Here, a remark may be of help to avoid unnecessary confusion: the guess &2 obtained with the 
method above may return a value which is rather close to a higher order exponent. To understand this 
phenomenon, let us consider f(t) = t-112 +0.Olt-1 + lOt-312. Ifwe apply the method explained above 
with T' = 950, T = 1000, and l!t = 6.25, we obtain &2 = 1.4965435084; this is because the coefficient 
0.01 of t-1 is very small compared to 10 of t-312 . Thus, &2 obtained in this way is an effective a-2 for 
the given data, which is closer to -3/2 than to -1. 

If the technique above does not work well, we could also try Aitken extrapolation, which we shall 
explain in the next section. 

A.2. Ratio method; acceleration by Aitken extrapolation. From the function f = f(t), define a 
new function Y = Y(t) by 

f (t) - f (t /2) 
Y(t) = f(t/2) - f(t/4). 

Then - log2 Y(T) with T large gives an approximation of a-1 since 

c2(l - 2a2) · Y(t) = ra1 + ra1 (1 _ 2a2-a1 )----t-(a2-a1) + o(t-mm{2(a2-a1).a3-a1}). 
c1 (1 - 2a1) 

We call this the ratio method. 
Similar to the linear regression method, we need to take T large when a-1 and a-2 are close. This 

time, we can use Aitken extrapolation (Aitken !!2-process), that is, we define a new function Z = Z(t) 
by 

(Y(t) - Y(t/2))2 

Z(t) = Y(t) - Y(t) - 2Y(t/2) + Y(t/4) 

Then, by some calculations, we see that 

Z(t) = ra1 + o(t-min{2(a2-a1),a3-a1}). 

Hence, we expect that - log2 Z (T) gives a better approximation of a-1 than - log2 Y (T). 

A.3. An example. Here, to empirically test the methods presented above, we consider the integral 

f(t) = T 1 ( (s + 1)-312 ds. 
Jil/2 



32

By an explicit computation, we see that 

(47) f(t) = (tl/2 + 1)-1/2 _ (t + 1)-1/2 = t-1/4 _ t-1/2 + O(t-3/4). 

Hence, we have a1 = 1/4, a2 = 1/2, and a3 = 3/4. Since a2 - a1 = 1/4 is quite small, as we shall 
see below, the methods without extrapolation give very bad estimates of a1. 

First, we apply the linear regression method with T' = 9500, T = 10000, and M = 6.25. We then 
obtain 

eh = 0.21908886128, ci'i112l = 0.25282388874. 

See Figure 5 (left). Note that the choice ci-2 = 1/2 comes from (47). We clearly see that the method 
with Richardson extrapolation gives a much better estimate of a1 = 1 / 4. In fact, the linear regression 
method without extrapolation converges very slowly. For example, for T' = 95000, T = 100000, and 
lit = 6.25, we get 

a1 = 0.23413598748, a?12l = 0.25081119797, 

and ci-1 is still quite far from a1 = 1 / 4. 
Secondly, for the ratio method, we obtain 

-log2 Y(lO000) = 0.15519485047, -log2 Z(lO000) = 0.21677096182. 

We see that Y(lO000) gives a very misleading value although Z(lO000) is also quite inaccurate. Ifwe 
take T = 100000, we have 

- log2 Y(lO0000) = 0.20693534152, - log2 Z(lO0000) = 0.23976571677. 

We can see that -log2 Z(t) approaches to a1 = 1/4 much faster than -log2 Y(t); see Figure 5 (right). 

• log1oltft;)I 
+----+--+--+----+----H • IOQ1olfl112l(till 

- -0.251og1ot1 

0.10 -r,-- ,-------,- ,-----,- ,--~--====;-, 
I •• y,-0.25 

Z;-0,25 

0.05 ➔-l--1---1---1---l---l----l---'==i====i=='➔ 
- -0.251091ot1-0.75 

0.00 ➔+--1---+--+----+--+---+--+----+--➔ 

-0.05 ,+--1---+--,t-------+-+---+-+----+---➔ 

-2 -0.10 ➔+--I---+--+---+-.-.-.+-•• ~.-,.....,.......-~"+--, 

-0.15 ,+-----,~-+--+---+-+---+-+----+---➔ 
-3 +---+--+--+---+--+--+--+--+I 

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 
log1ot= logiot; 

-0.20 "+--I---+--+---+--+--+--+---+~ 
2000 3000 4000 5000 6000 7000 8000 9000 10000 

t=t; 

FIGURE 5. Left: The dotted markers represent (log10 ti,log10 lf(ti)I) and the star-shaped 
markers represent (log10 ti, log10 11<1!2) (ti) I); two lines have slope -0.25 and are displayed for 
comparison. We can observe that (log10 ti, log10 If (112) (ti) I) deviates less from the reference 
line than (log10 ti,log10 lf(ti)I). Right: In this graph, we write Yi= -log2 Y(ti) and Zi = 
-log2 Z(ti)- The dotted markers represent (ti, Yi -0.25) and the star-shaped markers represent 
(ti, Zi - 0.25). We can observe that Zi - 0.25 approaches to zero faster than Yi - 0.25. 
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