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1 Introduction 

This article is the summary of [9]. We consider the system for a motion of 
compressible viscoelastic fluids: 

OtP + div(pv) = 0, (1.1) 
p(8tv + v · v'v) - vb..v - (v + v')v'div + v'p(p) = j32div(pFTF), (1.2) 

8tF + v · v' F = v'vF (1.3) 

in JR.3. Here p = p(x, t), v = T (v 1(x, t), v2 (x, t), v3 (x, t)), and F = (FJk(x, t))i'.5cj,k'.5c3 
denote the unknown density, the velocity field, and the deformation tensor, 
respectively, at position x E JR.3 and time t 2: O; P = P(p) is the given 
pressure; v and v' are the viscosity coefficients satisfying 

v > 0, 2v + 3v' 2: 0; 

j3 > 0 is the strength of the elasticity. In particular, if we set /3 = 0, the 
system (1.1)-(1.3) becomes the usual compressible Navier-Stokes equation. 
We assume that P'(l) > 0, and we set 1 = J]5'TT). 

The system (1.1)-(1.3) is considered under the initial condition 

(p, v, F) lt=O = (po, vo, Fa). (1.4) 

We also impose the following conditions for p0 and F0 : 

padetFo = 1, (1.5) 
3 

2)FomzaXmFt - F(;'kfJXmFt) = 0, j, k, l = l, 2, 3, (1.6) 
m=l 

(1. 7) 
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It follows from [5, Appendix A] and [18, Proposition.1] that the quantities 
(1.5)-(1.7) are invariant fort 2: 0: 

pdetF = 1, (1.8) 

m=l 

div(p T F) = 0. (1.10) 

The purpose of this article is to study the large time behavior of solutions 
of the problem (1.1)-(1.7) around a motionless state (1, 0, I), where I is the 
3 x 3 identity matrix. Especially, we are interested how the elastic force 
,82div(pFT F) works. 

The system (1.1)-(1.3) is obtained from motion of compressible viscoelas
tic fluid in macroscopic scale. 

In the case ,8 = 0, the large time behavior of the solutions around (p, v) = 
(1, 0) has been investigated so far. Matsumura and Nishida [15] proved the 
global in time existence of the solutions of the problem (1.1)-(1.4) provided 
that the initial perturbation is sufficiently small in H 3 n L1 , and derived the 
following L2-decay estimates: 

llv'k(<fa(t), m(t))IIL2 :S C(l + t)-¾-½, k = 0, l, 

where (<fa,m) = (p- l,pv). Hoff and Zumbrun [2] established the following 
LP (l :S p :S oo) decay estimates in ]Rn, n 2'. 2: 

where L(t) = log(l +t) when n = 2, and L(t) = 1 when n 2'. 3. Furthermore, 
Hoff-Zumbrun[2] derived the following £P (1 :S p :S oo) decay estimates and 
asymptotic properties: 

where (<fa(t), m(t)) = (p(t) - 1, p(t)v(t)) and P(() = I - f~f, ( E JR3 • Here 
the symbol : stands for the Fourier transform and F-1 denotes the inverse 
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Fourier transform. The authors of [2] showed that the hyperbolic aspect of 
sound wave makes the decay rate of the solution slower than the heat kernel 
when 1 :::::; p < 2. On the other hand, if 2 < p :::::; oo, the compressible part 

of the solution ( qy(t), m(t)) - ( 0, F-1 ( e-vl!;l 2t'P(~)m0)) converges to 0 faster 

than the heat kernel. 
We next give the development of the works in the case /3 > 0. The 

local in time existence of the strong solution of the initial value problem 
(1.1)-(1.7) was shown by Hu and Wang [4]. The global existence of the 
strong solution of the initial value problem (1.1)-(1.7) was proved by Hu 
and Wang [5], Qian and Zhang [18], and Hu and Wu [6], provided that the 
initial perturbation (Po - 1, v0 , F0 - I) is sufficiently small. Hu-Wu[6] and 
Li-Wei-Wao[12] established the following V (2 :::::; p :::::; oo) decay estimates: 

llu(t)IILP :::::; C(l + t)-H1-~), 

where u(t) = (qy(t), w(t), G(t)) = (p(t), w(t), F(t)) - (1, 0, I). This shows the 
diffusive aspect of the system (1.1)-(1.3) at least. However the hyperbolic 
aspects of elastic shear wave and sound wave does not appear. We will clar
ify the diffusion wave phenomena caused by interaction of three properties; 
sound wave, viscous diffusion and elastic shear wave and improve the results 
obtained in [6, 12]. We also refer to [3, 14, 25] in recent progresses. 

In view of the results in [2], it is expected that the system (1.1)-(1.3) 
has the diffusion wave phenomena affected by the interaction of the sound 
wave, viscous diffusion and elastic shear wave. In fact, we characterize above 
phenomena by showing that if the initial perturbation u0 = (Po -1, v0 , F0 -I) 
is sufficiently small in L1 n H 3 , then the global strong solution satisfies the 
following V decay estimate 

ll(p(t) - 1, v(t), F(t) - I)IILP:::::; C(l + t)-H1-~)-½(l-~), 1 < p:::::; oo, t 2 0. 

This result improves the decay rate of the V norm of the perturbation u 
obtained in [6, 12] for p > 2. Moreover the above decay rate might be 
optimal. 

We give an outline of the proof of the main result. Since the constraints 
(1.8)-(1.10) are nonlinear, straightforward application of the semigroup the
ory does not work well. To overcome this obstacle, we construct a nonlinear 
transform which makes the constraint (1.10) a linear one. We first give a 
displacement vector ,(/; = x - X E lll3 used in [19, 22], where X = X(x, t) 
is the inverse of the material coordinate. We next make use of the trans
form 'ljJ = ;j; - (-~)-1divT(qyv',(/; + (1 + qy)h(v',(/;)). Here h(v',(/;) is a func
tion satisfying h(v',(/;) = O(lv',(/;1 2), lv''I/JI « 1, and (-~)-1 is the nonlocal 
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transform defined as (-~)-1 = F-1 1~1-2 F. Here F denotes the Fourier 
transform. This follows that the constraint (1.10) becomes the linear condi
tion rp + tr('\71,b) = rp + div1,b = 0. Furthermore, the decay estimate of the 
V' (1 < p ::; oo) norm of u = (rp, w, G) is obtained from U = (rp, w, '\71,b). 
Consequently, the LP decay estimate can be obtained by employing the fol
lowing integral equation 

U(t) = e-tLu(o) + 1t e-(t-s)L N(U)ds. 

Here Lis the linearized operator around (1, 0, I); N(U) = (N1(U), N2 (U), N3 (U)) 
is a nonlinearity such that N1 +trN3 = 0. Indeed we find that e-tLU(0) and 
J; e-(t-s)L N(U)ds decay as t--+ oo in V' for p > ~' provided that the linear 
constraints for U and N(U) hold. 

This article is organized as follows. In Section 2 we state the main result 
of this article on the LP decay estimates. In Section 3 we give an outline of 
the proof of the main result. 

2 Main Result 

In this section we summerize the results in [9]. 
We set u(t) = (rp(t), w(t), G(t)) = (p(t) - 1, v(t), F(t) - I). Then u(t) 

satisfies the following initial value problem 

8tr/J + divw = 91, 

8tw - v~w - fi'vdivw + "t2'vr/J - ,B2divG = 92, 

8tG - 'vw = 93, 

'vrp + div Tc= 94, 

ult=O = uo = (<Po, wo, Go)-

Here 9j, j = 1, 2, 3, 4, denote the nonlinear terms; 

91 = -div(rpw), 

92 = -w · 'vw + _r/J_(-v~w - fi'vdivw + ,-,?'vrp) - - 1-'vQ(rp) 
l+r/J l+r/J 

- ,B2 rp divG + ~div(rjJG + GTG + rjJGTG) 
1 +r/J l+r/J ' 

93 = -w · '\i'G + 'vwG, 

94 = -div(rpTG), 

(2.1) 



38

where 

Q(cp) = cp211 P"(l + scp)ds, "vQ = O(cp)"vcp 

for le/JI « i. 
We recall the L2 decay estimates obtained in [12]. 

Proposition 2.1. ([12]) Let u0 EHN, N 2: 3. There is a positive number Eo 
such that if uo satisfies lluollL1 + lluollHa :S fo, then there exists a unique solu
tion u(t) E C([0, oo); HN) of the problem (2.1), and u(t) = (cp(t), w(t), G(t)) 
satisfies 

llu(t)111N + 1t (ll"vc/J(s)ll1N-1 + ll"vw(s)ll1N + llv'G(s)ll1N-1)ds :S Clluoll1N, 

ll"vku(t)IIL2 :S C(l +t)-¾-~(lluollL1 + lluollHN) 

fork = 0, 1, 2, ... , N - 1 and t 2: 0. 

We next state the main result of this article which reflects an effect of 
hyperbolic aspects of diffusion waves. 

Theorem 2.2. (i) Let 2 :S p :S oo. Assume that cp0 , G0 , and F0- 1 satisfy 
"vcp0 - div T(J + G0)-1 = 0 and F0- 1 = "v X 0 for some vector field X 0 • There 
is a positive number f such that if uo = (c/Jo, wo, Go) satisfies lluollHa :S f 
and u0 E L1, then there exists a unique solution u(t) E C([0, oo); H 3 ) of the 
problem (2.1), and u(t) = (cp(t), w(t), G(t)) satisfies 

llu(t)IILP :S C(p)(l +t)-H1-½)-½(i-~)(lluollL1 + lluollH3 ) 

uniformly fort 2: 0. Here C(p) is a positive constant depending only on p. 
(ii) Let 1 < p < 2. Assume that cp0 , G0 , and F0- 1 satisfy "vcp0 -divT(J + 

G0)-1 = 0 and F0- 1 = "v X 0 for some vector field X 0 . There is a positive 
number fp such that if uo = (c/Jo, wo, Go) satisfies lluollHa :S fp and uo E L1, 
then there exists a unique solution u(t) E C([0, oo); H 3 ) of the problem (2.1), 
and u(t) = (cp(t), w(t), G(t)) satisfies 

llu(t) IILP :S C(p) (1 + t)-Hi-½)+½(~-l) (lluo 11£1 + lluollLP + lluo IIH3 ) 

uniformly fort 2: 0. Here C(p) is a positive constant depending only on p. 

Remark 2.3. Since ½ ( 1 - ~) > 0 for 2 < p :S oo, Theorem 2.2 (i) follows 

that the LP norm of the perturbation u = ( cp, w, G) tends to 0 faster than the 
heat kernel as t --+ oo. This gives the hyperbolic aspect of the elastic force 
,82div(pFT F) which leads to the improvement of the result in [12]. 
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3 Proof of Theorem 2. 2 

In this section, we give an outline of the proof of Theorem 2.2. Since the 
global in time existence and the £ 2 decay estimates of higher order derivatives 
are proved by Proposition 2.1, it suffice to investigate the £P decay estimates. 

We first rewrite the problem (2.1) into a specific form to prove Theorem 
2.2. 

Let x = x(X, t) be the material coordinate defined as the solution of the 
flow map: 

{ 
dx 
dt (X, t) = v(x(X, t), t), 

x(X,O) = X, 

and we denote its inverse by X = X(x, t). According to [1, 22], F is given 
by F = g;. It is shown in [19] that its inverse p-1 is written as p-1 (x, t) = 

'\i'X(x, t) if F0- 1 has the form F0- 1 = 'vX0 . We set,(/;= x-X. Then,(/; solves 

and satisfies 
G = 'v;/; + h('v;/;), (3.1) 

where h('v;/;) = (I - 'v,(/;)-1 - I - 'v;/;. 
We note that (3.1) is equivalent to 

(3.2) 

We have the following estimates for G and 'v1j;. 

Lemma 3.1. Assume that G and;/; satisfy (3.1). There is a positive number 
80 such that if IIGIIH3 :::; min{l, 80 }, the following inequalities hold: 

c-1 ll'v;/;IILP:::; IIGIILP:::; Cll'v;/;IILP, 1:::; P:::; oo, (3.3) 

ll'v2;/;IIL2 :::; Cll'vGIIL2, (3.4) 

ll'v3;/;IIL2 :::; C(ll'vGllt1 + ll'v2GIIL2), (3.5) 

ll'v4;/;IIL2 :::; C(ll'vGIIH1 ll'v2GIIH1 + ll'v3GIIL2 ). (3.6) 

See [9, Lemma 4.2.] for a proof of Proposition 3.1. 
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Based on Lemma 3.1, we consider ,(/J instead of G. In terms of U = 
(c/J, w, 'v;/J), the problem (2.1) is transformed into 

8t<P + divw = Ji, 
atw - v!),.w - v'vdivw + ,y2'iJcp - (32!),.,(/J = h, 
at'v'l/J - 'vw = h, (3.7) 
'vcp + 'vdiv'I/J = f4, 
Ult=O = Uo = (<Po, wo, 'v;/Jo)-

Here j1, j = l, 2, 3, 4, denote the nonlinear terms; 

Ji= g1, 

h = g2 + (32divh('v;/J), 

h = -'v(w · 'v;/J), 

f4 = -div T(cp'v,(/J + (1 + cp)h('v;/J)). 

We next introduce 'ljJ by 'ljJ = ;/J- (-!),_)-1divT(cp'v,(/J + (1 + cp)h('v;/J)), 
where (-!),_)-1 = ;::-1 1~1-2 F, and se~ l/i = 'v'ljJ. By this transformation, 
the nonlinear constraint 'v cjJ + 'v div'I/J = f4 is transformed into the linear 
constraint cjJ + div'I/J = O; and the problem (3. 7) is rewritten as 

8t<P + divw = N1(U), 
8tw - v!),.w - v'vdivw + ,y2'iJcp- (32divl/i = N2(U), 
8ttli - 'vw = N3 (U), (3.8) 
cjJ + trl/i = 0, l/i = 'v 'ljJ, 
Ult=O = Uo = (<Po,wo,tlio)-

Here N1(U), j = l, 2, 3, denote the nonlinear terms; 

N1(U) = f1, 
N2(U) = h - (32div T (cp'v{/J + (1 + cp)h('v;/J)), 

N3 (U) = -'v(w · 'v{/J) - 'v(-!),_)-1 'vdiv(c/Jw) - 'v(-!),.t1 'vdiv(w · 'v{/J). 

We note that N1 and N3 satisfy N1 +trN3 = 0. The relations between 'ljJ and 
,(/J are given as follows. 

Lemma 3.2. (i) Let U0 and U0 be the ones as in (3. 7) and (3.8), respectively. 
If <Po and ;/Jo satisfy 'v <Po+ 'v div;/Jo = 0, then it holds Uo = Uo = ( <Po, wo, 'v ;/Jo). 
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(ii) There is a positive number 80 such that the following assertion holds 
true. Let 

</> E C([O, oo); H 3 ), 1jJ E C([O, oo); H 4 ). 

If ll<!>llc([O,oo);Ha)+ll1/Jllc([o,oo);H4) :S 80, then there uniquely exists;(; E C([O, oo ); H 4 ) 

such that 

ll;f;llc([O,oo);H4) :S J;fo", 
;j; = 1jJ + (-~)-1div T (cpV;(; + (1 + cp)h(V;f;)). (3.9) 

(iii) Let 1 < p < oo. There is a positive number 8P such that if 11</>llc([O,oo);Ha)+ 
IIV;f;IIC([o,oo);Ha) :S min{ 80, 8p}, the following inequalities hold fort 2: 0: 

(iv) There is a positive number 81 such that if 11</>llc([o,oo);Ha)+IIV;f;IIC([o,oo);Ha) :S 
min { 80 , 81}, the fallowing inequalities hold for t 2: 0: 

IIV;f;(t)lluX) :S C(ll</>(t)lluX) + IIV1/J(t)lluX)) 

+C(IIV</>(t)IIH1 + 11v2;f;(t)IIH1)2 , 

IIV21/J(t)IIL2 :S c11v2;f;(t)IIL2 
+C(ll</>(t) IIH2 + IIV;f;(t) IIH2 ) IIV;f;(t) IIH2 , 

IIV31/J(t)IIL2 :S c(1 + ll</>(t)IIH2 + 11v;f;(t)IIH2 )IIV3;f;(t)IIL2 

+c(IIV</>(t)IIH1 + 11v2;f;(t)IIH1)IIV;f;(t)IIH2 , 

IIV41/J(t)IIL2 :S CIIV4;f;(t)IIL2 + C(ll</>(t)IIH3 + 11v;f;(t)IIH3 )2. 

See [9, Lemma 4.] for a proof of Proposition 3.2. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Remark 3.3. Due to the restriction p > 1 in Lemma 3.2 (iii), the case p = 1 
is removed in Theorem 2.2. 

We rewite the problem (3.8) into the following form: 

(3.15) 

where 
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We introduce the low-high frequency decomposition of U(t). Let cp1 , cp00 E 

C 00 (IR.3) be cut-off functions such that 

where 

We define the operators A and P 00 on L2 by 

Au= F- 1 (cpi-u), Poou = F- 1 (cpoou) for U E L2 • 

The solution U(t) of (3.15) is decomposed as 

U(t) = U1(t) + Uoo(t), U1(t) = PiU(t), Uoo(t) = PooU(t). 

We see that Uj(t) = (</>j(t), wj(t), '\71/Jj(t)), j = l, oo satisfy the following 
integral equations; 

I U;(l) ~ c'"[J1(D) + l c-1•-.•)L P1N(U(s))ds, 

</>j + d1v1/Jj - 0, 

Uj(0) = PjUo, </>o + div'l/Jo = 0. 

(3.16) 

Since U holds the linear constraint </>+div'l/J = 0, the semigroup e-tLu0 decays 
as t -+ 0 in lJ' for p > ¾- Indeed, we obtain the following lJ' estimates for 
U1 and U00 . 

Lemma 3.4. If </>o + div'ljJ0 = 0, then the following estimates hold: 
(i) lle-tLU1(0)lb :S C(l + t)-H1-i)+½(~-i) IIUoll£1, 1 :S p :Soo. 

(ii) 11e-tLUoo(0)IILP :S ce-ctllUollLP, 1 < p < 00. 

(iii) 11e-tLUoo(0)IIL= :S ce-ctllUollH2 • 

Proof To prove Lemma 3.4, we use the following expression of the semi
group e-tLuo: 

(3.17) 
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Here 

A eµ3(t;)t _ eµ4(t;)t 
K21(e, t) = - i,2 µ3(e) - µ4(e) e, 

k22(e, t) µ1 (e)eµ1(/;)t - µ2(e)eµ2(/;)t (1 - eT e) 
µ1(e) - µ2(e) 1e1 2 
µ3(e)eµ 3(/;)t - /L4(e)eµ4(/;)t eTe 

+ µ3(e) - µ4(e) Tel2' 
k 31 (e, t) =o, 
k33(~, t) µ1 (e)eµ2(/;)t - µ2(e)eµi(l;)t (1 - eT e) 

µ1(~) - µ2(e) 1~1 2 

µ3(e)eµ4(/;)t - µ4(~)eµ3(t;)t eT ~ + ----------· 
µ3(~) - µ4(~) 1e1 2 ' 

K23 (e, t)io(e) and K32 (~, t)wo(e) are defined by 
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where µj((), j = 1, 2, 3, 4, are given by 

-vl(l2 + Jv21(14 - 4/321(12 
µ1(() = 2 ' 

-vl(l2 - Jv21(14 - 4/321(12 
µ2(() = 2 ' 

( ) _ -(v + 11)1(1 2 + v~(v_+_11~)~2le~l4~--4~(~/32_+_1~2~)le~l2 
µ3 ( - 2 ' 

µ4(() = -(v + ii)l(l2 - J(v + v)21(14 - 4(/32 + i2)l(l2. 
2 

The derivation of the above expression can be confirmed in [9, Appendix A.]. 
Since µj, j = 1, 2, 3, 4 have the following properties 

µi(() ~ -~1(12 + i(-l)i+l/31(1, for 1(1 « 1, j = 1, 2, 

µ1(() ~ _!!._, µ2(() ~ -vl(l2, for 1(1 » 1, 
ll 

µi(() ~ _v; 11 1(12 +i(-l)i+iJ/32 + 121(1, for 1(1 « 1, j = 3,4, 

132 + 12 
µ3(() ~ - ~ , µ4(() ~ -(v+v)lel2, for 1e1 » 1, 

v+v 

the estimates (i) and (ii) follow from the results in [11, 20]. The estimate 
(iii) can be proved by the energy method. This completes the proof. ■ 

To prove Theorem 2.2 (i), we apply Lemma 3.4 (i) to the equation (3.16) 
for j = 1. For the high frequency part U 00 , we use the energy method. 
Theorem 2.2 (ii) can be shown by applying Lemma 3.4 (ii) to (3.16) for 
j = oo and using Lemma 3.1 and Lemma 3.2. We note that since N(U) 
also satisfies the linear constraints N 1 ( U) + tr N3 ( U) = 0, one can see from 
Lemma 3.4 that the Duammel terms J;e-(t-s)LpjN(U(s))ds,j = 1,oo are 
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estimated as 

111t e-(t-s)L PiN(U(s))dsllLP 

:SC 1t (1 + t - s)-H1-½)+½(~-i) IIN(U(s))IIL1ds 

< C(l )-!l.(i-.!)+.!(l-i) II II _ + t 2 P 2 P uo L1 nH3 , 

111t e-(t-s)L PooN(U(s))dsllLP 

:SC 1t e-c(t-s) IIN(U(s))IILPds 

:S C(l + t)-H1-½)+½(~-i) lluollL1nH3, 1 < P :S 2. 
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