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Analysis of non-stationary Navier-Stokes equations 
approximated by the pressure stabilization method* 

Takayuki Kubot 

Faculty of Core Research Natsural Science Division, Ochanomizu University 

1 Introduction 

Navier-Stokes equations are given by 

{ 
8tu-6.u+(u-V)u+v'1r=f, 

V-u=0, 
u(0,x) = a, 
u(t, x) = 0, 

t > 0, X E 0, 
t > 0, X E 0, 

X E 0, 
t > o, x E an, 

(NS) 

where the fluid vector fields u = u( t, x) = ( u1 ( t, x), ... , Un ( t, x)) and the pressure 7r = 
1r(t,x) are unknown function, the external force f = f(t,x) is a given vector function, 
the initial data a is a given solenoidal function and n is some bounded domain ( see 
section 2 for detail). Equations (NS) are the partial differential equations which describe 
the motion of the viscous fluid flows and one of the most important equations in view 
of both mathematical analysis and engineering. However Equations (NS) are unsolved 
for a long time. One of the difficulty of analysis for (NS) is the pressure term V1r( and 
incompressible condition V • u = 0 ). 

In order to overcome this difficulty, in real analysis, we often use the Helmholtz de
composition given by 

LP(Ot = Lp,u(rl) EB GP(O) 

for 1 < p < oo, where Lp,u(rl) = {u I Uj E C0 (0), V · u = O}ll·IILp and Gp(O) = {V1r E 
Lp(nr I 7r E Lp,loc(rl)}. We remark that whether the Helmholtz decomposition holds 
depends on the shape of the region in the case where p-/- 2 (see Galdi [6] for detail). 

On the other hand, in numerical analysis, some penalty methods ( quasi-compressibility 
methods) are employed as the method to overcome this difficulty. They are methods that 
eliminate the pressure by using approximated incompressible condition. For example, 
setting a> 0 as a perturbation parameter, we use V • u = -1r/a in the penalty method, 

*This article is based on the paper [9] by the author and R. Matsui and the study with H. Kikuchi. More 
detail information and proofs can be found in [9]( and [8]). 
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V · u = b.1r / a in the pressure stabilization method and V · u = -Ot7r / a in the pseudo
compressible method (see [10] for other cases). 

In this article, we consider the Navier-Stokes equations with incompressible condition 
approximated by pressure stabilization method. Namely we consider the approximated 
incompressible condition 

('vcp E WJ, (0)) (1.1) 

for 1 < q < oo in stead of incompressible condition and the following Navier-Stokes 
equations under the approximated incompressible condition (1.1): 

{ 
OtUa - .D.ua + (ua · V)ua + v'1ra = f, 

ua(O, x) = aa, 
ua(t,x) = 0, 

t > 0, X E 0, 
X E 0, 

t > 0, X E 80. 
(NSa) 

Pressure stabilization method was first introduced by Brezzi and Pitkaranta [1]. They 
considered the approximated stationary Stokes equations which are linearized Navier
Stokes equations. They obtained the following error estimate by using the energy methods: 

(1.2) 

Nazarov and Specovius-Neugebauer [7] considered the same approximated Stokes problem 
and derived asymptotically precise estimates for solution to the approximated problem as 
a --+ oo by using the parameter-dependent Sobolev norms. 

There are many results concerning the stationary Stokes equations and Navier-Stokes 
equations approximated by using the pressure stabilization method. However there are few 
results concerning the non-stationary Stokes equations and Navier-Stokes equations. As 
far as the authors know, only the result due to Prohl [10] is known as the results concerning 
the non-stationary problem. In [10], Prohl considered the sharp a priori estimate for the 
pressure stabilization method under some assumptions and showed the following error 
estimates: 

llua - ullu'°([O,T],£2(!1)) + IIT( 1f c, - 1[) 11£00 ([0,TJ,w2- 1 (!1)) ::; ca-l, 

llua - ull£00 ([0,T],WJ(!1)) + II v'T( 1f c, - 1[) 11£00 ([0,Tl,£2(!1)) ::; ca-112 ' (1.3) 

where T = T(t) = min(t, 1). He proved a priori error estimate by using energy method. 
In other words, he proved that if we can prove the existence of the local in time solution 
to (NSa), the solution to (NSa) satisfies (1.3). So the goal of this article is to show the 
existence theorem for (NSa) and the error estimates. 

In our method, we shall use the maximal regularity theorem in order to prove the local 
in time existence theorem and the error estimates in the LP in time and the Lq in space 
framework with n/2 < q < oo and max{l, n/q} < p < oo. 

2 Local in time existence theorem and error estimates 

Before we describe main theorem, we shall introduce some functional spaces and notations 
throughout this article. The letter C denotes generic constants and the constant Ca,b, ... 



50

depends on a, b, . . . . The values of constants C and Ca,b, ... may change from line to line. 
For 1 < q < oo, let q' = q/(q - 1). As the complex domain where a resolvent parameter 
belongs, we use ~" = {>. E C\ {O} I I arg Al < 1r - c} and ~c:,>.o = { A E ~" I IAI 2=': Ao} for 
0 < c < 1r/2 and Ao> 0. For any domain D, Banach space X and 1 :S: q :S: oo, Lq(D,X) 
denotes the usual Lebesgue space of X-valued functions defined on D and II · IILq(D,X) 
denotes its norm. We use the notation Lq(D) = Lq(D, JR), 11 · IILq(D) = 11 · IILq(D,JR) and for 
a, b, ... , c E Lq(D), ll(a, b, ... , c)IILq(D) = llallLq(D) + llbllLq(D) + · · · + llcllLq(D)· In a similar 
way, for 1 :S: q :S: oo and a positive integer m, W;'(D, X) denotes the Sobolev spaces of 
X-valued functions of defined on D. We often use the same symbols for denoting the 
vector and scalar function spaces if there is no confusion. For 1 :S: p, q :S: oo, B;,~-l/p\D) 
denotes the real interpolation space defined by B;,~-l/p\D) = (Lq(D), W;(D)h-l/p,p· For 
a Banach space X and some 10 E JR, we set 

Lp,-y0 (JR,X) = {J(t) E Lp,loc(lR,X) I lle--ytJIILp(JR,X) < oo, h 2=': 10)}, 

LP,'Yo,(D)(lR, X) = {J(t) E LP,'Yo(lR, X) I J(t) = 0 (t < O)}, 

w;,'Yo,(o)(JR, X) = {J(t) E LP,'Yo,(o)(JR, X) I J'(t) E LP,'Yo(JR, X)}. 

In order to deal with the pressure term, we use the following functional spaces: 

Lq,loc(D) = {f I JIK E Lq(K), K is any compact set in D}, 
-1 n wq (D) = {0 E Lq,loc(D) I V0 E Lq(D) }. 

Since our proof is based on Fourier analysis, we next introduce the Fourier transform 
and the Laplace transform. We define the Fourier transform, its inverse Fourier transform, 
the Laplace transform and its inverse Laplace transform by 

}(~) = Fx[f](~) = { e-ix-EJ(x)dx, 
}]Rn 

L'.t[f] (A) = Ft[e--yt J(t)] ( T ), 

respectively, where x, ~ E ]Rn, A = 1 + iT E (C and x • ~ is usual inner product: x • ~ = 
~J=1 Xjfr Furthermore, we define the Fourier-Laplace transform by 

By using Fourier transform and Laplace transform, we define the operator A; as 

for A= 1+iT. 
In this paper, we assume next assumption for our domain n. 

Assumption 2.1. Let n/2 < q < oo and n < r < oo. Let O be a uniform w;-lfr domain 
introduced in /5} and Lq(O) has the Helmholtz decomposition. 
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Here the assumption on a uniformly w;-l/r domain is used when we reduce the prob
lem on the bounded domain to one on the bent half-space and on the whole space. The 
possibility of Helmholtz decomposition is used in the processing of pressure terms. Ac
cording to Galdi [6], that "Lq(D) has the Helmholtz decomposition" is equivalent that the 
following weak Neumann problem is uniquely solvable: for f E Lg(D), 

(''v0, "vcp) = (f, "vcp) (\:/cp E Wt,(D)). 

(L2 (D) has the Helmholtz decomposition for any D.) Let 0 be the solution to the above 
weak Neumann problem for f E Lq(D) and the maps Pr;i and Qr;i be defined by Q0 f = 0 
and Pr;if = f - "vQ0 f. Pr;i is called the Helmholtz projection. By (1.1) and the map Qr;i, 
we see that "vna = a"vQr;iua, 

First main result is concerned with the local in time existence theorem for (NSa) under 
(1.1). 

Theorem 2.1. Let n ~ 2, n/2 < q < oo and max{l, n/q} < p < oo. Let a > 0 and 
T0 E (0, oo). For any M > 0, assume that the initial data aa E B~,~-l/p) (D) and the 
external force f E Lp((0, T0 ), Lq(D)) satisfy 

(2.1) 

Then, there exists T* E (0, T0 ) depending on only M such that (NSa) under (1.1) has a 
unique solution ( Ua, 1ra) of the following class: 

Moreover the following estimate holds: 

lluallL00 ((0,T*),Lq(fl)) + ll(8tUa,°'v2Ua, "v1ra)IILp((O,T*),Lq(!1)) + ll"vuallLr((0,T*),Lq(!1)) :::; Cn,p,q,T* 

for l/p - ljr :::; 1/2. 

Here we state the outline of the proof of main theorem (Theorem 2.1). We can prove 
Theorem 2.1 by using the contraction mapping principle with two type maximal regularity 
theorems (Theorem 2.2 and Theorem 2.5). In order to prove Theorem 2.2, we use the 
Weis' operator valued Fourier multiplier theorem. For this purpose, we have to show the 
existence of R-bouned solution operator to the generalized resolvent problem of (NSa). In 
order to prove Theorem 2.5, we need the some estimate of semigroup Ta(t) for linearlized 
problem of (NSa) (See [8] and [9] for the detail proof). 

From here we shall introduce the two type maximal Lp-Lq regularity theorems for the 
following linearized problems corresponding to (NSa): 

{ 
8tUa - b..Ua + ::1fa = f, t > 0,x ED, 

ua(t, x) - 0, X E 8D, 
ua(0,x) = aa, X ED 

under the approximated incompressible condition 

(ua, "vcp)n = a-1 ("v1ra, "vcp)r;i + (g, "vcp)r;i 

(2.2) 

(2.3) 

First result is concerned with the maximal Lp-Lq regularity theorem for (2.2) with 
a°' = 0 under (2.3) . 



52

Theorem 2.2. Let 1 < p, q < oo and a > 0. Then there exists a positive number 10 such 
that the following assertion holds: for any f, g E LP,,o,(O) (IR, Lq(D)), (2.2) under (2.3) with 
ao: = 0 has a unique solution: 

Moreover, the following estimate holds: 

lle-,t(8tuo:, 1uo:, A~v'uo:, A1;o:(v' · uo:), v'2uo:, v'1ro:)IILp(IR,Lq(f1)) 

~ Cn,p,qlle-,tu, ag)IILp(IR,Lq(fl)) 

for any 1 2'. 10 . 

Remark 2.3. By the property of Helmholtz decomposition, we can solve (2.3) for uo:, g E 
Lq(D) and we see 1fo: = aQfi(uo: - g). 

In order to prove the maximal Lp-Lq regularity theorem for (2.2) with f = 0 under 
(2.3), we consider the following generalized resolvent problem concerning with (2.2): 

Vo;= 0, 

under 

X ED, 
x E an (2.4) 

(2.5) 

where the resolvent parameter >. varies in ~ie,>.o (0 < c < 1r/2). Then the following 
resolvent estimate holds: 

Proposition 2.4. Let a > 0, 1 < q < oo and O < c < 1r /2. There exists a positive 
constant >.0 such that for f, g E Lq(D) and >. E ~ie,>.o, there exists a unique solution 
( Vo:, Po:) to (2.4) under (2.5) which satisfies the following inequality: 

II (>.va, >.112v'va, v'2va, (>. + a) 112 (v' · Va), v' Pa) li£q(f1) ~ GIi (!, ag) IILq(fl) · 

Let Ao: be the linear operator defined by Ao:ua = 6.ua - a.v'QQuo: and 'D(Aa) 
{ u E Wt(n) I ulafl = 0}. By Proposition 2.4 with g = 0, we see that Aa generates the 
semigroup {Ta(t) }t~0 on Lq(D). Moreover there exists a positive constant C > 0 such 
that for any ao: E Lq(D), uo:(t) = To:(t)aa satisfies 

ll(ua, t112v'ua, tv'2ua, t8tua)IILq(f1) ~ Ce>.otllaallLq(fl) (t > 0), 

llv'QQUa IILq(fl) ~ ce-c,t llao: IILq(fl) · 

By the equations (2.2), we have 
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which means that the pressure term 'v1ra has the singularity at t = 0. On the other hands, 
since 'v1ra = a'v'Qnua, (ua, 7ra) enjoys (2.2) under (2.3) and 'v1ra satisfies the following 
estimate: 

which implies that 'v1ra does not have the singularity at t = 0. We think that this 
advantage may be the reason for using the pressure stabilization method in numerical 
simulations. 

By real interpolation, we can see the following maximal LP-Lq regularity theorem for 
(2.2) with f = g = 0. 

Theorem 2.5. Let a > 0 and l < p, q < oo. Let Ao be a number obtained in Proposition 
2.4, For aa E B;,~-l/p1(n), ua = Ta(t)aa satisfy 

11e-A0t(OtUa, V 2ua)IILp((O,oo),Lq(O)) ~ Cn,p,qllaalls2{l-l/p)(O)' 
q,p 

('y - Ao)l/plle-'YtuallLp((O,oo),Lq(D)) ~ Cn,p,qllaali£q(D), 

(, - Ao) 11(2p)lle-"lt'vuallLp((O,oo),Lq(n)) ~ Cn,p,qllaalls~~- 1/P\n) 

for any 1 > A0 . 

Next we consider the error estimate between the solution ( u, 1r) to (NS) under the 
weak incompressible condition 

(u, 'vrp)n = 0 (2.7) 

and solution (ua,1ra) to (NSa) under (1.1). To this end, setting uE = u - Ua and 7rE = 
7r - 7ra, we see that ( uE, 7rE) enjoys that 

{ 
OtUE - D,.uE + 'v1rE + N(uE, Ua) = 0, 

uE(O, x) = aE, 
uE(t,x) = 0, 

t > 0, X E 0, 
X E 0, 

t > o, x E an, 
(2.8) 

where N( UE, ua) = ( UE · V)uE + ( UE · V)ua + ( Ua · V)uE and aE = a - aa under the 
approximated weak incompressible condition 

(2.9) 

for 1 < q < oo. In a similar way to Theorem 2.1, we consider (2.8) under (2.9) for 
aa = aE. 

Theorem 2.6. Let n 2:'. 2, n/2 < q < oo, max{l, n/q} < p < oo and a> 0. Let T* be a 
positive constant obtained in Theorem 2.1 and ( ua, 1r a) be a solution obtained in Theorem 

2.1. For any M > 0, assume that aE E B;,~-l/p1(n) satisfies 

(2.10) 
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Then there exists T' E (0, T*) such that (2.8) has a unique solution (uE, 7rE) which satisfies 

lluEIILoo((O,T'),Lq(!:1)) + IIVuEIILr((O,T'),Lq(!:1)) 

+II (V2uE, OtUE, v''lfE) IILp((O,T'),Lq(!:1)) ::; cn,p,q,T'°'-l (2.11) 

for 1/p - 1/r ::; 1/2. 

Remark 2. 7. (2.11) means the following error estimates for the Navier-Stokes equations: 

llu - uallLoo((O,T'),Lq(!:1))::; ca-1 , 

ll(V2(u - Ua), Ot(U - Ua), v'(7r - 7ra))IILp((0,T'),Lq(!:1))::; ca-1, 

In comparison with the result due to Prahl {10/, we can extend L2 framework to Lq frame
work with respect to the error estimate. 

3 Analysis of the resolvent Stokes problem 

In order to show the global in time solution, it is necessary to analyze when the resolve 
parameter is near the origin. In this section, we introduce the recent results obtained 
when the resolve parameter is near the origin. 

The resolvent problem for the approximated Stokes equation which is linearized prob
lem for (NSa) is given by 

{ 
AVa - /j,_Va + v' Pa = f, X E D 

Va= 0, X E 8D 

under the approximated incompressible condition: 

(3.1) 

(3.2) 

Lemma 3.1. Let 1 < q < oo and a > 1/CJ, where C0 is the optimal constant in the 
Poincare inequality. Then for any f E Lq(D) and A E (C \ (-oo, -C02], there exists the 
unique solution ( Va, Pa) to (3.1) under (3.2). Moreover ( Va, Pa) satisfies 

Remark 3.2. (i) It is well-known that for a smooth bounded domain D, C0 is the min
imal eigenvalue of the Laplace operator in the space HJ. 

(ii) For usual resolvent Stokes problem, the same result holds as Lemma 3.1. From this 
lemma, when using the pressure stabilization method in numerical simulations, we 
suggest that a should satisfy a > 1 / CJ at least . 

The key to show Lemma 3.1 is the following lemma concerning uniqueness: 

Proposition 3.3. Let 1 < q < oo, a> 1/CJ and A E C\(-oo,-1/CJ]. If (va,pa) E 

W;(D) x WJ(D) is the solution to (3.1) with f = 0 under (3.2), then Va= 0 and Pa= 0. 
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Proof. We remark V Pa = aVQva by Helmholtz decomposition and that (3.1) is equivalent 
to the following equations: 

{ AVa - ~Va +_aVQva = 0, x E n, 
Va - 0, X E a!l. 

We first consider the case where 2 ~ q < oo. By Holder inequality, (va, Pa) E WJ(D) x 

WJ(D). By divergence theorem, we have 

0 = (.X.va - ~Va+ aVQriva, Va)ri 

= .X.llvalli2 + IIVvalli2 + a(VQriva, Va)ri. 

Taking the real part and the imaginary part, we obtain 

{ (Re.X.)IIPrivalli2 +(Re.>..+ a)IIVQrivalli2 + IIVvalli2 = 0, 
(Im.X.)llvalli2 = 0. 

In the case where Im.>..=/= 0, we obtain llvall£2 = 0. Therefore by V Pa= aVQriva, we 
have Va= 0 and Vpa = 0. 

In the case where Im.>.. = 0 and A 2". 0, we obtain Va = 0 and V Pa = 0 by Re.>.. > 
0,Re.X. +a> 0. 

In the case where Im.>..= 0 and -002 < Re.>.. < 0, set ). = -.>.. (0 ~ ). < 0 02). Since 
a> 0 02 , we have Re.>..+ a=-).+ a> 0. 

By IIPrivall£2 ~ llvallL2 and llvallL2 ~ CollVvall£2, we have 

0 2': -).IIPrivalli2 + IIVvalli2 

2': -).llvalli2 + IIVvalli2 

2': -).C5IIVvalli2 + IIVvalli2 = (1- ).O5)IIVvalli2-

Therefore when 1 - ).05 > 0, namely).< 0 02 , we have IIVvall£2 = 0. By valari = 0, we 
obtain Va = 0 and V Pa = 0. 

In the case where 1 < q < 2, by using duality argument, we can obtain the uniqueness. 

□ 
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