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The decay property of the multidimensional compressible flow 

in the exterior domain 

Xin Zhang 

Abstract 
This is a report of the recent work [13], which is a joint work with Yoshihiro Shibata from Waseda 

University. In [13], we established the Lp-Lq decay estimate of some model problem of the compress
ible flow with the free boundary condition in the exterior domain in JRN (N :C: 3). Furthermore, our 
proof in [13] followed the local energy approach. 

1 Introduction 

In this note, we consider the following model problem * in some smooth exterior domain 

0 C ~N(N 2'. 3): 

r•P + o, div v ~ 0 
m 0 X ~+, 

118tv - Div (S(v) - 12pl) = 0 in 0 X ~+, 

(S(v) - 12pl)nr = 0 f X ~+, 
(1.1) 

on 

(p, v)lt=O = (Po, vo) m n. 

In (1.1), the constants 11 , 12 , µ, v > 0, S(v) = µ("v'v+ (v'v?) + (v- µ)div vl, the (i, j)th 

entry of the matrix v'v is O;VJ, and I is the N x N identity matrix. In addition, MT is 

the transposed matrix of M = [M;J], DivM denotes an N-vector of functions whose i-th 

component is I:f=1 oJMiJ, divv = I::f=1 OJVJ, and v · v' = I::f=1 VJOJ with OJ = 8/oxJ· 

Moreover, nr stands for the unit normal vector to the boundary r of D. 

The system (1.1) comes from the study of the motion the barotropic viscous gases in 

some moving exterior domain Dt c ~N (N 2'. 3), described by the following compressible 

Navier-Stokes equations with the free boundary conditions: 

m u Dt x {t}, 
O<t<T 

(Pe + p)(otV + v · v'v) - Div (S(v) - P(pe + p)I) = 0 in u Dt X {t}, 
O<t<T (1.2) 

on u ft X {t}, 
O<t<T 

*In [13], we treated some model problem like (1.1) with variable coefficients. 
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In (1.2), the reference mass density Pe > 0, the unknown mass density is p + Pe, and the 

unknown velocity field is v = ( v1 , ... , VN) T_ Moreover, nr, is the outer unit normal vector 

to the boundary ft of rlt, and Vr, stands for the normal velocity of the moving surface 

ft. In the next section, we shall see that (1.1) can be regarded as the linearized model 

of (1.2) via the partial Lagrangian coordinates. Here, let us emphasize that the linear 

theory on (1.1) is fundamental to the (local or global) solvability of (1.2). 

In [13], we established the Lp-Lq decay property of (1.1), which originates from the 

theory of the parabolic equations. For simplicity, let us review the heat equation in the 

whole space JRN(N 2'. 3): 

In view of the explicit solution formula of (1.3), namely, 

v(x, t) = r Gt(X - y)vo(Y) dy, 
Jffi.N 

1 ( lxl 2
) Gt(x) = (41rt)N/2 exp - 4t , 

it is not hard to verify that v admits the Lp-Lq decay estimate 

(1.3) 

(1.4) 

for any 1 :'.'::: q :'.'::: p :'.'::: oo, o: E N/;', and t > 0. Here N0 denotes the set of all nonnegative 

integers, and A ;S B stands for A :'.'::: CB for some harmless constant C. 

The Lp-Lq decay theory plays a vital role in the solvability of the model in fluid dynam

ics. For example, the extension of (1.4) for the incompressible flow in the exterior domain 

was done in [7, 8]. Let us write A8 for the Stokes operator associated to the Dirichlet 

boundary condition in the smooth exterior domain rl c !RN (N 2'. 3). Then the results in 

[7, 8] yield that 
lletAsvo IILp(O) ;S cN(l/q-l/p)/2 llvo IILq(O), 

ll'VetAsvallLp(n) ;S cu,(p,q,N)llvollLq(O), 

for t > 1, 1 < q :'.'::: p < oo and 

-{(N/q-N/p)/2+1/2 
o-1(P, q, N) -

N/(2q) 

for 1 < p :'.'::: N, 

for N < p < oo. 

Moreover, the gradient estimate of etAs in (1.5) is also sharp for p > N (see [8]). 

(1.5) 

On the other hand, for the compressible Navier-Stokes equations, Matsumura and 

Nishida in [10] proved the global wellposedness whenever the initial data were give small 
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in H3 (IR3). Moreover, the authors in [9] obtained the LrL1 type decay property of the 

solutions near the equilibrium (Pe, 0), 

II (p - Pe, v) IIL2(1R3) ~ Co r 3!4 (t > 1), (1.6) 

for some constant C0 depending on the small quantity II (Po - Pe, v 0 ) IIL,(IR3)nH3(IR3)- For the 

further discussion in Besov regularity framework, one may refer to [1, 2, 3, 4, 6, 11]. 

To state our main result on the Lp-Lq decay estimate of (1.1), we introduce some notion. 

Let {T( t) }t;:,:0 be the C0-semigroup generated by the operator 

An(P, v) = ( ,1divv, - 111Div (S(v) - 12pl)) 

in the space H};,0 (0) = H};(O) x Lp(O)N for 1 < p < oo (see Theorem 4.2). Denote the 

solution of (1.1) by (p, v) = T(t)(p0 , v 0 ) and v = PvT(t)(p0 , v 0 ). Then our main result 

reads as follows. 

Theorem 1.1. (Lp-Lq decay estimate) Let 0, be a C3 exterior domain in !RN with N 2: 3. 
Assume that (p0 , v 0) E Lq(O)HN n H];,0 (0) with H];,0 (0) = H};(O) x Lp(O)N for 1 ~ 

q ~ 2 ~ p < oo, and {T(t) }t;:,:0 is the semigroup associated to (1.1) in H};,0 (0). For 

convenience, we set 

Then fort 2: 1, there exists a positive constant C such that 

IIT(t)(Po, vo)IILp(O) ~ cr(N/q-N/p)/2 lll(Po, vo)lllp,q' 

IIVT(t)(Po, vo)IILp(O) ~ cru,(p,q,N)lll(Po, vo)lllp,q' 

IIV2PvT(t)(Po, vo)IILp(O) ~ CC"2(p,q,N)lll(Po, vo)lllp,q' 

where the indices a 1(p, q, N) and a2 (p, q, N) are given by 

( ) _{(N/q-N/p)/2+1/2 for2~p~N, 
a1 p,q,N -

N/(2q) for N < p < oo, 

{
3/(2q) for N = 3, 

a2(p, q, N) = (N/q - N/p)/2 + 1 for N 2: 4 and 2 ~ p ~ N/2, 

N/(2q) for N 2: 4 and N/2 < p < oo. 

To establish the Lp-Lq estimates in Theorem 1.1, we use the so-called local energy 

approach. Assume that n c JRN is an exterior domain such that JRN\n c BR, and BR 

denotes the ball centred at origin with radius R > 1. Then we can prove 
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Theorem 1.2. (local energy estimate) Let O be a C 3 exterior domain in ffi.N for N ~ 3. 

Let 1 < p < oo and L > 2R. Denote that t 

oL =on BL, HJ'2 (0L) = HJ(OL) x H;(OL)N, 

Xp,L(O) = {(d, f) E HJ,0 (0): suppd, suppf C 0£ }. 

Then for any (p0 , v 0) E Xp,L(O) and k E N0 = NU {O}, there exists a positive constant 

Cp,k,L such that 

11a;r(t)(Po, vo)IIHJ•2(nL)::; Cp,k,L cN/2-kll(Po, vo)IIHJ·D(n)' V t ~ 1. 

We will have Theorem 1.1 so long as Theorem 1.2 is established. To prove Theorem 

1.2, we consider the resolvent problem of (1.1): 

{
>.ry + 11div u = d in 0, 

, 1>.u - Div (S(u) - 12ryl) = f in 0, 

(S(u) - 12ryl)nr = 0 on r. 
(1.7) 

The analysis of (1. 7) is the main concern of this note. One difficulty is to describe the 

behaviour of the solution of (1. 7) if >. locates near the origin. This is contained in the 

result of section 3. On the other hand, it is easy to study (1. 7) whenever >. is sufficient 

large (see Theorem 4.1 in section 4). The case>. is uniformly bounded from above is more 

involved (see Theorem 4.3). 

Notation 

For convenience, we introduce some useful notation. For any domain G in ffi.N, 1 ::; 

p :S: oo and k EN, Lp(G) (Lp,loc(G)) stands for the (local) Lebesgue space, and H!(G) 
(H;,loc (G)) for the (local) Sobolev space. Moreover, we write 

H!,e(G) = H!(G) x H:(G)N, H!,i~c (G) = H!,1oc (G) X Hi,loc (G)N. 

For any Banach spaces X, Y, the total of the bounded linear transformations from X to 

Y is denoted by .C(X; Y). We also write .C(X) for short if X = Y. In addition, Hol (A; X) 

denotes the set of X-valued analytic mappings defined on the domain A C C. To study 

the resolvent problem (1.7), we introduce that 

~" = {>. E <C\{O}: I arg>.I :S: 7r - s}, ~s,b = {>. E ~": i>.I ~ b}, 

K = {>. E (C: (~>. + ,n2 )2 + ~>.2 > ( ,n2 )2}, 
µ+v µ+v 

¼,b = ~c,b n K, ub = {>. E <C\ ( -oo, O] : i>.I < b} 

for any O < s < 7r /2 and b > 0. 

t]J stands for the closesure of E for any subset E c !RN. 

(1.8) 
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2 Formulation via partial Lagrangian coordinates 

In this section, we will introduce the partial Lagrangian coordinates, and we will also see 

that the linearized form of (1.2) is (1.1). Let K = K(x) be a smooth functions which equals 

to 1 for x E BR and vanishes outside of B 2R. Define the partial Lagrangian transformation 

as follows: 

x = Xu(Y, t) = y + 1t K(y)u(y, s) ds E flt U rt, 'v y E Q Ur, (2.1) 

for some smooth vector u = u(-, s) and 0 :s; t :s; T. By assuming the condition 

1T IIK(·)u(-, s)llrrcSo(fl) ds :s; <5 < 1/2 (2.2) 

for small constant <5 > 0, we denote X~1 (-, t) for the inverse of Xu(·, t) in (2.1). Suppose 

that 

solve (1.2) for some function T/ defined in Q. We will derive the equations formally satisfied 

by (p, u) in Q in what follows. 

Assume that r is a compact hypersurface of C 2 class. The kinematic (non-slip) condition 

Vr, = v · Ilt is automatically satisfied under the transformation Xu, because K = 1 near 

the boundary r. Denote that 

'vyXu =I+ 1t 'vy(K(y)u(y, s)) ds, 

and lu = det(v' yXu)- Then by the assumption (2.2), there exists the inverse of v' yXu, 

that is, 

(v'yXur1 =I+ Vo(k), k = 1t 'vy(K(y)u(y, s)) ds, 

where V 0 (k) = [Voi1(k)]NxN is a matrix-valued function given by 
00 

V0 (k) = ~)-k)1. 
j=l 

In particular, V0(0) = 0. By the chain rule, we introduce the gradient, divergence and 

stress tensor operators with respect to the transformation (2.1), 

v' u = (I+ Vo(k)) v' y, div ull = (I+ Vo(k)) : v' yll = r 1div y ( J(I + Vo(k)) Tu)' 

Du(u) = (I+ V 0 (k))v'u + ('vu) T (I+ V 0 (k)f = D(u) + V0 (k)v'u + (V0 (k)v'u) T' 

(2.3) 

Su(u) = µDu(u) + (v-µ)(divuu)I, DivuA = J~1Divy(luA(I+ Vo(k)) )-
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In addition, the ith component of Div uA can be also written via 

N 

(Div uA); = L [I+ Vo(k)]jkokAij, \:/ i = 1, ... , N. 
j,k=l 

(2.4) 

In particular, Div uA = 0 if A is a constant matrix. Then according to (2.3), (p, u) fulfils 

!
OtTJ + (1 - A:)u · v'uT) + (Pe + TJ) div ull = 0 

(Pe + TJ) ( OtU + (1 - A:)u -~ uu) - Div u (Su(u) - P(pe + TJ)I) = 0 

(Su(u) - P(pe + TJ)l)nu - -P(pe)nu 

( TJ, u) lt=O = (Po, vo) 

where nr denotes for the unit normal vector to r, and nu is defined by 

(I+ V0 (k))nr 
llu = ~---~~· 

l(I+ Vo(k))nrl 

It is clear that the boundary condition in (2.5) is equivalent to 

( Su(u) - (P(pe + TJ) - P(pe))I) (I+ Vo(k))nr = 0. 

in 

in 

on 

m 

On the other hand, as P(·) is smooth, we infer from Taylor's theorem that 

T/211 P(pe + TJ) - P(pe) = P'(Pe)TJ + - P"(Pe + 0TJ)(l - 0) d0. 
2 0 

n x (o, T), 

n x (o, T), 

r x (0,T), 

n, 
(2.5) 

(2.6) 

(2.7) 

Thus (2.6) and (2.7) yield that the principal terms of (2.5) are given as in the left-hand 

side of (1.1) by setting (,1,,2) = (Pe,P'(Pe)). 

3 Resolvent problem for >. near zero 

In this section, we will give the behaviour of the solution of the system (1.7) whenever 

>. lies near the origin. This situation is the most significant part of this work. 

Theorem 3.1. Let (d, f) E Xp,L(O) for l < p =S r and L > 2R > 0. Then there exist 

a constant >.1 > 0 and two families of the operators (M.x, V_x) for any>. E U_x, = {>. E 

IC\(-oo, 0] : l>-1 < >-1} with 

M_x E Hol ( U_x,; L.:(Xp,L(O); H£,loc (n)))' VA E Hol ( U_x,; L.:(Xp,L(n); H;,loc (n)N))' 

so that (TJ, u) = (M.x, V.x)(d, f) solves (1.7). Moreover, there exist families of the operators 

Mi E Hol (u.x,;L.:(Xp,L(O);H£,10c(O))) (i = 1,2), 

v{ E Hol ( U_x,; L.:(Xp,L(O); H;,loc (n)N)) (j = 0, 1, 2), 
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such that 

M>- = (>.N-2 log >.)Ml+ ML 

V>, = (>.N/2-1(log>.)""(Nl)'1 + (>.N-2log>.)Vl + VL 

for any>. E U>, 1 and u(N) = ((-l)N + 1)/2. 

In the following, we outline the main strategy of the proof of Theorem 3.1. Without loss 

of generality, we shall prove Theorem 3.1 for L = 5R. To construct the solution mapping 

of (1.7), we consider the auxiliary problem: 

, 1divu = d in !15R, 

- Div (S(u) - ,211I) = f in !]5R, 

(S(u) - ,217l)nr = 0 r, 
(3.1) 

on 

(S(u) - ,211l)n35R = 0 on S5R, 

Here, n 8 denotes the unit outer normal to S5R = {x E ~NI lxl = 5R}. 
5R 

The homogeneous system (3.1) lacks of the uniqueness in general. So we need some 

trick to fix it. Let 3R < b0 < b1 < b2 < b3 < 4R and set 

Now, we introduce the vectors of the rigid motion. Set 

for j = 1, ... , N, 
(3.2) 

for j = N + 1, ... , M. 

Above, M is a constant only depending of the dimension N. For any vector u satisfying 

D(u) = 0, u is represented by a linear combination of {rj}~1, namely u = I:;~1 ajrj 

with some aj ER Let 'ljJ E C0 (~N) such that supp'lj; C Db,,b2 , and 'lj; = 1 on some ball 

B C Dt,h. We introduce a family of vectors D,i, = { C}j }~1, the normalization of { rj }~1 
in such a way that 

(3.3) 

Moreover, for simplicity we write 

• f ..l DR if (f, C}j )n5R = 0 for any C}j E D,t,; 

• f ..l D,i, if (f, Cij),t, = 0 for any C}j E D,i,. 

With the notations above, we can prove the following elliptic estimates for (3.1). 
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Theorem 3.2. Let 1 < p ~ r. Let (d, f) E HJ,,0 (D5R) with f ..l DR- Then there exist 

operators 

(.:J, W) E .C(H?(D5R), H:,2(D5R)) 

such that (rJ, u) = (.:J, W)(d, f) is a unique solution of (3.1) with u ..l DR- Moreover, the 

fallowing estimate holds, 

for some constant C > 0. 

The proof of Theorem 3.2 is one core but technical result in our work [13]. Here, we 

admit such result and proceed with the proof of Theorem 3.1. Let cp, 7/Jo, and 7/J00 be the 

cut-off functions such that O ~ cp, 7/Jo, 7Poo ~ 1, cp, 7/Jo, 7Poo E C00 (l~N), and 

for lxl ~ b1, 

for lxl 2 b2, 

For any (d, f) E HJ,,0 (D5R), we have 

for lxl ~ b2, 

for lxl 2 b3, 

for lxl 2 b1, 

for lxl ~ bo. 

(3.4) 

(3.5) 

Then, by the theory in [12, Subsection 3.1] and (3.5), there exists a .>.0 > 0 such that 

( rJ>-., U>-.) = (M>-., V>-.) ( 7/J00 d, 7/J00f) solves the following equations: 

{ 
ArJ>-. + 11 div ll>-. = 7/J00d m ~N, 

11.All>-. - Div (S(u>-.) - '}'27]>-.I) = 7/J00 f in ~N, 

and satisfies the estimate: 

llrJ>-IIHJ(BBR) + llu>--IIH~(BBR) ~ C(lldllHMO) + llfllLv(o))

Moreover, we set (rJo, uo) = (Mo, Vo)(7/J00 d, 7/J00 f) E H;:1!c(~N) fulfilling that 

{
,1divuo = 7/Jood 

- Div (S(uo) - 1'2rJol) = 7/Joof 

and 

lim (llrJ>-. - rJollH1(B6R) + llu>-. - uollH2 (B6R)) = 0. 
AEU>.0 P P 

1>--1--+0 
On the other hand, let us set 

M 

fnd = ~)7/Jof, (lJ)o5R7P<lJ, f.l = 7/Jof - fnd E Lp(D5R)N. 
j=l 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Obviously, f_j_ l_ DR- Then, Theorem 3.2 yields that there exists a (unique) solution 

(1Jtt, utt) E H}·2 (f'l5R) with Utt l_ DR of the following equations: 

possessing the estimate 

11 div ui = 'lj;0d 

- Div (S(ui) - 1'21J1I) = f_j_ 

(S(ui) - 1'21Jttl)nr = 0 

(S(utt) - 1'21Jttl)n55R = 0 

We now introduce parametrices: 

Ill D,5R, 

in f'l5R, 

on r, 
on S5R, 

(3.10) 

(3.11) 

for >. E [h,0 U {O}. Then the couple (rf>.., ii>..) plays a vital role in constructing the solution 

mapping of (1.7) whenever>. is near the zero. For more details, see [13]. 

4 Resolvent problem for..\ away from zero 

According to Theorem 3.1, it suffices to study (1.7) whenever >. is uniformly bounded 

from below. In this section, we first give the result when >. is far away from the origin. 

Then we consider (1.7) whenever>. lies in some ring-shaped region. 

4.1 Resolvent problem for large >. 

Recall the notion in (1.8). The following result can be regarded as the simplified version 

of [5, Theorem 2.4]: 

Theorem 4.1. Let 1 < p:::::; r < oo, and O < E < 1r/2. Assume that D, is a C 2 exterior 

domain in ~N for N ~ 3. Then there exist >.2 > 0 and two families of operators 

(P oo(>-), Voo(>-)) E Hol ( ½,>..2 ; .C( H;•0(f'l); H? (f'l))), 

such that (17, u) = (P00 (>.), V00 (>.))(d, f) E H}·2(f'l) is a unique solution of (1.7) for any 

>. E ½,>..2 and any (d, f) E HJ·0(n). Moreover, we have 

( 4.1) 

for some constant C depending solely on >.2, E, p, µ, v, 11 , 12 , N. 
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The existence of the semigroup {T(t)}c-o associated to (1.1) is immediate from Theorem 

4.1. For 1 < p, q < oo, we define 

Vp(Ari) = {(77, u) E H:·0(n) I u E H;(n)N, (S(u) - ,'27]l)nr = O}, 

Vp,q(O) = ( H:·0 (0), Vp(Ari)) i-i/q,q· 

Theorem 4.2. The operator Ari generates a C0 -semigroup {T(t) h2:o in Hi•0 (0) for 

any l < p :::: r < oo, which is analytic as well. Denote the solution of (1.1) by 

(p, v)(t) = T(t)(p0 , v0 ). Then there exists positive constants ,'o and C such that the fol

lowing assertions hold. 

1. For (p0 , v 0) E Hi•0 (n), we have 

2. For (p0 , v 0) E Vp(Ari), we have 

3. For (p0 , v 0) E Vp,g(n), we have 

11e-70 l( 8tp, p) 11Lq(IR+;Ht(!1)) + 11e-'(olatvllLq(IR+;Lp(!1)) + 11e-70 lvllLq(IR+;H~(!1)) 

:::: C(IIPollHJ(!1) + llvollB;'.~- 1/qJ(ri)· 

4.2 Resolvent problem for A in some compact subset 

Thanks to Theorem 4.1 and Theorem 3.1, it remains to study (1.7) whenever A is 

uniformly bounded from above and also from below. To this end, let us take some suitable 

positive constants A~ and A; such that 

with A1 and A2 given by Theorem 3.1 and Theorem 4.1 respectively. For fixed constants 

µ, v, ,'1 , ,'2 > 0, we set 

KE:= {A E <C\{O}: (~A+ 'Y1'Y2 + c-)2 + 's.A2 2". ( 'Y1'Y2 + c-)2}, 
µ + V µ + V (4.2) 

D: = {A E I;e n K,:: A~:::: IAI:::: A;}. 

Now, we address the resolvent problem (1.7) whenever A lies in D~ above. 
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Theorem 4.3. Suppose that n is a C2 exterior domain in ~N for N 2: 3. Let O < s < 1r / 

2, N < r < oo, 1 < p :s:; r, and >. E D~. Then there exist two families of operators 

(Pmid(>.), Vmid(>.)) E Hol ( D~; L(HJ·0 (0); H?(O)) ), 

such that (TJ, u) = (Pmid(>.), Vmid(>.))(d, f) E HJ•2 (0) is a unique solution of (1.7) for any 

>.ED~ and for any (d, f) E HJ·0 (n). Moreover, we have 

IITJIIHJ(o) + llullHJ(o) :s; C(lldllHJ(o) + llfllLp(OJ) 

for some constant C depending solely on >.~, >.;, s, p, r, µ, v, 11 , 12, N. 

The proof of Theorem 4.3 relies on the compactness of the set D~. In [13], we first 

study (1.7) for any fixed >. E D~, where the elliptic estimates depend on>.. Then, using 

the finite covering property of D~, we can remove such dependence of >. and obtain the 

uniform estimates as in Theorem 4.3. 
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