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Abstract 

We consider the head-on collision of two coaxial vortex rings, which have cir
culations of opposite sign, described as the motion of two coaxial circular vortex 
filaments under the localized induction approximation. We prove the existence of 
solutions to a system of nonlinear partial differential equations modelling the inter
action of two vortex filaments proposed by the author [M. Aiki, On the existence 
of leapfrogging pair of circular vortex filaments, Stud. Appl. Math., 143 (2019), 
no.3, pp.213-243.] which exhibit head-on collision. We also give a necessary and 
sufficient condition for the initial configuration and parameters of the filaments for 
head-on collision to occur. Our results suggest that there exists a critical value 
"I• > 1 for the ratio "/ of the magnitude of the circulations satisfying the following. 
When"/ E [1, "/•], two approaching rings will collide, and when"/ E ("!., oo), the ring 
with the larger circulation passes through the other and then separate indefinitely. 
As far as the author knows, the existence of such threshold "/• is only indirectly sug
gested via numerical investigations of the head-on collision of coaxial vortex rings. 
Hence, our paper is the first to obtain the threshold in a way that is possible to 
numerically calculate "/•, as well as prove that the threshold exists in a framework 
of a mathematical model. 

1 Introduction 

In this paper, we are interested in the head-on collision of two vortex rings sharing the 
same axis of symmetry (coaxial vortex rings) in a incompressible and inviscid fluid. For 
the purposes of this paper, we make a distinction between the two terms "vortex ring" 
and "circular vortex filament" by the following. The term "vortex ring" will be used to 
describe a torus shaped structure in which the vorticity of the fluid is concentrated. The 
term "circular vortex filament" will be used to describe a circular curve in space for which 
the vorticity of the fluid is concentrated. For a vortex filament, the vorticity of the fluid 
at each point of the curve is directed at the direction of the tangent vector. Hence, under 
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our terminology, a circular vortex filament can be considered as an approximation of a 
vortex ring in which the core size is taken to be zero. 

The study of the interaction of coaxial vortex rings dates back to the pioneering paper 
by Helmholtz [1]. In [1], Helmholtz considered vortex motion in a incompressible and 
inviscid fluid based on the Euler equations. His study includes the motion of circular 
vortex filaments, and he observed that motion patterns such as head-on collision may 
occur. Since then, many researches have been done on head-on collision of coaxial vortex 
rings, and interaction of coaxial vortex rings in general. 

Dyson [2, 3] further studied the interaction of coaxial vortex rings and proposed a 
system of ordinary differential equations describing the motion of the rings. From here, 
we will refer to this model as the Dyson model. Dyson numerically considered the head
on collision of two identical rings approaching each other and observed the dynamics of 
the rings as the distance between the two rings decreased. Gurzhii and Konstantinov [4] 
numerically investigated a model system obtained in Gurzhii, Konstantinov, and Meleshko 
[5], which can be seen as a generalization of the Dyson model, and observed the possible 
motion patterns for a pair of coaxial vortex rings with circulations of opposite sign. In 
Shariff, Leonard, and Ferziger [6] and Shariff, Leonard, Zabusky, and Ferziger [7], they 
extend the method of contour dynamics, introduced in Zabusky, Hughes, and Roberts 
[8], and numerically investigated the head-on collision of coaxial vortex rings. They also 
compare and contrast with dynamics described by the Dyson model. The method of 
contour dynamics was later employed by Tang and Ko [9] to investigate sound generation 
by the head-on collision of coaxial vortex rings. They consider rings with both equal and 
unequal circulation magnitudes and observe the effect it has on sound generation. 

Direct numerical simulation of the N avier-Stokes equations was done by Stanaway, 
Shariff, and Hussain [10]. In particular, they considered the head-on collision of coaxial 
vortex rings and the effect of viscosity was observed. Inoue, Hattori, and Sasaki [11] 
also conducted numerical simulations of the Navier-Stokes equations to investigate the 
head-on collision of coaxial vortex rings when the translational velocity of the rings are 
varied. Nakashima [12] conducted numerical simulations of the Navier-Stokes equations 
to investigate the generation of sound when two rings collide head-on. He also considered 
the case when the two rings collide at different angles of incidence. Mansfield, Knio, and 
Meneveau [13] considered the head-on collision of coaxial vortex rings using a Lagrangian 
particle method which combines a vortex element method and dynamic eddy viscosity 
model. They investigate the collision of coaxial vortex rings at high Reynolds numbers 
and compare their results with numerical results obtained in previous works which utilize 
different numerical methods. 

Experiments were conducted by many researchers as well. Oshima [14] conducted an 
experiment in which she observed the formation of multiple small rings after the initial 
two coaxial rings collided. This occurs due to the reconnection of the two rings and 
her work was the first to observe this phenomenon. A more revealing experiment of the 
reconnection phenomenon and the related instability of the motion of vortex rings was 
given in Lim and Nickels [15]. Kambe and Minota [16] and Minota and Kambe [17] 
conducted experiments to observe the acoustic waves radiated by the head-on collision of 
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coaxial vortex rings. Chu et.al. [18] conducted experiments and numerical calculations 
of the Navier-Stokes equations to investigate the head-on collision phenomenon and its 
relation to the change in enstrophy. Minota, Nishida, and Lee [19] conducted experiments 
and numerical calculations to investigate the head-on collision of coaxial vortex rings 
at high speeds. They observe that when the rings become close enough, a shock is 
emitted from the narrow region between the two rings. Mckeown et. al. [20] conducted 
experiments as well as numerical experiments of the Navier-Stokes equations to investigate 
the breakdown of the vortex core when two coaxial vortex rings collide at high Reynolds 
numbers. 

Other phenomena which are related to head-on collision of coaxial vortex rings include 
collision of multiple rings at various angles of incidence, collision of vortex rings travelling 
along off-set and parallel axes, and collision of vortex rings which are initially linked. 
Collision of rings at various angles of incidence is investigated, for example, by Kida, 
Takaoka, and Hussain [21], Kambe, Minota, and Takaoka [22], Adachi, Ishii, and Kambe 
[23], Ishii, Adachi, and Kambe [24], and Hernandez and Reyes [25]. Collision of vortex 
rings travelling along off-set and parallel axes is considered by Zawadzki and Aref [26], 
Smith and Wei [27], and Zhu et. al. [28]. The collision of initially linked vortex rings is 
considered by Aref and Zawadzki [29]. 

Shariff and Leonard [30] and Maleshko [31] give an in-depth review of the history of 
the research of vortex rings in which many aspects of motion, including head-on collision, 
are addressed. 

Although the study of head-on collision of coaxial vortex rings have been done for a 
very long time, there is significantly fewer research of the head-on collision phenomenon 
in a mathematically rigorous framework. Giga and Miyakawa [32] and Feng and Sverak 
[33] proved the well-posedness of the initial value problem for the Navier-Stokes equations 
with initial data given as vortex rings. In principle, these results give a mathematically 
rigorous treatment of the interaction of vortex rings, but extracting the dynamics of 
specific motion patterns through this approach seems difficult. In Borisov, Kilin, and 
Mamaev [34], they analyze the Dyson model to determine the possible motion patterns 
of a pair of coaxial vortex rings for a wide range of configurations, but their work doesn't 
include head-on collision. 

Another approach one may take is to consider circular vortex filaments instead of 
vortex rings. By simplifying the structure, it is possible that specific motion patterns 
can be treated in a mathematically rigorous framework, and this is the approach we 
adopt in this paper. As far as the author knows, the works by Banica and Miot [35] and 
Banica, Faou, and Miot [36, 37] are the only mathematically rigorous results considering 
the collision of vortex filaments. They considered the motion of nearly parallel vortex 
filaments described by the model system of partial differential equations proposed by 
Klein, Majda, and Damodaran [38]. Since the model system is derived by assuming 
that the vortex filaments are nearly straight and parallel, it is not suitable for describing 
motions of circular vortex filaments. In [39], the author proposed a system of nonlinear 
partial differential equations describing the interaction of vortex filaments. The paper 
[39] focused on deriving a new system describing the interaction of vortex filaments with 
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general shape and proving the existence of solutions corresponding to leapfrogging in the 
case of coaxial circular vortex filaments. The aim of this paper is to prove the existence 
of solutions to the model system proposed in [39] which correspond to head-on collision 
of coaxial circular vortex filaments. We also give necessary and sufficient conditions on 
the filament configurations and parameters for head-on collision to occur. This further 
shows the capabilities of the model to describe vortex filament interaction. The results 
of this paper will also imply that the time-global solvability of initial value problems for 
the model system doesn't hold in general. 

The rest of the paper is organized as follows. In Section 2, we formulate the problem 
and state our main theorem. Section 3 is devoted to the proof of the main theorem. 
Finally, in Section 4, we give some discussions and concluding remarks. In particular, we 
compare our theoretical results with numerical results obtained by Inoue, Hattori, and 
Sasaki [11] and Gurzhii and Konstantinov [4]. 

2 Problem Setting 

In [39], the author proposed the following system of nonlinear partial differential equations. 

(2.1) 

Here, X = X(~, t) and Y = Y(~, t) are the position vectors of the filaments parametrized 
by ~ at time t, non-zero parameters r 1 and r 2 are the circulations of the filaments X and 
Y respectively, a is a positive parameter introduced in the derivation of the model, x 
is the exterior product in the three-dimensional Euclidean space, and subscripts denote 
differentiation with the respective variables. The model system (2.1) was derived from 
the Biot-Savart law by applying the localized induction approximation. The localized 
induction approximation was applied to the Biot-Savart law first by Da Rios [40] and 
later independently by Murakami et. al. [41] and Arms and Rama [42] to derive a model 
equation describing the motion of a single vortex filament. In [39], the concept of localized 
induction was applied to the case where two vortex filaments are present to derive system 
(2.1). We first rescale the time variable by a factor of r 2 and arrive at 

(2.2) 

where (3 = rifr2 . 

Following [39], we formulate the problem for a pair of coaxial circular vortex filaments. 
Suppose that for some R 1,0 , R 2,o > 0 and z1,0 , z2,o E R, the initial filaments X O and Y 0 
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are parametrized by ( E [0, 21r) as follows. 

where we assume that (R1,0 - R2,0 ) 2 + (z1,0 - z2,0 ) 2 > 0, which means that the two circles 
are not overlapping. Now, we make the ansatz 

for the solution and substitute it into (2.2). After some calculations, we arrive at the 
following initial value problem for a system of ordinary differential equations. 

(2.3) R _ af3R1(z1 - z2) 
2- ( )3/2' (R1 - R2)2 + (z1 - z2)2 

. 1 a/3R1(R1 - R2) 
z2 = R2 - ((R1 - R2)2 + (z1 - z2)2) 312 ' 

(R1(0), z1(0), R2(0), z2(0)) = (R1,o, z1,o, R2,o, z2,o)-

Here, a dot over a variable denotes the derivative with respect to t. The analysis in [39] 
shows that head-on collision can only occur when the circulation of the filaments have 
opposite signs, i.e. when /3 < 0. To simplify the notation, we take 1 = -/3 to rewrite 
(2.3) to obtain 

(2.4) 

((R1 - R2)2 + (z1 - z2)2) 312 ' 

. 1 a,R1(R1 - R2) 
Z2 = R + 3/2' 2 ((R1 - R2)2 + (z1 - z2)2) 

(R1(0), z1(0), R2(0), z2(0)) = (R1,o, z1,o, R2,o, z2,o)-

We can further assume without loss of generality that 1 2: 1 since the case 1 < 1 is 
reduced to the case 1 2: 1 by renaming the filaments. By direct calculation, we see that 
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,Ri - R~ is conserved throughout the motion. This means that (R1 , R2 ) lies on the set 
defined by ,Ri - R~ = d, where d = ,Ri,o - R~,o- Further analysis shows that head-on 
collision can only occur when d = 0. 

When d = 0, we see that R2 = 1 1/ 2 R1 , and setting 

problem (2.4) reads 

. a,112w 
0 = - ((rl/2 - 1)2e20 + w2)3/2 =: Fi(0, W), 

(2.5) 
. 1 _0 o:,1/2(r1/2 _ 1 )2e20 

W = -(r + ~ 12 )e + 312 =: F2 (0, W), 
1 ((rl/2 -1)2e20 + W2) 

with initial data given by (0(0), W(0)) = (00 , W0 ) with 00 = log(R1,0 ) and W0 = z1,0 -z2,0 . 

In order to describe the behavior of the two filaments, it is sufficient to consider the 
behavior of the solutions to system (2.5). From here, we analyze system (2.5) as a two-
dimensional dynamical system. System (2.5) is of Hamiltonian form and the Hamiltonian 
1-£(0, W) is given by 

1 -0 0:,1;2 
1-l(0 W) = -(r + -)e + ------~ 

' 11/2 ((rl/2-1)2e20+w2)1/2· 
(2.6) 

The phase space and the possible motion patterns vary depending on the value of r
Setting H0 := 1-£(00 , W0 ), the conservation of the Hamiltonian yields 

1 -0 0:,1;2 
H0 = -(r + -)e + -------~ 

11/2 ( (rl/2 - 1)2e20 + w2)1/2' 

which can be used to rewrite system (2.5) as follows. 

(2.7) 

! · _ 1 { 1 -0} 2 { 2 1/2 2 20 [ 1 -0i 2} 112 
0 - - o:21 Ho+ (r + 1112 )e a 1 - (1 - 1) e Ho+ (r + 1112 )e , 

. 1 -0 (rl/2_1)2{ 1 -0}320 
W = -(r + 1112 )e + o:21 Ho+ (r + 1112 )e e . 

In particular, we utilized the relation 

(2.8) w-{ 0:2, -(rl/2_1)2e20}1/2 
- [Ho+ (r + ,_/12 )e-0J2 

The above relation and the alternate form of system (2.5) will be used extensively through
out the paper. In order to state our main theorem, we give two definitions for the types 
of solution we consider. 
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Definition 2.1 (Head-on collision and asymmetric collision) 
For a finite-time solution (0, W) of system (2.5), we define the following two types of 
solutions. In what follows, T max E (0, oo) denotes the maximum existence time of the 
solution in consideration. 

(i) For 1 = 1, we call a finite-time solution (0, W) E C 1([0, Tmax)) x C1 ([0, Tmax)) of 
system (2.5) with initial data ( 00 , W 0 ) satisfying W0 -:/- 0 a solution corresponding to 
head-on collision if W ( t) -t O monotonically as t -t T max · 

(ii) For 1 > 1, we call a finite-time solution (0, W) E C1([0, Tmax)) x C1 ([0, Tmax)) of 
system (2.5) with initial data ( 00 , W 0 ) satisfying W0 -I- 0 a solution corresponding to 
asymmetric collision if W(t) -t O monotonically as t -t Tmax· 

We will use the terminology "colliding solution" to refer to either or both types of solutions, 
depending on the context. 

The behavior of the solution in the above two definitions are the same. The only difference 
is the value of 1 . We made this distinction because the term "head-on collision" seems 
to be mostly used when two identical rings collide. The term "asymmetric collision" was 
adopted from [11]. 

We state our main theorem. 

Theorem 2.2 For any a. E (0, 1), there exists a unique'* E (1, oo) such that the following 
four statements hold. 

(i) When 1 = 1, the phase space is R2 \(Rx {0}) and the following two statements are 
equivalent. 

(a) The solution of (2.5) with initial data (00 , W0 ) E R2 \(Rx {O}) is a solution 
corresponding to head-on collision. 

(b) W0 > 0. 

(ii) When I E (1, '*), the phase space is R 2 and there exists 0* E R such that the 
fallowing two statements are equivalent. 

(a) The solution of (2.5) with initial data (00 , W0 ) E R2 corresponds to asymmetric 
collision. 

(b) W0 > 0 and one of the following holds. 

( c) 1-l(0o, Wo) ::; 0. 

( d) 1-l( 00 , W0 ) > 0 and 00 ::; 0*. 

(iii) When 1 = ,., the phase space is R2 and the following two statements are equivalent. 

(a) The solution of (2.5) with initial data (00 , W0 ) E R2 corresponds to asymmetric 
collision. 
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(b) W0 > 0. 

(iv) When I E (,., oo), the phase space is R2 and none of the solutions correspond to 
asymmetric collision. More precisely, for any initial data ( 00 , W0 ) E R 2 , there exists 
a unique time-global solution (0, W) to problem (2.5) with the following properties. 

(a) (0, W) E C1 ((0,oo)) x C1 ((0,oo)) 

(b) W is monotonically decreasing and W ( t) ---+ -oo as t ---+ oo. 

Theorem 2.2 gives a necessary and sufficient condition for head-on collision and asym
metric collision to occur. Note that the solution described in (iv) doesn't correspond to 
asymmetric collision since it is a time-global solution, even though W could monotonically 
decrease to zero at some finite time. 

Remark 2.3 (Note on the assumption for a in Theorem 2.2) 
The parameter a is introduced when we derived the model system (2.1) in [39]. a is 
explicitly given by 

20 
a=---

log(f)' 

where L > 0 is a cut-off parameter and E > 0 and O > 0 are small parameters introduced 
in the localized induction approximation. Hence, although the choice of the upper bound 
on a in Theorem 2.2 is technical, it is natural to assume that a > 0 is small. 

Remark 2.4 (Note on the Threshold,.) 
Theorem 2.2 shows that ,. can be interpreted as a threshold for 1 . When I E [1, ,.], 
collision occurs, and when I E (,., oo), collision doesn't occur. As Theorem 2.2 states, 
the threshold,. depends on a. In particular, ,. ---+ 1 as a ---+ 0, and since it is natural to 
assume that a is small, it is expected that,. is close to one. This may be one of the reasons 
that the existence of the threshold ,. has not been considered in previous works, since it 
would be hard to confirm such threshold through experiments or numerical simulations. 

In principle, it is possible to obtain ,. analytically. This will be apparent from the 
proof of Theorem 2.2 where ,. is obtained as the root of a fourth-order polynomial. We 
will not do this since it is not needed for the analysis carried out in this paper, and also 
because the explicit expression for ,. is not practical for application. 

3 Proof of Theorem 2.2 

We first note that since F1(0, W) and F2 (0, W) are smooth with respect to 0 and W, the 
time-local unique solvability of initial value problems relevant to Theorem 2.2 is known 
from general theory of ordinary differential equations. We denote the maximum existence 
time for a solution ( 0, W) by T max. 

Next, we investigate the equilibria of system (2.5). This will introduce,. as stated in 
Theorem 2.2. 
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3.1 Equilibria of System (2.5) 

First we determine the equilibria ( or the lack there of) of system (2.5) with, > 1. In this 
case, the phase space is R 2 and from the form of F1 ( 0, W), we see that any equilibrium 
must have the form (0, 0). Hence, we set f(0) := F2 (0, 0) and investigate the zeroes of f. 
From direct calculation, we have 

_ e 1/2 1/2 -0 { 1 } 
f( 0) - (,1/2 -1) - (, + ,1;2KY - l) + Cl'/'( • 

Now we set 

1 g(,) := -(, + 112 )(,1/2 _ l) + a,1/2 1 

' and further setting 77 := , 112 > 1 we have 

1 
g(772) = -( - 'T/4 + 'T/3 + a772 - 'T/ + 1). 

'T/ 

After some simple calculus, we see that for any a E (0, 1), there exists a unique 77. E (1, oo) 
such that g(77;) = 0. Hence, when,=,. := 77;, f(0) = 0 for all 0 ER and (0, 0) is an 
equilibrium for all 0 E R. Moreover, when, E (1, ,.), f(0) > 0 for all 0 E Rand when 
, E (,., oo), f ( 0) < 0 for all 0 E R. In either cases, there are no equilibria. 

When , = 1, system (2.5) reduces to 

and the corresponding Hamiltonian reduces to 

( ) -0 a 
1{ 0, W = -2e + IWI. 

This implies that the phase space is R2 \(Rx {0} ), and there is no equilibrium. 

We summarize the results in the following. 

Lemma 3.1 For any a E (0, 1), there exists a unique,. E (1, oo) such that the following 
holds. 

(i) When 1 = 1, the phase space is R2 \(Rx {0}) and there is no equilibrium. 

(ii) When 1 > 1, the phase space is R 2 and the following hold. 

(a) If 1 = ,., (0, 0) for all 0 ER are equilibria. 

(b) If 1 =/= ,., there is no equilibrium. 

From here, the proof is divided according to the value of,. We show the case , = 1 to 
communicate the general idea of the proof. 
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3.2 The Case 1 = 1 

In this case, system (2.5) reduces to 

(3.1) 
0 = -IWl3 { 

. o:W 

and the Hamiltonian is given by 

(3.2) -0 0: 
1-l(0, W) = -2e + IWI. 

Particularly, we see that W is monotonically decreasing. Hence, for a solution to corre
spond to head-on collision, W0 > 0 is necessary. 

Conversely, for W0 > 0, we consider the solution of (3.1) with initial data (00 , W0 ). 

Since the Hamiltonian is divergent at W = 0, the conservation of the Hamiltonian implies 
that W(t) > 0 for all t E [0, Tmax)- Hence, (3.1) and (3.2) is further simplified to 

(3.3) 

and 

1-l(0, W) = -2e-0 + ;. 

The conservation of the Hamiltonian yields 

-0 0: 
-2e =H0 -W, 

which can be utilized to decouple system (3.3). In particular, we have 

(3.4) 
. 0: 

W=H0 -W. 

When H0 = 0, equation (3.4) can be explicitly solved to obtain 

W(t) = Jw6 - ?:_t 2 . 

This shows that the solution is a finite-time solution with Tmax = ~WJ, and W(t) --t 0 
0: 

monotonically as t --t T max• This proves that the solution corresponds to head-on collision. 
When H0 #- 0, solving equation (3.4) gives the following implicit formula for W. 

a W a Wo 
- 2 log(o: - H0W) + - = t + - 2 log(o: - H0W0 ) + -. 
H0 H0 H0 H0 
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Setting G1 (W) = -Jig log( a - H0 W) + ii□ , we have 

We see that G1 (W) is monotonically decreasing with respect to Wand G1 (W) ---+ --Jb log a < 
0 

0 as W---+ 0. This implies that G1 (W0 ) < --Jb log a< 0. Hence, Tmax = --Jb loga-G1 (W0 ) 
0 0 

and W(t) ---+ 0 monotonically as t---+ Tmax, and corresponds to head-on collision. 
In either cases, the solution corresponds to head-on collision and this proves (i) of 

Theorem 2.2. 

The general idea of the proof of the other cases are the same. We compare the solution 
( 0, W) with a solution of an associated differential equation which exists only for finite 
time. D. 

4 Discussions and Concluding Remarks 

In this paper, we considered the existence of solutions to system (2.1) which correspond to 
two coaxial circular vortex filaments colliding. This was done by reducing the problem to 
system (2.5) and analyzing the behavior of the solution in detail. We make some remarks. 

4.1 On the Threshold '* 
In most of the preceding works related to head-on collision of coaxial vortex rings, rings 
having circulations with equal absolute value were considered. In our formulation, this 
corresponds to 1 = 1. The results of this paper suggests that if the absolute value of 
the circulation of the two rings are close enough, the two rings should collide. In our 
formulation, this corresponds to I E [1, ,.] . This agrees with the numerical observation 
made by Inoue, Hattori, and Sasaki in [11]. 

In [11], they conducted a numerical simulation of the Navier-Stokes equations and 
investigated the head-on collision of coaxial vortex rings with equal size, but varying 
initial translational velocity. As is pointed out in [11], Saffman [43] showed that the 
translational velocity U of a vortex ring can be approximated by 

where Ro is the radius of the ring, Re is the radius of the core, and r is the circulation of 
the ring. Hence, varying the value of U for the two rings while keeping the size of the rings, 
i.e. Ro and Re, the same, is essentially equivalent to varying the value of the circulation of 
the two rings. In [11], they show numerical results for Mi/M2 = 1.0, 1.1, 1.33, and 2.0 (in 
their notation, Mi/M2 corresponds to our 1 ). When Mi/M2 = 1.0 and 1.1, the two rings 
exhibit collision, and when Mi/ M2 = 1.33 and 2.0, the rings pass through one another. 

On the other hand, when a = 0.2, the threshold ,. in our formulation is numerically 
obtained as '* = 1.219. Hence, Theorem 2.2 can then be interpreted as follows. When 
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1 E [1, '*], the two filaments collide, and when I E (r*, oo ), the two filaments pass through 
one another. This agrees with the numerical findings of [11]. 

4.2 On the Possible Motion Patterns 

Gurzhii and Konstantinov [4] numerically investigated a model system obtained in Gurzhii, 
Konstantinov, and Meleshko [5], which can be seen as a generalization of the Dyson model, 
and observed the following three types of motion patterns for a pair of coaxial vortex rings 
with circulations of opposite sign. 

Head-on collision of two identical rings having circulations with equal magnitude. This 
corresponds to the case 1 = 1 in our formulation and they observe head-on collision. 

Pass-through of the rings when the radius and magnitude of the circulations are un
equal. In this case, it is observed that the ring with the circulation of larger magnitude 
passes through the other ring. This corresponds to the case 1 > ,. in our formulation 
and the motion patterns agree with our results. 

Mutual capture. When the initial distance of the rings is small and the ratio of 
the radius and the magnitude of the circulation of the two rings are a specific value, 
the two rings become mutually captured and travel as a whole in one direction. This 
motion pattern corresponds to the equilibria in the case 1 = ,. in our formulation. The 
observation by Gurzhii and Konstantinov [4] that this type of motion only occurs when 
the initial distance of the rings is small and the ratio of the radius and circulation must 
be a specific value agrees with the characteristics of the equilibria obtained in Lemma 3.1. 
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