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ESTIMATES OF THE REGULAR SET FOR NAVIER-STOKES FLOWS 
IN TERMS OF INITIAL DATA 

HIDEYUKI MIURA 
DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCE, 

TOKYO INSTITUTE OF TECHNOLOGY 

1. INTRODUCTION 

The purpose of this note is to present a joint work with Kyungkeun Kang and Tai-Peng Tsai. We 
are concerned with the regularity of weak solutions for the incompressible Navier-Stokes equations 

8tv - b..v + v · Vv + Vp = 0, divv = 0 

associated with the initial value vlt=O = vo with div vo = 0. Caffarelli, Kohn, and Nirenberg [5] 
established local regularity theory for suitable weak solutions. As an application of their celebrated 
E-regularity criterion, they showed the following result: 

Theorem D [5]. There exists Eo > 0 such that if vo E L2 (JR3 ) satisfies 

(1.1) lllxl-½voll£2 = E < Eo, 

then there exists a suitable weak solution which is regular in the set IIeo-<1 where 

for c5 > 0. 

This theorem asserts that the smallness of initial data in a weighted space implies regularity of the 
solution above a paraboloid with vertex at the origin. There are at least two interesting features 
in this result: No regularity condition (better than L2 ) is assumed away from the origin and the 
regularity around the origin is propagated globally in time. We also note that if the size of vo 
tends to 0, Ilea-< increases and converges to a limit set Ilea· This observation leads to the following 
questions: 

(a) Can the size of regular set IT0 be enlarged? 
(b) Can the condition (1. 1) of initial data be relaxed in terms of regularity and smallness? 

One of the goals of this paper is trying to answer questions (a) and (b) by employing approach 
based on a framework of scaled local energy explained below. 

It is known from works [6, 23 , 12, 7] that for vo E Lq(lR3) with q 2 3, (Ns) has a (unique) 
mild solution defined on some short time interval. Motivated by the problem for constructing large 
forward self-similar solutions to (Ns), Jia and Sverak [9] asked under which condition this result 
can be localized in space. For Br(x) = {y E lR3 : Ix - YI < r} and Er= Br(0), their question can 
be stated as follows: 

(c) If vo is a general initial data for which suitable weak solutions v is defined and volB2 E 

Lq(B2), can we conclude that vis regular in B1 x [0, t1) for some time t1 > 0? 

Although non-local effect of the pressure might prevent the solution from having the same amount 
of the regularity as the one for the heat equation, such effect is expected to be handled at least for a 
short time and q 2 3. Indeed this question is settled affirmatively for the scale subcritical case q > 3 
in [9] and for the critical case q = 3 in [1, 11]; see also [21] for the condition on the initial enstrophy 
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and [1] for further extension to the L3•00 space and the critical Besov spaces. Notice that the results 
for the critical case have some similarities with Theorem Din [5]. Namely, the assumptions for the 
initial data ensure critical regularity at the origin and they lead to local-in-space regularity. As the 
first main result of this paper, we present a new type of local-in-space regularity estimate, which 
guarantees regularity in the set like Il0. In order to formulate it, define the scaled local energy of 
the initial data by 

No= No(vo) := sup - lvo(x)I dx, 11 2 

rE(0,1] r Br 

which plays a central role in this paper. 

Theorem 1.1. Let ( v, p) be a suitable weak solution in B 2 x (0, 4) with the initial data v0 E L2 (B2 ) 

in the sense that limt➔o+ llv(t) - vollL2(B2) = 0. Assume that 

(1.2) Af := llvllij'°(0,4;LHB2)) + llv'vlli2(B2x(0,4)) + IIPIIL~(B2x(0,4)) < OO 

and that 

(1.3) 

Then there exists T = T(M) 2". 1+~18 such that v is regular in the set 

r = { (x, t) E B1 x (0, 1) : cN'J lxl 2 ::::; t < T} 

and satisfies 
C 

lv(x, t)I::::; 1 
t2 

for (x, t) Er, 

where E., c, and C are positive absolute constants. 

Remark 1.2. (1) This theorem asserts that smallness of the scaled energy implies regularity above 
a paraboloid for a short time. It may be viewed as an E-regularity criterion in terms of the initial 
data. 
(2) One can relate Theorem 1.1 to results in [5, 1, 11] by noting that 

No::::; Cmin{llvollI3(Bi)' llvollf2,-1(B1)}, 

where 

llvollu-"cn) := lllxl%vollucn) 

for a E lR and n c JE.3 . Thus (1.3) holds if either L 3 norm or L2,-1 norm is small in B 1 . Hence our 
theorem can be regarded as a local version of Theorem D in [5]. 

The proof of Theorem 1.1 is based on a local-in-space a priori estimate for the scaled energy of 
(v,p) defined by 

(1.4) 11 11t1 11t1 3 Er(t) := esssup- lv(s)l 2 + - lv'vl 2 + 2 IPl 2 . 
O<s<t r Br r O Br r O Br 

Our strategy is partially inspired by a uniformly local L2 estimate established in the fundamental 
work [15] of Lemarie-Rieusset. However, in contrast to his estimate, our a priori estimate guarantees 
scale-critical regularity at the origin so that the E-regularity criterion of [5] can apply. 

We now return to the questions (a) and (b) concerning the regular set. In order to state our 
result, it is natural and convenient to use the notion of local energy solutions introduced by Lemarie
Rieusset [15] and later slightly modified in [13, 9, 3]. The local energy solution is a suitable weak 
solution of (Ns) defined in JE.3 which satisfies certain uniformly local energy bound and pressure 
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representation; see Definition 2.1 for the details. In this context, let us recall the uniformly local 
Lq spaces for 1 :c; q < oo. We say f E L~loc if f E Lfoc(lR3) and 

(1.5) llfllLq = sup llfl1Lq(B1 (x)) < oo. 
uloc xEIR3 

Local-in-time existence of local energy solutions for initial data in L~loc and also global existence 

for initial data in E 2 := CaL~loc are established in [15]. One of the advantages of the local energy 
solution is it can be defined even for infinite energy data; see [14, 16, 10] and references therein for 
further developments and its applications, and [19] for the local energy solutions in the half space. 
We also define the global version of the scaled energy by 

Na :=sup! f lva(x)l 2 dx 
r>O r }Br 

Here note that Na is invariant under the Navier-Stokes scaling: u(x, t) r-+ u,\(x, t) := >..u(>..x, >..2t). 
The following result shows the estimates of the regular set for the local energy solution for initial 
data with small scaled energy and also about that for large data in £ 2,-1 (JR3 ): 

Theorem 1.3. Let ( v, p) be a local energy solution in JR3 x (0, oo) for the initial data vo E L~loc(JR3). 

(i) There exist absolute constants E* and c such that if Vo satisfies 

(1.6) sup sup- lva(x)I dx < oo, 11 2 

xoEffi.3 r::>1 r Br(xo) 

and if 

(1.7) 

then v is regular in the set 

{(x,t) ElR3 x (0,oo): cNJlxl 2 :c;t}. 

(ii) For any v0 E £ 2,-1 (JR3) there exist positive constants T(v0 ) and c(v0 ) such that v is regular in 
the set 

{ (x, t) E JR3 x (0, oo) : c(va)lxl 2 :c; t < T(vo)}. 

Note that Na :c; llvallf2,-,(IR3 ) holds and that the condition (1.6) only assumes some mild decay 
of the data at infinity. We also note that [5, Theorem D] is an existence result for initial data 
satisfying the conditions, while Theorem 1.3 is a regularity result for any solution for such data. 

The following corollary concerns estimates of regular set for the data in the weighted space £ 2,a 
with a > -1, which generalize the classical result [17] of Leray and [5, Theorem C] for the cases 
a = 0 and a = l, respectively. 

Corollary 1.4. Let (v,p) be a local energy solution for the initial data in L~loc(JR3). 

(i) Assume thatvo E L 2,a(JR3 )forsomea 2: 0. Thenvo E L2 (lR.3) andthereisK = K(llvallL2, llvall£2,,,) 
such that v is regular in the set 

{ (x, t) E JR3 x (0, oo) : t 2: min{Klxl-2a, Callvalli2}}. 

(ii) Assume that vo E £ 2,a (JR3) for some a E ( -1, 0) and that (1.6) holds. Then there exist 
K = K(llvall£2,,,) and T = T(llvall£2,,,) such that vis regular in the set 

{(x,t) E 1R3 x (0,oo) : t 2: max{Klx1-2a,T}}. 
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2. PRELIMINARIES 

In this section, we recall some notions about the weak solution to (Ns) and some results such as 
the E-regularity theorems and a priori estimates for the solutions. 

For any domain !1 C ffi.3 and open interval IC (0,oo), we say (v,p) is a suitable weak solution 
in !1 x I if it satisfies (Ns) in the sense of distributions in !1 x I, 

v E L00 (J; L2 (!1)) n L2 (J; k\ri)), p E L312 (!1 x I), 

and the local energy inequality: 

fn 1v(t) l2<P(t) dx + 2 lfn 1vvl2 <P dx dt 

:::; ll lvl 2 (8t<P + 13.ip) dxdt + ll (lvl 2 + 2p)(v · V<P) dx dt 

(2.1) 

for all non-negative (/) E Cg"(O x I). Note that no boundary condition is required. 
We next define the notion of local energy solutions, The following definition is formulated in 

[3], which is slightly revised from the notions of the local Leray solution defined in [15], the local 
energy solution in [13] and the Leray solution in [9]. We refer to [11, Section 2] for discussion of 
their relation. 

Definition 2.1 (Local energy solutions [3]). A vector field v E Lf0 c(JR3 x [0, T)) is a local energy 
solution to (Ns) with divergence free initial data vo E L~loc if 

(1) for some p E Lff;(JR3 x [0, T)), the pair (v,p) is a distributional solution to (Ns), 
(2) for any R > 0, 

(2.2) esssup sup r lvl 2 dx + sup rmin{R2
,T} r 1Vvl2 dxdt < oo, 

0<:'.t<min{R2 ,T} xoEIR3 } BR(xo) xoEIR3 Jo } BR(xo) 

(3) for all compact subsets K offfi.3 we have v(t) ➔ v0 in L 2 (K) as t ➔ o+, 
(4) (v,p) satisfies the local energy inequality (2.1 ) for all non-negative functions <P E Cg"(Q) 

with all cylinder Q compactly supported in JR3 x (0, T), 
(5) for every xo E JR3 and r > 0, there exists Cxo,r E L312(0, T) such that 

(2.3) 

p(x, t) - Cxo,r(t) = ! lv(x, t) 12 + r K(x - y) : v(y, t) ® v(y, t) dy 
3 }B3r(xo) 

+ f (K(x - y) - K(x0 - y)) : v(y, t) ® v(y, t) dy 
}IR3\B3r(xo) 

in L312 (B2r(xo) X (0,T)), where K(x) = V2 (41rlx1), and 

(6) for any compact supported functions w E L2 (JR3) 3 , 

(2.4) the function t >-+ f v(x, t) · w(x) dx is continuous on [0, T). 
JJR3 

We now recall the scaled version of the E-regularity theorem of Caffarelli-Kohn-Nirenberg [5, 
Proposition 1]. It is formulated in the present form in [20, 18]. 

Lemma 2.2. There are absolute constants EcKN and CcKN > 0 with the following property. Suppose 
(v,p) is a suitable weak solution of {NS} in Br(xo) x (to - r 2 , to)), r > 0, with 

1 lto l 2 lvl 3 + IPl 312dxdt:::; EcKN, 
r to-r2 Br(xo) 
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then v E L 00 (B~(xo) x (to - r;, to)) and 

(2.5) 

We recall a useful Gronwall-type inequality from [3, Lemma 2.2]. 

Lemma 2.3. Suppose f E L~c([0, To); [O, oo)) (which may be discontinuous) satisfies, for some a, 
b > 0, and m 2 1, 

f(t) :Sa+ b l (f(s) + f(sr)ds 

then we have f (t) :S 2a fort E (0, T) with 

fort E (0, To), 

T = min (To, b(l +~m-l)), 

where C is a universal constant. 

Finally we also recall the following elementary bound for the scaled energy. 

Lemma 2.4. Assume that f E Lfoc(lR.3 ) and let NR = NR(f) := supR<r:9 ~ JBr 1/1 2 for some 

RE [0, ½l- If o 2 2NR, then for any xo E B1 we have 
2 

(2.6) sup - If 12 :S o, 11 
R(xo)<r:9-lxol r Br(xo) 

with R(x0 ) = max ( ~' ~). 

3. PROOF OF THEOREMS 

We first prove Theorem 1.1 regarding local regularity of suitable weak solutions. It is obtained 
as a consequence of the following theorem; see Remark 3.2 below. 

Theorem 3.1. Let (v,p) be a suitable weak solution in B2 x (0,To), To> 0, associated with the 
initial data vo in the sense that limt➔o+ llv(t) - vollL2(B2) = 0. There are absolute constants c, 
C E ( 1, oo) such that the fallowing holds true. 
(i) Let NR = supR<r:9 ~ JBr lvol 2 < oo, R 2 0. For any ME (O,oo) and o E [5NR,oo), there 
exists T = T(M, o, To) E (0, To] such that if 

(3.1) llvlli,oo(o,T;L2(B2)) + IIVvlli,2(B2x(O,T)) + 11Plld(B2x(O,T)) :SM, 

then Er(t) defined by (1.4) and (v,p) satisfy 

(3.2) Er(t):So /ortE(O,min{>..r2 ,T}] for all r E (R, r1] 

if R :S r1, and 

(3.3) 1 1AT21 3 3 
2 lvl3 + IPl 2 dxdt :S C(o + 02) 
r O Br 

for all r E (R, r2] 

if R :S r2, where T, >.., r1, and r2 are given by 

T- . (r. cmin{l,512}) 
- mm o' 1 + AflS ' 

. ( co 1) r 1 = m1n - 3 , - , 
M2 3 

(ii) There exists E* > 0 such that if NR :SE* and R 2 :ST', then v is regular in the set 

II={(x,t)EB½x[R2,T']: t2cN'Jilxl2} 
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C 
lv(x,t)I S ,.fi for (x, t) E II 

with T = min{To, l+X£18 } and absolute constants c, C > 0. 

Remark 3.2. Theorem 3.1 sharpens and generalizes Theorem 1.1 in the following senses: (a) The 
assumption (3.1) is weaker than (1.2). (b) It treats the case of general R ~ 0 so that the regular 
set II is more specifically characterized. It should be emphasized that if R > 0 the assumption 
NR SE, in (ii) does not require scale critical regularity at the origin. 

Proof. (i) For the convenience, we let 

CR,r, (t) := sup Er(t) 
RScrScr1 

with the constant r1 to be specified later. The local energy inequality (2.1 ) with a test function 
'-PE C0 (B2r) such that OS '-P S 1 in B2r with '-P = 1 in Er and IIVk'-Pllu"' S Ckr-k leads to 

j lv(t)l 2 '-P2dx + 2 {j 1Vvl2 '-P2 S j lvol 2 '-P2dx + l! lvl 2 Ll('-P2) + (lvl 2 + p)v · 'v'{)2dxds 

s r lvol 2dx + ~ t r lvl 2 + ~ t r lvl 3 + IPl1dxds. 
lB2r r lolB2r r lo lB2r 

Note that we may take time-independent test functions in the local energy inequality provided the 
solution is continuous at t = 0 in Lfoc· See, e.g., [19, Remarkl.2]. This implies 

Er(t) s2NR + ~ rt r lvl 2 + ~ rt r lvl 3 + ~ t r IPl 1 
r lo lB2r r lo lB2r r lo lB2r 

(3.4) =:2NR + Ilin + Inonlin + Ipr• 

For any p E (3r, 1] we decompose the pressure asp= p + Ph with 

p(x) := p.v. j K(x - y)~(y)(v ® v)(y)dy - ~Wvl 2)(x), 

where~ is a smooth cut-off function with~= 1 in Bp and supported in B2p and K(x) = V 2 ( 4rrlxl ). 
Since Llp = Llp in Bp, Phis harmonic in Bp. By the mean value property, we have 

r IPl 1 ::;c r lfil! + c r IPhl! 
}B2r }B2r }B2r 

::;c r liil 1 +C(~)3 r 1Phl 1 
lB2r P lBp 

::;c r lfil~ +c(~)3 r lfil~ +c(~)3 r IPI~ 
lB2r P lBp P lBp 

By the Calder6n-Zygmund estimate we see 

(3.5) r IPI~ SC r lvl 3 + C(~ )3 r IPI~ · 
lB2r lB2p P lBp 

We now divide the proof into two cases. Let ro be a constant satisfying O S ro S ri/3 to be 
fixed later. 
Case I: R Sr S ro. If ro < R < r1, this case is empty, which is fine. Noting that 2r E [R, r1l, we 
easily observe that 

(3.6) 
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and also by the interpolation inequality, 

(3.7) 

with some constant E E (0, 1). For the pressure term, integrating (3.5) in time yields 

c1t1 C'r 11t1 3 
Ipr S 2 lvl3 + -2 IPl 2 

r O B2p P P O Bp 

with an absolute constant C' > 1. Choose p = lOC'r so that 0/ S fa and also let ro = W· 
Noting that 2p = 20C'r S r1 and (3.7), we see that 

(3.8) 

Hence applying (3.6)-(3.8) in (3.4) with E = fa, we obtain 

(3.9) 

Case II: ro < r < r1. For t S T with T specified later, we estimate the right hand side of (3.4) 
with the aid of M. A straightforward estimate yields 

provided t S ~ with a small absolute constant c E (0, 1). In the similar way to (3.7) we have 

(3.10) 
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Thus Inonlin is bounded by fa if t ~ min ( c~~g, 'fj-) with a suitable absolute constant c E (0, 1). 

Concerning the pressure, we choose p = I (using 3r1 ~ 1 = p) in (3.5) and apply (3.10) to get 

cltl 3 ltl 3 Ipr ~ 2 lftl 2 + Gr IPl 2 

r O B2r O Bi 

(3.11) 

provided t ~ min ( c~~g, 'fj-) and r 1 ~ min (--:1f, ½) with an absolute constant c > 0. 

Making use of these estimates in (3.4), we obtain that 

i5 (ci5r3 ci54r8 ci5r2 ) 
(3.12) &ro,r, (t) ~ 2 if t ~ min Mo, M/, Mi and ( ci5 1) r1 ~ min - 3 , - • 

M2 3 

Combining (3.9) and (3.12), we see 

(3.13) i5 C f 
&R,r,(t) ~ 2 + R2 }

0 
&A_r,(s) +&R,r,(s)ds, 0 < t < T, 

where 

(3.14) T _ . (rr< cmin{l, i512}) 
-mm -'0, l+M18 . 

( c0r3 c84 r8 c8r2 ) Note that T ~ min ~' ~' ~ with a suitable small constant c > 0 upon the choice of 

ro = -irib, with r1 = min (--:1f, ½). The inequality (3.13) is also true if R is replaced by any 

r E (R, r1] with the same i5. Therefore we may invoke Gronwall Lemma 2.3 with f (t) = &r,r, (t) 
with a=~' b =~'and m = 3 to see that 

(3.15) fort E (0, min {T, .Xr2}] and r E (R, r1], 

This proves (3.2). 
In the similar way to (3. 7), we see that if .Xr2 E (0, T] and r E (R, r 1], 

r12 l>.r2 Lr lvl3 ~ ~ 1>.r2 (Lr 1Vvl2) ¾ (Lr lvl2) ¾ ds + ~ 1>.r2 ( ~ Lr lvl2) ~ ds 

~ C(.X¼ + .X)Er(.Xr2):l:. 

Hence taking r2 := min ( jf:., r1), we have from (3.2) and A~ 1 that 

1 1Ar21 2 lvl3 ~ Ci5~ 
r O Br 

This together with the pressure bound 

1 1Ar21 2 IPI~ ~ Er(Ar2) ~ i5 
r O Br 

leads to (3.3) as desired. 
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(ii) In order to show the statement (ii), we claim that there exist E* and c > 0 such that if 
NR < E,, then for any xo E B1 and r E (max(R,cNRlxol) ,c(l - lxol)r2], 

2 

(3.16) 1 1r21 3 
2 lvl 3 + IPI" dxdt::; EcKN 
r O Br(xo) 

holds. Here EcKN is the small constant in Lemma 2.2. To this end, we first note that for each 
T/ 2 2N R and xo E B1; 2, Lemma 2.4 implies 

sup ~ { lvol 2dx::; T/, P = 1 - lxol, 
R(xo)<rSp r } Br(xo) 

with R(xo) = max ( ~, 2~R lxol)- Let Vx0(x, t) = pv(xo + px, p2t), Pxo (x, t) = p2p(xo + px, p2t) and 

o = 5T7. Since (vx0,Pxo) solves (Ns) in B2(0) x (o,p-2To), corresponding to (v,p) in B2p(xo) x (O,To), 
and 1/2 ::; p::; 1, 

llvxoll100 (0,p-2T0 ;L2(B2)) + 11Vvxoll12(B2 x(O,p-2T0 )) + 11Pxolld(s2x(o,p-2To))::; CM, 

sup - lvx0(x,O)l 2dx= sup - lvol 2dx::;-, 11 11 0 
p- 1 R(xo)<r9 r Br(O) R(xo)<rSp r Br(xo) 5 

by (3.3) and (3.14) we get 

. ( co 1) r 1 = m1n - 3 , - , 

M2 3 

with a smaller constant c. Note T' differs from Tin (3.14) by the factor p-2 for T0 . This implies 

1 1.xr21 s C(o + o~) s 
(3.17) sup D lvl 3 +IPI"::; >.. ::;C(l+o2)(0+02). 

R(xo)SrSpr2 r O By0:r(xo) 
3 

Take a constant Oo > 0 so small that C(l + 05)(00 + oJ) ::; EcKN• We now assume that vo satisfies 
NR::; oo/10. Then we may choose o = oo since oo 2 lONR, With this choice and with >..o = >..(oo), 

1 1 

(3.17) shows (3.16) holds for >..JR(xo) < r::; >..Jpr2. This enables us to apply Lemma 2.2 for 

xo E B½ and to= r 2 E (>..o max ( R 2 , CN~t012 ), >..0p2r~] to see 

CcKN CcKN 
lv(xo,to)I::; -- = ~, 

r vto 

and hence v is regular at (xo, to), Since r2 = min ( jfI, r1) and 1/2 ::; p ::; 1, 

2 2 2 . ( 1 2) 2 . ( -2 cmin{l, ol2 } 2) . ( p >..or2 = p mm T , >..or1 = p mm p To, 1 + AflB , >..or1 2 mm To, 

Thus lv(xo, to)I ::; CcKNt;;-112 for xo E B1;2 and 

max (R2 ,cNklxol 2)::; to::; min (To, 1 +~18 ). 

This shows Part (ii) of Theorem 3.1. □ 
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One implication of Theorem 3.1 is that for L~loc initial data in JR3 , similar conclusions hold for 
the local energy solutions: 

Theorem 3.3. Let v be a local energy solution of (Ns) in JR3 x (0, To) associated with initial data 
Vo E L~loc' NR = supR<r<:'.1 ~ JBr(O) lvol 2 < oo. The following holds true. 

(i) For RE [0, ½L let 8 2 5NR. Then 

(3.18) 
1 

for all r E (R, 3], 

holds with constants given by 

>.=-c-<1 
1 +82 - ' 

. ( cmin(l, 84 ) ) 
T1 = mm To, 1 + llvolll~ . 

uloc 

Moreover for any r E (R, R1] with R1 := min{ /fj, ½}, there exists c2(t) such that 

(3.19) 1 1>-r21 3 3 
2 lvl 3 + IP- c2(t)l 2 dxdt S C(8 + 82). 
r O Br 

Here c and C > 0 are absolute constants. 
(ii) There are absolute constants E,, ea, c1, and C2 > 0 such that the following holds. If NR S E, 
for some R S min{ v1Ti., ½} with T2 = min(To, 1+llv~ll1 ~ ) , then v is regular in the set 

Luloc 

II:= {(x,t) E B½ x [R2 ,T2]; eoNklxl 2 St} 
and satisfies 

(3.20) 
C2 

lv(x, t)I < 1,. - vt 
for (x, t) E II. 

We now show Theorem 3.4, which contains Theorem 1.3 as a special case and is useful for further 
applications. To this end, define N R by 

NR := sup- lvol . 11 2 

r>R r Br(O) 
(R 2 0). 

Theorem 3.4. Let ( v, p) be a local energy solution in JR3 x (0, oo) for the initial data vo E L~loc(JR3). 

Let E* and ea be the absolute constants in Theorem 3.3 {ii). The following statements hold: 
(i) If vo satisfies (1.6), i.e., 

M1 := sup sup- lvol dx < oo, 11 2 

xoEIR3 r2:1 r Br(xo) 

and if 

(3.21) NR SE, for some R 2 0, 

then v is regular in the set { (x, t) E JR3 x (0, oo) : max{ R2 , co Nil lxl 2 } S t }-

(ii) Suppose v0 E L2•-1 (JR3 ). For any O < 8 S E,, there exist positive constant T(v0 , 8) such that v 
is regular in the set 

(3.22) { (x, t) E JR3 x (0, oo): co82lxl 2 St S T(vo, 8)}. 

If vo E L2•-1 (JR3 ) also satisfies (1.6), then for any 8 E (0, E,], there is T'(vo, 8) such that v is 
regular in 

(3.23) 
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It is also regular in 

(3.24) 

with r. := sup{r > 0 I llvollf2,-1(Br) SE.}, 0 < r. Soo, and M2 = [(mruc(l, ,!:-)M1]112. When 

r. = oo, i.e., llvolll2,-1(JR3) SE., the regular set (3.24) has no time upper bound. 

Proof. (i) We first consider the case R > 0. Let uo(x) = >.vo(>.x), u(x, t) = >.v(>.x, >.2t) for.>..> 2R. 
By the assumption, we have 

and 

(3.25) ( )
1/2 1/2 

lluollL2 = sup ~ 1 lvo(x)l 2dx S mruc (-R1 llvollf2 , M1) =: CR, 
uloc xoEIR3 /\ lx-xo I<>.. uloc 

with CR > 0 independent of .>... By Theorem 3.3 (ii), there exists T~ = T~( CR) independent of .>.. 

such that u is regular if mruc{ R2 / >.2 , coNk lxl 2 } S t S T~ for .>.. 2- Jr£. Scaling back we see that 

v is regular if mruc{ R2, coNk lxl 2 } :S: t :S: >.2T~. Since .>.. > mruc{2R, Jr£} is arbitrary, v is regular 

in the set {(x, t) : mruc{R2 , coNk lxl 2 } :S: t}. This proves the case R > 0. For the case R = 0, by 
Nr S No, the above argument shows v is regular in {(x, t) : mruc{r2 , coN; lxl 2 } S t}. Since r > 0 is 
arbitrary, we conclude the proof. 

(ii) Suppose now vo E L2•-1(R3 ). For any b E (0, E.], there exists Ro > 0 such that 

sup ! f lvol 2 dx S f lvloll 2 dx Sb. 
O<r:S::Ro r J Br J BR0 X 

Let uo(x) = >.vo(>.x) and u(x, t) = >.v(>.x, >.2t) with .>.. = Ro. We easily see uo E L~loc and 
sup0<r:s::i ~ JBr luol 2 dx Sb SE •. By Theorem 3.3 (ii), u is regular if cob2lxl 2 St S T2(uo)- Hence 
v is regular in the set {(x, t) I cob2 lxl 2 St S R5T2(uo)}. Note T2(uo) depends on both Ro and 
llvollL~10c and goes to zero rapidly as Ro--+ 0. 

Suppose now vo E £ 2,-1 also satisfies (1.6). There is p > 0 such that JJR3 \Bp J¾rlvol 2 :S: b/2. Let 

R1 = mruc(p, j JB lvol 2). For any r 2- R1, we have 
p 

! f lvol 2 s ! f lvol 2 + f ~lvol 2 s i + i_ 
r }Br r }Bp }Br\Bp lxl 2 2 

Thus NR, :S: b. By Part (i), vis regular in the set {mruc(Ri,cob2 lxl 2 ) St}. 
The remaining statement follows by choosing b = E., >.=Ro --+ r., and noting lluollL~10c S M2 

using (3.25). □ 

We next apply Theorem 3.4 to prove Corollary 1.4. 

Proof of Corollary 1.4. (i) By the assumptions, we have vo E L2 (R3), and hence it satisfies (1.6) 
since 11 2 1 2 sup - lvol S -llvollL2 

xoElR3 r Br(xo) r 
This estimate also implies 

(3.26) sup - lvol S E* 11 2 

xoElR3 , r2R. r Br(xo) 

with R. := llvolll2 _ 
E* 
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Therefore applying Theorem 3.4 (i) to Vxo (x, t) := v(x + x0 , t) for each x0 E JR3, we see 

{ (x, t) E 1R3 x (0, oo) : max{ R;, coN'k, Ix - xol 2} St} 

is the regular set of v. Since xo E JR3 is arbitrary, this shows that vis regular fort~ R; = llvolli,a/E;. 
We next show that there exists M = M(llvollL2,a) such that if lxol ~ 2R., 

(3.27) 

Indeed since r SR. S lxol/2, we see 

! 1 Iv 12 = ! 1 lxl"'lvol2 < ~ llv 112 
o I I - I I"' o £2,", r Br(xo) r Br(xo) X " r XO 

from which (3.27) follows with M = 2"llv~~1i 2,". Combining this with (3.26) implies 

sup ! { lvol 2 SE. 
Mlxol-"Sr r } Br(xo) 

provided lxol ~ 2R •. 

Then if lxol ~ 2R., we may apply Theorem 3.4 (i) for Vx0 with R = Mlxol-"', to see that v is 
regular at (xo,t) fort~ M 2lxol-2". Since vis also regular fort~ R; = llvolli,a/E;, this finishes 
the proof of (i) of Corollary 1.4, with K = max(M2, 4"' R;+2"'). Note that Klxl-2°' ~ R; when 
lxl S 2R •. 

(ii) Now a E (-1, 0). We use similar approach as above: If r ~ lxol/2, 

!1 Iv 12 < !1 Iv 12 = !1 lxl°'lvol2 < __!2!._llv 112 . 
0 _ 0 I I" _ l+a O £2,a 

r Br(xo) r B3r r B3r X r 

Hence we have 

(3.28) 

Therefore, by virtue of (1.6), we may use Theorem 3.4 (i) to see that 

(3.29) 
xo 2 C1llvoll 22a l+a 

v is regular at (xo, t) if t ~ max if, ( E, L · ) . { 
2 } 

For r S lxol/2, we have 

l 1 2 C2 1 "' 2 C2 2 - lvol S - 1- 1"' lxl lvol S - 1- 1" llvollL2,a, 
r Br(xo) r Xo Br(xo) r Xo 

and hence 

(3.30) 11 2 - lvol SE* 
r Br(xo) 

1 

Ix I ~ (C1llv~.lli2,a) i+a, then We may increase C1 depending only on a and C2 so that when -f- C 

J.::g_j C2llvolli2,a D h (3 28) d (3 30) . 1 2 ~ lxol"•• . ror sue xo, . an . imp y 

! 1 I 12 < "f > C2llvollh,a vo E, 1 r . 
r Br(xo) - - lxol"'E• 

Thus Theorem 3.4 (i) shows vis regular fort~ 0 f~:
1
~

1~~t. This and (3.29) show Part (ii). □ 
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