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a b s t r a c t 

In this paper, we present a 3-dimensional elastic beam model for the form-finding and analysis of elastic 

gridshells subjected to bending deformation at the self-equilibrium state. Although the axial, bending, and 

torsional strains of the beam elements are small, the curved beams connected by hinge joints are sub- 

jected to large-deformation. The directions and rotation angles of the unit normal vectors at the nodes of 

the curved surfaces in addition to the translational displacements are chosen as variables. Based on the 

3-dimensional elastic beam model, deformation of an element is derived from only the local geometrical 

relations between the orientations of elements and the unit normal vectors at nodes without resorting 

to a large rotation formulation in the 3-dimensional space. Deformation of a gridshell with hinge joints 

is also modeled using the unit normal vectors of the surface. An energy-based formulation is used for 

deriving the residual forces at the nodes, and the proposed model is implemented within dynamic re- 

laxation method for form-finding and analysis of gridshells. The accuracy of the proposed method using 

dynamic relaxation method is confirmed in comparison to the results by finite element analysis. The re- 

sults are also compared with those by optimization approach for minimizing the total potential energy 

derived using the proposed formulation. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Single-layer latticed shells with quadrilateral units can be gen-

erated by bending and connecting long beams. Such latticed shells

are called gridshells ( Adriaenssens et al., 2004; Happold and Lid-

dell, 1975; Harris et al., 2003; Sakai and Ohsaki, 2018 ). We consider

the form-finding of gridshells composed of actively-bent slender

beams connected by hinge joints. The curved shape of a gridshell

is generated from a flat grid of interconnected straight unstressed

beams. During the construction process, forced displacements are

given at the boundary, and the flexible members are deformed to

obtain a desired shape. Since the equilibrium shape of a curved

surface is significantly different from the initial flat shape, a large-

deformation analysis should be carried out iteratively to obtain the

shape desired by the designer. However, sophisticated software

packages such as Abaqus ( Systèmes, 2016 ) are not available to
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eneral structural designers; therefore, some simple algorithms

re needed for use in the process of structural design. 

D’Amico et al. (2016) investigated the features of implicit and

xplicit integration methods for large-deformation analysis of

ending-active structures. Implicit integration method, such as

ewmark- β method, takes advantage of the numerical stability;

owever, Newton iterations are needed for obtaining the responses

t the next incremental step, and accordingly, substantial compu-

ational cost is needed for a highly-nonlinear large-scale structure.

ecause we are interested in the final self-equilibrium shape ob-

ained by large deformation analysis, and as the equilibrium shape

t the intermediate state between the flat shape and the curved

nal shape is of no importance, implicit integration methods are

ot effective due to their large computational cost. 

On the other hand, explicit integration methods, such as the

ynamic relaxation method (DRM) ( Day, 1965 ), can derive the

esponses at the next incremental step explicitly from the re-

ponses at the current step only; therefore, no Newton iteration

s needed. This property enables us to implement the algorithm

n a simple manner. The DRM converts the static analysis problem
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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o a dynamic problem, and solves it using explicit integration.

he DRM is widely used for form-finding of elastic gridshells

 Lázaro et al., 2018 ), because only the final static equilibrium state

s needed. Another merit of using the DRM is that it does not

equire derivation of the tangent stiffness matrix, and utilizes only

he internal forces for computation of the unbalanced loads. 

Many large-deformation analysis methods of gridshells have

een developed for practical tools. Lázaro et al. (2018) noted

hat a rigorous definition of the beam element is essential for

mplementing the DRM for a 3-dimensional form-finding problem.

wo types of discretization, i.e., finite-difference and finite-

lement, have been proposed. Each beam element defined by

nite-difference discretization is composed of the two end nodes

nd the center node. We can compute the curvatures (strains)

t the center node with the geometrical relationship among the

hree nodes, and derive the shear forces and the bending moments

t each node. Degrees of freedom (DOFs) at each node are three

 D’Amico et al., 2016; Barnes et al., 2013; Adriaenssens and Barnes,

001 ) or four ( Lefevre et al., 2017 ). The 3DOF node can represent

nly the translational displacements, while the 4DOF node also

ncludes the torsional displacement. 

Finite-element discretization describes a beam element con-

isting of two end nodes, which have six DOFs at each node

epresenting three translational and three rotational displace-

ents. This kind of discretization usually takes advantages of the

o-rotational formulation ( Belytschko and Hsieh, 1973; Crisfield,

990; Krenk, 2009; Li and Vu-Quoc, 2010; Hsiao, 1992; Simo and

u-Quoc, 1991 ), which enables us to obtain the equilibrium shape

f a deformed flexible beam by nodal locations and the directions

f local axes under assumption of large displacement-small strain.

he co-rotational formulation has been implemented to the DRM

n ( D’Amico et al., 2014; 2015; Li and Knippers, 2012; Senatore

nd Piker, 2015 ). 

A geometrically exact rod model was proposed by

eissner (1972) and improved by Simo (1985) and Simo and

u-Quoc (1986) . Furthermore, the beam elements have success-

ully been applied to geometrically nonlinear analysis ( Cardona

nd Géradin, 1988; Ibrahimbegovi ́c, 1995; Sonneville et al., 2014 ).

essini et al. (2017) proposed a method to implement the geo-

etrically exact rod model into the DRM. The model also has six

OFs at each node representing the translational and rotational

isplacements. The particular merit of the geometrically exact rod

odel is that it can describe the exact locations and rotations of

ross-sections of slender beams subjected to large deformation,

sing a mathematically exact formulation. However, it may be too

omplicated for the form-finding of gridshells. 

Rombouts et al. (2019) proposed a form-finding and opti-

ization method of gridshells using co-rotational formulation

mplemented to an implicit DRM ( Rombouts et al., 2018 ). The

mplicit DRM may be faster than an explicit DRM to obtain the

urved final shape, because fewer steps are needed before reaching

onvergence. However, the implicit DRM is based on the nonlinear

terative solution technique that requires the tangent stiffness

atrix of the nonlinear system at each incremental step. 

In this paper, we propose an energy-based formulation for

-dimensional beam model for large-deformation analysis of a

ridshell specifically using the DRM based on the assumption of

arge displacement-small strain. The concept of our beam element

s based on the co-rotating beam element, which is explained and

llustrated in Krenk (2009) . However, our method has the follow-

ng novelty. The unit normal vector perpendicular to the tangent

lane of a curved surface at the deformed state is assigned at each

nd node of a beam element and used for defining the local coor-

inates. In this way, the deformed state is uniquely defined by the

odal locations and the surface normal vectors. The two compo-

ents of normal vector as well as the rotation around the normal
ector are used as independent variables to avoid additional con-

traints assigned in Nielsen and Krenk (2014) . The residual forces

re derived by differentiating the total potential energy for use

n the DRM, which is an explicit integration method. The method

ased on direct minimization of the total potential energy by

olving an unconstrained optimization problem is also presented

or comparison to the DRM. Furthermore, a hinge at node can

e naturally incorporated by allowing the two intersecting beams

ave two independent rotations around the surface normal vector.

ccuracy of the proposed method is verified in the numerical

xamples of gridshells in comparison to the results obtained by a

nite element analysis (FEM) package and those by directly mini-

izing the total potential energy using an optimization algorithm. 

. Dynamic relaxation method 

DRM is an explicit integration method for dynamically solving

tatic problems of structures. The method has been proposed by

ay (1965) and applied to form-finding of flexible structures such

s membrane structures, cable nets ( Bel Hadj Ali et al., 2017 ),

ensegrity structures ( Bel Hadj Ali et al., 2011 ), and bending-active

tructures. The main schematic of the DRM is to utilize the nodal

isplacements for modeling the configurations of structures and

race the motions of the nodes incrementally. The artificial kinetic

amping makes the motions converge to the static equilibrium

tate. 

Consider a geometrically nonlinear structure discretized into

eam elements. Let a , v , r , x , and u denote the vectors containing

he acceleration, the velocity, the internal restoring force, the

odal coordinate, and the displacement, respectively, of all degrees

f freedom of the structure. The mass matrix is denoted by M . In

ur method, the damping matrix is omitted, because we use the

inetic damping explained in Step 6 of the following algorithm

f DRM. Since these matrices are diagonal, the equations below

an be formulated at each node, or even for each displacement

omponent. However, the vectors and the matrices with the size of

otal degrees of freedom is used to derive the simple formulation

f the residual forces in Section 4 . Motions of the nodes under

xistence of the static external force vector p are computed from

he following equations of motion: 

a + r = p . (1) 

Eq. (1) represents a nonlinear static equilibrium equation, if

oth a and v are 0 . The vector of residual forces of static equi-

ibrium at the current time t is denoted by R 

t , which is written as

 

t = −r t + p . (2) 

n the following, the superscript t denotes the value at time t .

q. (1) can be rewritten using R 

t as 

 a 

t = R 

t 
. (3) 

The kinetic energy K is defined as 

 = 

1 

2 

v T Mv . (4) 

he convergence criterion is specified so that the norm of the

esidual force vector is less than the specified value, which indi-

ates that a static equilibrium is achieved. 

The algorithm of DRM is summarized as follows: 

Algorithm of DRM: 

Step 1: Assign the initial time increment �t = �t ini , and set ini-

tial nodal location vector as x = x̄ . Set the initial condi-

tions at t = 0 for displacements and velocities as u 

t = 0

and v t −�t / 2 = 0 , respectively, and initialize the kinetic en-

ergy as K 

t −�t / 2 = 0 . 
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Fig. 1. Form of beam with large deformation and small strains. 

Fig. 2. Deformed unit normal vector generated from a grid composed of beams. 
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Step 2: Compute the residual forces R 

t from Eq. (2) . 

Step 3: Using Eq. (3) , compute a 

t as 

a 

t = M 

−1 R 

t 
. (5)

Note that the inverse of mass matrix is not actually com-

puted. The mass matrix is diagonal, and each component

of acceleration is updated independently using Eq. (5) . 

Step 4: Update the vectors of velocity, displacement, and nodal

location as: 

v t +�t / 2 = v t −�t / 2 + �t a 

t , (6)

u 

t+�t = u 

t + �t v t +�t / 2 , (7)

x t+�t = x̄ + u 

t+�t . (8)

Step 5: Compute the kinetic energy K 

t +�t / 2 from Eq. (4) . 

Step 6: If the inequality 

K 

t −�t / 2 ≥ K 

t +�t / 2 (9)

is satisfied, go to Step 7; otherwise, update the time as

t ← t + �t, and go to Step 2. 

Step 7: Terminate the algorithm, if the convergence criterion with

respect to the residual forces R 

t+�t is satisfied. Otherwise,

reset the velocity vector as v t +�t / 2 = 0 , multiply the time

interval �t using the specified parameter ξ as �t ← ξ�t ,

update the time as t ← t + �t, and then go to Step 2.

We use the parameter ξ (0 < ξ < 1) so that the time

step �t can initially have a large value to reduce the

computational cost, and can be decreased to improve the

accuracy of the solution as the deformation converges to

the static equilibrium solution. 

3. Formulation of 3-dimensional elastic beam element model 

A geometrically nonlinear energy-based formulation for the

3-dimensional elastic beam element is proposed for application to

DRM. The beam of a gridshell is discretized into several elements

as shown in Fig. 1 , and the conventional assumption of large

displacement-small strain is used; i.e., the nodal displacements

are large, but the axial and bending strains in each element are

sufficiently small. 

3.1. Local basis vectors and rotational displacements at nodes 

A 3-dimensional Euler-Bernoulli beam element is generally

composed of two end nodes, each of which has three translational
Fig. 3. Definitions of local basis vectors and rotational displacements of element k conne

rotational displacements θ1 jk and θ2 jk derived from the geometrical relationship of the un
nd three rotational displacement components as independent

ariables. The local basis vectors are usually used to express mag-

itude of the rotational deformation ( D’Amico et al., 2014; 2015;

i and Knippers, 2012; Senatore and Piker, 2015; Krenk, 2009;

ielsen and Krenk, 2014 ). In the formulation proposed in this pa-

er, the rotational displacements are derived from the unit normal

ectors at nodes, as shown in Fig. 2 , which are orthogonal to the

wo curved lines of intersecting beams after deformation. The

wo projected components of nodal unit normal vector are used

o formulate torsion and one component of bending. The other

omponent of bending is expressed by rotation along its axis. 

Fig. 3 (a) shows element k connecting nodes j and j + 1 . The

ocal basis vector directed from node j to node j + 1 is denoted

y ˆ t 1 ,k . The coordinate vector and the unit normal vector of the

urface at node j are denoted by X j and 

ˆ n j , respectively. Through-

ut the paper, we use the notation 

ˆ (·) for a unit vector. Using the

nit vector ˆ r k of element k , which is defined as the average of the

ormal vectors at nodes j and j + 1 , the basis vectors ˆ t 1 ,k , ˆ t 2 ,k ,

nd 

ˆ t 3 ,k are defined by the following equations: 

ˆ 
 1 ,k = 

X j+1 − X j 

|| X j+1 − X j || , (10)

ˆ 
 2 ,k = 

ˆ r k × ˆ t 1 ,k 

|| ̂ r k × ˆ t 1 ,k || 
, (11)
cting nodes j and j + 1 ; (a) local basis vectors ˆ t 1 ,k , ˆ t 2 ,k , and ˆ t 3 ,k of element k , (b) 

it vectors at node j . 
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Fig. 4. Projected components of ˆ n j . 
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 3 ,k = 

ˆ t 1 ,k × ˆ t 2 ,k 

|| ̂ t 1 ,k × ˆ t 2 ,k || 
, (12) 

ˆ 
 k = 

ˆ n j + 

ˆ n j+1 

|| ̂  n j + 

ˆ n j+1 || . (13) 

The rotational displacements at node j of element k around

he basis vectors ˆ t 1 ,k and 

ˆ t 2 ,k are denoted by θ1 jk and θ2 jk , re-

pectively, as shown in Fig. 3 (b). The norm of the cross product
ˆ 
 3 ,k × ˆ n j is regarded as the local rotation angle φ at node j in the

lane perpendicular to ˆ n j , because the norms of ˆ t 3 ,k and 

ˆ n j are

qual to 1. Therefore, we can obtain the rotational displacements

round 

ˆ t 1 ,k , ˆ t 2 ,k as ( Krenk, 2009 ) 

1 jk = ̂

 t 1 ,k ·
(

ˆ t 3 ,k × ˆ n j 

)
, (14) 

2 jk = ̂

 t 2 ,k ·
(

ˆ t 3 ,k × ˆ n j 

)
. (15) 

Suppose the gridshell is initially on xy -plane of the global

oordinates ( x, y, z ). Fig. 4 shows the two projection components

 

x 
j 

and n 
y 
j 

of ˆ n j = [ n x 
j 
, n 

y 
j 
, n z 

j 
] T onto xy -plane. At the initial state of

he grid on xy -plane, the components of ˆ n j are given as [0, 0, 1] T .

n the numerical examples of DRM in Section 6 , bounds are not
Fig. 5. Computation of the dependent rotational displacement around unit normal ve
ssigned for n x 
j 

and n 
y 
j 
, while n z 

j 
is positive at all nodes. Thus, the

omponents of ˆ n j at a deformed state are computed as 

ˆ 
 j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

n x 
j √ 

n x 
j 
2 + n y 

j 

2 
, 

n y 
j √ 

n x 
j 
2 + n y 

j 

2 
, 0 

] T 

for n 

x 
j 
2 + n 

y 
j 

2 
> 1 

[
n 

x 
j 
, n 

y 
j 
, 

√ 

1 −
(

n 

x 
j 
2 + n 

y 
j 

2 
)]T 

for n 

x 
j 
2 + n 

y 
j 

2 ≤ 1 

. (16) 

inally, let n R 
j 

denote the rotation around 

ˆ n j . Then θ3 jk = n R 
j 

is cho-

en as the third independent rotational displacement component. 

.2. Continuity of rotation at internal nodes 

When multiple beam elements are rigidly connected to node

 as shown in Fig. 5 (a), there is only one independent rotational

isplacement at node j around the normal vector of the surface.

uppose the rotation n R 
j 

of element k is chosen as the independent

otational displacement variable, and elements k and k + 1 are

onnected to node j . Let α denote the projected angle between

lements k and k + 1 at node j . The dependent variable θ3 j(k +1) is

omputed from n R 
j 

using the following algorithm: 

Step 1: Project ˆ t 1 ,k onto a plane perpendicular to ˆ n j to obtain the

vector f 1 . 

Step 2: Normalize f 1 as ˆ f 1 = f 1 / || f 1 || . 
Step 3: Compute ˆ f 2 by rotating ˆ f 1 by the angle n R 

j 
+ α around 

ˆ n j .

Step 4: Compute the cross product f 3 = ̂

 t 1 ,k +1 × ˆ f 2 , and obtain

θ3 j(k +1) as the component of f 3 in the direction of ˆ n j . 

he details of algorithm are described below. 

First, f 1 is defined, as follows, as the basis vector ˆ t 1 ,k projected

o the tangent plane at node j as shown in Fig. 5 (a): 

f 1 = ̂

 t 1 ,k −
(

ˆ t 1 ,k · ˆ n j 

)
ˆ n j . (17) 

n this plane, we rotate the normalized vector ˆ f 1 = f 1 / || f 1 ||
round 

ˆ n j . The angle n R 
j 
+ α in Step 3 represents the sum of the

odal rotation n R 
j 

= θ3 jk obtained from the deformation of element

 and the initial angle α between the elements. In other words, the

irection of element k at node j is found by rotating by the angle
ctor at node j ; (a) Step 1-3 (Isometric), (b) Step 1-3 (Tangent plane), (c) Step 4. 
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Fig. 6. Illustration of the hinge joint model using shared unit normal vector under 

large deformation. 
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θ3 jk , and the direction of element k + 1 is found by further rotating

by the angle α. The vector ˆ f 2 in Fig. 5 (b) shows the projected

tangential direction of element k + 1 at node j at the deformed

state. Therefore, ˆ f 2 is obtained by rotating ˆ f 1 around 

ˆ n j as 

ˆ f 2 = 

ˆ f 1 cos 
(
n 

R 
j + α

)
+ 

(
ˆ n j × ˆ f 1 

)
sin 

(
n 

R 
j + α

)
. (18)

Process of Step 4 is illustrated in Fig. 5 (c). The component of cross

product f 3 = ̂

 t 1 ,k +1 × ˆ f 2 projected to ˆ n j is equal to the rotation

angle θ3 j(k +1) of element k + 1 at node j around 

ˆ n j as 

θ3 j(k +1) = f 3 · ˆ n j . (19)

3.3. Rigid support condition and hinge joint model 

A rotational boundary condition at a fixed support is assigned

in the following manner. Consider element k connecting a fixed

support j and a free node j + 1 . The basis vectors in the member

directions at undeformed and deformed states are denoted by
ˆ 
 

∗
1 ,k and 

ˆ t 1 ,k , respectively. We compute the cross product of these

vectors as 

g 1 = ̂

 t 1 ,k × ˆ t 
∗
1 ,k (20)

which represents the vector of local rotational displacement at

node j . Finally, the rotational displacement of member k around

unit normal vector ˆ n j is computed as 

θ3 jk = g 1 · ˆ n j , (21)

and the rotation n R 
j 

at the fixed node is constrained as 

n 

R 
j = θ3 jk . (22)

The curved beams of gridshell are generally connected by hinge

joints. A pair of beams can rotate with different angles around the

axis of hinge, which is in the direction of unit normal vector of

the surface as shown in Fig. 6 . In our model, the two overlapping

nodes at a hinge joint are classified into the master node and the

slave node. The master node has six DOFs, and the translational

and rotational displacements of the slave node are the same as

those of the master node except the rotation around the unit

normal vector of the surface; thus, the slave node has only one

DOF, and the forces in three directions and the moments except

the bending moment around the hinge are transmitted by a hinge

joint. 

3.4. Total potential energy 

The total potential energy is formulated here to differentiate

it with respect to the displacement components and obtain the

residual force vector. Let E and G denote Young’s modulus and the

shear modulus of the beam, respectively. The cross-sectional area

and the torsional constant are denoted by A and J , respectively. 
We consider sections with two axes of symmetry. The unit nor-

al vector ˆ n j is directed to one of the principal axes of the section

f each element connected to the node. Since the assumption of

mall deformation is used for each beam element, we can assume

he vectors ˆ t 2 ,k and 

ˆ t 3 ,k are directed to the two principal axes of

lement k , for which the second moment of areas are denoted by

 2 k and I 3 k , respectively. 

The locations of node j at the initial and deformed states are

enoted by ( ̄X x 
j 
, X̄ 

y 
j 
, X̄ z 

j 
) T and (X x 

j 
, X 

y 
j 
, X z 

j 
) T , respectively, with the

odal loads P j . The displacement vector of node j is denoted

y (U 

x 
j 
, U 

y 
j 
, U 

z 
j 
) T = (X x 

j 
, X 

y 
j 
, X z 

j 
) T − ( ̄X x 

j 
, X̄ 

y 
j 
, X̄ z 

j 
) T . The elongation e k

f element k is computed from the element length L k at the

eformed state and the initial length L̄ k . Then, the total potential

nergy �total of the gridshell, which has m members and s free

odes, is obtained from the internal strain energy and the external

ork as 

total = 

m ∑ 

k =1 

�k 
int −

s ∑ 

j=1 

� j 
ext , (23)

k 
int = 

EA 

2 ̄L k 
e k 

2 + 

GJ 

2 ̄L k 

(
θ1( j+1) k − θ1 jk 

)2 

+ 

EI 2 k 

2 ̄L k 

[ 
4 

(
θ2 jk 

)2 + 4 θ2 jk θ2( j+1) k + 4 

(
θ2( j+1) k 

)2 
] 

+ 

EI 3 k 

2 ̄L k 

[ 
4 

(
θ3 jk 

)2 + 4 θ3 jk θ3( j+1) k + 4 

(
θ3( j+1) k 

)2 
] 
, (24)

j 
ext = P j ·

⎡ 

⎣ 

X 

x 
j 
− X̄ 

x 
j 

X 

y 
j 
− X̄ 

y 
j 

X 

z 
j 
− X̄ 

z 
j 

⎤ 

⎦ = P j ·

⎡ 

⎣ 

U 

x 
j 

U 

y 
j 

U 

z 
j 

⎤ 

⎦ , (25)

here �k 
int 

is the internal strain energy of element k connecting

odes j and j + 1 , and � j 
ext is the external work at node j . The

omplementary energy formulations of the internal strain energy

n Eqs. (23) and (24) are based on the small strains corre-

ponding to small local rotations at member ends ( Krenk, 2009 ).

urthermore, the form of bending strain energy is derived from

he following expression of the bending moments B 1 and B 2 at

ember ends using bending stiffness matrix: 

B 1 

B 2 

]
= 

EI ik 

L̄ k 

[
2 1 

1 2 

][
θi jk 

θi ( j+1) k 

]
, i = { 2 , 3 } . (26)

. Residual forces 

The residual forces are defined in Eq. (2) as the difference

etween the internal and external forces. Let b i denote the i th

omponent of a vector b . The residual force corresponding to the

 th degree of freedom is obtained by differentiating the internal

train energy and the external work with respect to the i th

omponent u i of the displacement vector u as 

 

t 
i = −r t i + p i 

= −
m ∑ 

k =1 

∂�k 

int 
∂u i 

+ 

s ∑ 

j=1 

∂� j 

ext 
∂u i 

. (27)

urthermore, in the numerical examples, a sensitivity analysis is

sed for finding the equilibrium shape by solving an optimiza-

ion problem. Therefore, we derive the differential coefficients

f the strain energy and the external work with respect to the

isplacement variables next. 

Taking the partial derivatives of Eqs. (24) and (25) with respect

o u i , which represents displacement variable such as U 

x 
j 
, U 

y 
j 
, U 

z 
j 
,
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p  

S  

S  
 

x 
j 
, n 

y 
j 
, and n R 

j 
, the differential coefficients are obtained as 

∂�k 
int 

∂u i 

= 

EA 

L̄ k 
e k 

∂e k 
∂u i 

+ 

GJ 

L̄ k 

(
θ1( j+1) k − θ1 jk 

)∂ 
(
θ1( j+1) k − θ1 jk 

)
∂u i 

+ 

2 EI 2 k 

L̄ k 

(
2 ∂ θ2 jk 

∂u i 

θ2 jk + 

∂ θ2( j+1) k 

∂u i 

θ2 jk 

+ 

∂ θ2 jk 

∂u i 

θ2( j+1) k + 

2 ∂θ2( j+1) k 

∂u i 

θ2( j+1) k 

)

+ 

2 EI 3 k 

L̄ k 

(
2 ∂ θ3 jk 

∂u i 

θ3 jk + 

∂ θ3( j+1) k 

∂u i 

θ3 jk 

+ 

∂ θ3 jk 

∂u i 

θ3( j+1) k + 

2 ∂θ3( j+1) k 

∂u i 

θ3( j+1) k 

)
, (28) 

∂� j 
ext 

∂u i 

= P j ·

⎡ 

⎢ ⎣ 

∂U x 
j 

∂u i 
∂U y 

j 

∂u i 
∂U z 

j 

∂u i 

⎤ 

⎥ ⎦ 

. (29) 

Derivative of the axial deformation is equal to that of the length

f the deformed element as 

∂e k 
∂u i 

= 

∂ 
(
L k − L̄ k 

)
∂u i 

= 

∂L k 
∂u i 

(30) 

hich is obtained as 

∂L k 
∂u i 

= 

1 

L k 

[
X 

x 
j+1 − X 

x 
j , X 

y 
j+1 

− X 

y 
j 
, X 

z 
j+1 − X 

z 
j 

]
⎡ 

⎢ ⎢ ⎣ 

∂ ( U x j+1 
−U x 

j ) 
∂u i 

∂ 
(
U y 

j+1 
−U y 

j 

)
∂u i 

∂ ( U z j+1 
−U z 

j ) 
∂u i 

⎤ 

⎥ ⎥ ⎦ 

. (31) 

To compute the differential coefficients of the rotational dis-

lacements, differentiate Eqs. (14) and (15) with respect to u i as 

∂θ1 jk 

∂u i 
= 

∂ 

∂u i 

[
ˆ t 1 ,k ·

(
ˆ t 3 ,k × ˆ n j 

)]
= 

∂ ̂ t 1 ,k 
∂u i 

·
(

ˆ t 3 ,k × ˆ n j 

)
+ ̂

 t 1 ,k ·
(

∂ ̂ t 3 ,k 
∂u i 

× ˆ n j + ̂

 t 3 ,k ×
∂ ̂  n j 

∂u i 

)
, (32) 

∂θ2 jk 

∂u i 
= 

∂ 

∂u i 

[
ˆ t 2 ,k ·

(
ˆ t 3 ,k × ˆ n j 

)]
= 

∂ ̂ t 2 ,k 
∂u i 

·
(

ˆ t 3 ,k × ˆ n j 

)
+ ̂

 t 2 ,k ·
(

∂ ̂ t 3 ,k 
∂u i 

× ˆ n j + ̂

 t 3 ,k ×
∂ ̂  n j 

∂u i 

)
. (33) 

ifferential coefficients of ˆ n j are expressed from Eq. (16) as 

∂ ̂  n j 

∂u i 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

∂n x 
j 

∂u i 

1 √ 

n x 
j 
2 + n y 

j 

2 
− n x 

j (
n x 

j 
2 + n y 

j 

2 
)3 / 2 

(
∂n x 

j 

∂u i 
n x 

j 
+ 

∂n y 
j 

∂u i 
n y 

j 

)
∂n y 

j 

∂u i 

1 √ 

n x 
j 
2 + n y 

j 

2 
− n y 

j (
n x 

j 
2 + n y 

j 

2 
)3 / 2 

(
∂n x 

j 

∂u i 
n x 

j 
+ 

∂n y 
j 

∂u i 
n y 

j 

)
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

for n x 
j 
2 + n y 

j 

2 
> 1 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂n x 
j 

∂u i 

∂n y 
j 

∂u i 

−
∂n x 

j 
∂u i 

n x 
j 
+ 

∂n 
y 
j 

∂u i 
n y 

j √ 

1 −
(

n x 
j 
2 + n y 

j 

2 
)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

for n x 
j 
2 + n y 

j 

2 ≤ 1 

. 

(34) 

ifferential coefficients of ˆ t 1 ,k , ˆ t 2 ,k , and 

ˆ t 3 ,k are expressed using

 k = || X j+1 − X j || as 

∂ ̂  t 1 ,k 
∂u i 

= − 1 

L k 
2 

∂L k 
∂u i 

⎡ 

⎣ 

X 

x 
j+1 

− X 

x 
j 

X 

y 
j+1 

− X 

y 
j 

X 

z 
j+1 

− X 

z 
j 

⎤ 

⎦ + 

1 

L k 

⎡ 

⎢ ⎢ ⎣ 

∂ ( U x j+1 
−U x 

j ) 
∂u i 

∂ 
(
U y 

j+1 
−U y 

j 

)
∂u i 

∂ ( U z j+1 
−U z 

j ) 
∂u 

⎤ 

⎥ ⎥ ⎦ 

, (35) 
i 
∂ ̂  t 2 ,k 
∂u i 

= − ˆ r k × ˆ t 1 ,k 

|| ̂ r k × ˆ t 1 ,k || 2 
∂|| ̂ r k × ˆ t 1 ,k || 

∂u i 

+ 

1 

|| ̂ r k × ˆ t 1 ,k || 
∂ 
(

ˆ r k × ˆ t 1 ,k 
)

∂u i 

, 

(36) 

∂ ̂ t 3 ,k 
∂u i 

= − ˆ t 1 ,k × ˆ t 2 ,k 

|| ̂ t 1 ,k × ˆ t 2 ,k || 2 
∂|| ̂ t 1 ,k × ˆ t 2 ,k || 

∂u i 
+ 

1 

|| ̂ t 1 ,k × ˆ t 2 ,k || 
∂ 
(

ˆ t 1 ,k × ˆ t 2 ,k 
)

∂u i 
, (37) 

∂ ̂  r k 
∂u i 

= − ˆ n j + ̂

 n j+1 

|| ̂ n j + ̂

 n j+1 || 2 
∂|| ̂ n j + ̂

 n j+1 || 
∂u i 

+ 

1 

|| ̂ n j + ̂

 n j+1 || 
∂ 
(

ˆ n j + ̂

 n j+1 

)
∂u i 

. 

(38) 

ifferential coefficients of the independent rotational displace-

ents around 

ˆ t 1 ,k and 

ˆ t 2 ,k are derived by substituting Eqs. (34) –

38) into Eqs. (32) and (33) , respectively. 

The rotational displacements are classified into the dependent

nd independent variables. In the following equations, the nodal

otation angles n R 
j 

related to element k and θ3 j(k +1) related to

lement k + 1 , which are connected to node j , are assumed to be

ndependent and dependent variables, respectively. Derivatives of

he dependent variable θ3 j(k +1) are computed by differentiating

qs. (17) –(19) , as follows, and using the derivatives of n R 
j 

and the

nitial angle α between elements k and k + 1 : 

∂θ3 j(k +1) 

∂u i 

= 

∂ f 3 
∂u i 

· ˆ n j + f 3 ·
∂ ̂  n j 

∂u i 

, (39) 

∂ f 3 
∂u i 

= 

∂ ̂  t 1 ,k +1 

∂u i 

× ˆ f 2 + ̂

 t 1 ,k +1 ×
∂ ̂  f 2 
∂u i 

, (40) 

∂ ̂  f 2 
∂u i 

= 

∂ ̂  f 1 
∂u i 

cos 
(
n 

R 
j + α

)
+ 

ˆ f 1 

(
− sin 

(
n 

R 
j + α

)∂n 

R 
j 

∂u i 

)

+ 

(
∂ ̂  n j 

∂u i 

× ˆ f 1 + 

ˆ n j ×
∂ ̂  f 1 
∂u i 

)
sin 

(
n 

R 
j + α

)
+ 

(
ˆ n j × ˆ f 1 

)
cos 

(
n 

R 
j + α

)∂n 

R 
j 

∂u i 

, (41) 

∂ ̂  f 1 
∂u i 

= − f 1 
|| f 1 || 2 

∂|| f 1 || 
∂u i 

+ 

1 

|| f 1 || 
∂ f 1 
∂u i 

, (42) 

∂ f 1 
∂u i 

= 

∂ ̂  t 1 ,k 
∂u i 

−
[(

∂ ̂  t 1 ,k 
∂u i 

· ˆ n j + ̂

 t 1 ,k ·
∂ ̂  n j 

∂u i 

)
ˆ n j + 

(
ˆ t 1 ,k · ˆ n j 

)∂ ̂  n j 

∂u i 

]
. 

(43) 

If node j is a rigid support, then differential coefficients of

otational displacements around unit normal vectors are computed

s: 

∂θ3 jk 

∂u i 

= 

∂ g 1 
∂u i 

ˆ n j + g 1 
∂ ̂  n j 

∂u i 

, (44) 

∂ g 1 
∂u i 

= 

∂ ̂  t 1 ,k 
∂u i 

× ˆ t 
∗
1 ,k + ̂

 t 1 ,k ×
∂ ̂  t 

∗
1 ,k 

∂u i 

. (45) 

. Artificial mass, inertia moment, and damping 

Artificial mass and inertia moment are to be assigned to com-

ute the dynamic responses using Eq. (1) . The general stiffness

 k is defined as EA / L k for translation and EI / L k 
3 for rotation.

uppose node j is connected by q ( ≥ 1) element(s) which is/are
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Fig. 7. Initial shape and boundary conditions of the simple beam model (arrow at 

the roller-support: forced displacement of 0.20 m, dashed arrows: external force of 

10 0 0 N in positive y - and z -directions). 
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not limited to be collinear. We use the approach formulated by

Lefevre et al. (2017) to compute the artificial mass/inertia moment

at node j , which is formulated using a weight parameter γ as 

M j = γ�t ini 
2 

q ∑ 

k =1 

2 

n S k . (46)

where n is a parameter; if S k represents the translational stiffness,

n = 1 ; otherwise, n = 3 . Note that S k should be appropriately

scaled if the members are diagonally connected. 

If the element lengths become smaller, then the artificial mass

and inertia moment become larger, and convergence property of

the DRM is deteriorated; i.e., we need many iterations if there

are short elements. Therefore, we have to find the value of the

weight parameter γ corresponding to the appropriate values of

the artificial mass and inertia moment satisfying the Courant–

Friedrichs–Lewy condition for determining the time increment for

an explicit integration method. Using the artificial mass/inertia

moment at node j , and the summation of the general stiffness S k 
of the elements connected to node j , the Courant–Friedrichs–Lewy
Fig. 8. Equilibrium shape of simple beam model; (a) xy -plane, (

Fig. 9. Iteration histories of kinetic energy and displacement; (a) kinetic energy o

m  
b) xz -plane (cross: FEM, line: DRM, square: optimization). 

f all nodes, (b) translational displacement in z -direction of the center node. 

ondition can be formulated as: 

�t ini 
2 ∑ q 

k =1 
S k 

M j 

< 2 . (47)

The DRM cannot arrive at the static equilibrium state without

ny damping, as is the case with general vibration problems.

herefore, an artificial damping is usually assigned in DRM. There

re two types of artificial damping: viscous damping and kinetic

amping. The former is used for directly reducing velocity vectors

tilizing viscous damping matrix. We use the latter, which resets

he kinetic energy to 0 after obtaining its local peak as described

n Step 6 of the DRM algorithm. In this case, there is no damping

atrix, and the acceleration vector is computed from Eq. (5) . The

elocity vector is also reset as 

 

t +�t / 2 = 

�t 

2 

M 

−1 R 

t 
. (48)

. Numerical examples 

The proposed DRM is applied to large-deformation analysis

or generating forms of elastic gridshells. The expressions of

he residual forces are also implemented in the optimization

ethod to minimize the total potential energy �total , where the

uasi-Newton method in the library of SNOPT Ver. 7 ( Gill et al.,

002 ) is used for solving the unconstrained optimization problem.

n the algorithm of DRM, step size �t is updated as 0.9969 �t

fter reaching a kinetic energy peak, i.e., ξ = 0 . 9969 in Step 7

f the DRM algorithm. The value of ξ = 0 . 9969 is chosen by

arrying out preliminary analyses to require the smallest the

umber of steps to satisfy convergence criterion. The weight

arameter γ in Eq. (46) is 0.8. In addition, FEM by Abaqus Ver.

016 ( Systèmes, 2016 ) is carried out for verification of the shapes

btained by the proposed method. The loading parameter t FEM 

for

EM is increased from 0.0 to 2.0 with the maximum time incre-

ent 5 . 0 × 10 −4 . In the period 0.0 ≤ t FEM 

≤ 1.0, the upward virtual
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Fig. 10. Initial shape and boundary conditions of the short span gridshell (arrows 

at four corners: forced displacement of 0.10 m). 
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Table 1 

Maximum and average differences of the coordinates of all nodes between DRM 

and FEM of three models. 

x (m) y (m) z (m) 

Simple beam model Maximum 2.110 ×10 −4 4.013 ×10 −4 5.265 ×10 −4 

Average 8.441 ×10 −5 2.318 ×10 −4 2.208 ×10 −4 

Short span gridshell Maximum 2.567 ×10 −3 2.568 ×10 −3 2.141 ×10 −3 

Average 3.878 ×10 −4 3.878 ×10 −4 7.013 ×10 −4 

Long span gridshell Maximum 1.255 ×10 −4 1.255 ×10 −4 9.916 ×10 −4 

Average 3.644 ×10 −5 3.644 ×10 −5 2.974 ×10 −4 
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oad equal to self-weight is applied to all members linearly in

rder to avoid the numerical difficulty due to bifurcation buckling

t the initial deformation from the flat grid to the curved surface.

uring the period 1.0 ≤ t FEM 

≤ 2.0, we apply the forced displace-

ents and the external loads to obtain the final equilibrium shape

hile reducing the upward virtual load to 0. 

In the following examples, we use a material with Young’s

odulus 200 GPa and Poisson’s ratio 0.3. The beam has a pipe

ection with diameter d d = 0 . 030 m and thickness d t = 0 . 002 m.

he initial length of each beam element is l = 1 . 00 m; ac-

ordingly, the slenderness ratio of each element is 100 . 76(=
 l/ 

√ 

d d 
2 + (d d − 2 d t ) 2 ) . Computation is carried out on a PC with

ntel Core i7-8700 CPU 3.20 GHz, 16.0GB RAM and six cores. 

.1. Simple beam model 

A simple slender beam model, which is unstressed and straight

n the initial state, is arranged along x -axis. The model has five

odes, pin-supported at one end, and roller-supported at the other

nd allowing translational displacement in x -direction. Note that

he rotations around x -axis are also constrained at the both end

odes for FEM. In the optimization method, the ranges of the vari-

bles such as U 

x 
j 
, U 

y 
j 
, U 

z 
j 
, n x 

j 
, n 

y 
j 
, and n R 

j 
are specified as [ −1 . 0 , 1 . 0] .
Fig. 11. Short span gridshell; (a) equilibrium shape, (b) xy -plane,
We apply external loads of 10 0 0 N in y - and z -directions at

he center node. A forced displacement of - 0.20 m is applied in

 -direction at the roller-support. Fig. 7 shows the initial shape and

he boundary conditions of the simple beam model. Fig. 8 (a) and

b) show the equilibrium shapes of simple beam model in xy - and

z -plane, respectively. The results of the DRM, the optimization

ethod, and the FEM are very close, as shown in Fig. 8 . The total

otential energy resulting from the DRM and the optimization

ethod are - 367.933 Nm and - 367.931 Nm, respectively, which

re very close. The number of steps of DRM and the optimization

ethod are 1720 and 860, respectively. Note that the same process

f sensitivity analysis in Section 4 is carried out at each step of the

RM and the optimization method. However, approximate Hessian

f the total potential energy is computed in the optimization

ethod, which requires additional computational cost. 

Fig. 9 (a) and (b) show the iteration histories of the total ki-

etic energy and the z -directional displacement of the center node,

espectively, obtained by the DRM. Although the total number of

teps is very large, an approximate solution is found about half of

he total steps. 

Table 1 shows the maximum and average differences in x -, y -,

nd z -coordinates of all nodes between DRM and FEM. The max-

mum difference in z -direction is 5 . 265 × 10 −4 m, which is very

mall. 
 (c) xz -plane (cross: FEM, line: DRM, square: optimization). 
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Fig. 12. Initial shape and boundary conditions of long span gridshell (arrow: forced 

displacement of 0.30 m). 
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6.2. Short span gridshell 

Consider a gridshell which has a 4 × 4 (m) square boundary

and two internal beams intersecting at the center. The model

has six beams, each of which is divided into four elements. The

nodes at (x, y, z) = (0 , 0 , 0) , (4,0,0), (0,4,0), and (4,4,0) have roller

supports that can move in x - and y -directions. The center node at

(2,2,0) has a roller support that can move in z -direction only. Note

that rotations around the three axes are also constrained at the

center to ensure symmetric deformation. 

Forced displacements of 
√ 

2 / 10 m are applied at the four corner

supports toward the center node (2,2,0). Fig. 10 shows the initial

shape and the boundary conditions of the short span gridshell.

The equilibrium shapes obtained by the DRM, the optimization

method, and the FEM are close as shown in Fig. 11 . The total
Fig. 13. Long span gridshell; (a) equilibrium shape, (b) xy -plane, 
otential energy resulting from the DRM and the optimization

ethod are 2.214 kNm and 2.320 kNm, respectively, which are

lose. The number of steps of DRM and the optimization method

re 3410 and 1845, respectively. In the optimization method, the

anges of the variables U 

x 
j 
, U 

y 
j 
, and U 

z 
j 

are specified as [ −1 . 5 , 1 . 5] ,

nd those for n x 
j 
, n 

y 
j 
, and n R 

j 
are [ −1 . 0 , 1 . 0] . The maximum and

verage differences in x -, y -, and z -coordinates of all nodes be-

ween the DRM and the FEM are listed in Table 1 . The maximum

ifference in y -coordinates is 2 . 568 × 10 −3 m, which is larger than

hat of long span gridshell in the next section. However, the value

s still less than 1/300 of the element length, and is negligible in

ractical applications. 

.3. Long span gridshell 

Consider a long span gridshell composed of 20 beams that have

he same length 11.00 m, which are classified into two groups

ith ten beams in x - and y -directions, respectively. All beams are

oller supported at both ends in the longitudinal direction of the

eam. In the optimization method, the ranges of the variables U 

x 
j 
,

 

y 
j 
, and U 

z 
j 

are specified as [ −2 . 0 , 2 . 0] , and those for n x 
j 
, n 

y 
j 
, and

 

R 
j 

are [ −1 . 0 , 1 . 0] . Fig. 12 shows the initial shape and the boundary

onditions of the long span gridshell. 

Fig. 13 shows the equilibrium shape obtained by the DRM,

he optimization method, and the FEM, which are very close.

he total potential energy resulting from the DRM and the op-

imization method are 2.763 kNm and 3.870 kNm. The number

f steps of DRM and the optimization method are 8449 and

375, respectively. The maximum and average differences of x -,

 -, and z -coordinates of all nodes between the DRM and the FEM

re listed in Table 1 . The maximum difference in z -direction is

 . 916 × 10 −4 m, which is very small. 

. Conclusions 

The main purpose of this study is to propose a 3-dimensional

lastic beam model for large-deformation analysis of elastic grid-
(c) xz -plane (cross: FEM, line: DRM, square: optimization). 
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hells using the DRM. The residual nodal forces at a deformed

tate are derived by differentiating the total potential energy with

espect to the generalized displacement components. Since the

RM solves the dynamic equilibrium equations explicitly, incre-

ental form of equilibrium equations and the tangent stiffness

atrix need not be derived. The proposed formulation can also be

pplied to an optimization approach for directly minimizing the

otal potential energy. 

In the proposed formulation, the unit normal vector of a curved

urface of gridshell at each node is used for obtaining the local

eformation. Six independent variables at a node consist of the

hree translational displacements, two horizontal components of

he unit normal vector, which are reduced to the two components

epresenting the inclination of the unit normal vector from the

ocal member axes, and the rotation around the unit normal

ector at the deformed state. Bending and torsional deformations

t the two end nodes are computed by using the geometrical

elationships between the unit normal vector at each node and

rientations of local element axes. The total potential energy is for-

ulated at the deformed state, and the residual forces are derived

y differentiating the total potential energy with respect to the

eneralized displacement components. Therefore, our formulation

oes not require incremental form of large rotation, and does not

ave any difficulty involved in the co-rotational formulation of the

eam elements. 

Since the residual forces are equivalent to the differential

oefficients of the total potential energy in the framework of opti-

ization method, the deformed equilibrium state is also obtained

sing an optimization method. In the numerical examples, we

ompared the solutions obtained by the DRM, optimization, and

EM for three models. It is important to develop a simple method

f DRM that is readily available to the designers, because the

eneral designers cannot have access to sophisticated optimization

ibrary and/or FEM software package. In all models, the deformed

hapes obtained by the DRM and optimization are almost equal

o the shape obtained by an FEM software package. This result

uggests that 3-dimensional elastic beam model described by the

nit normal vectors can be effectively applied to form-finding of

lastic gridshells. 
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