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Abstract 

A new method is presented for an application of Gaussian mixture model (GMM) to a multi-objective 

robust design optimization (RDO) of planar steel frame structures under aleatory (stochastic) 

uncertainty in material properties, external loads, and discrete design variables. Uncertainty in the 

discrete design variables is modeled in the wide range between the smallest and largest values in the 

catalog of the cross-sectional areas. A weighted sum of Gaussians is statistically trained based on the 

sampled training data to capture an underlying joint probability distribution function (PDF) of random 

input variables and the corresponding structural response. A simple regression function for predicting 

the structural response can be found by extracting the information from a conditional PDF, which is 

directly derived from the captured joint PDF. A multi-objective RDO problem is formulated with three 

objective functions, namely, the total mass of the structure, and the mean and variance values of the 

maximum inter-story drift under some constraints on design strength and serviceability requirements. 

The optimization problem is solved using a multi-objective genetic algorithm utilizing the trained GMM 

for calculating the statistical values of objective and constraint functions to obtain Pareto-optimal 

solutions. Since the three objective functions are highly conflicting, the best trade-off solution is desired 

and found from the obtained Pareto-optimal solutions by performing fuzzy-based compromise 

programming. Robustness and feasibility of the proposed method for finding the RDO of planar steel 

frame structures with discrete variables is demonstrated through two design examples. 

 

Bach Do
Textbox

Bach Do
Textbox
Submitted to Structural and Multidisciplinary Optimization

mailto:do.bach.35a@st.kyoto-u.ac.jp


2 

 

Keywords: Gaussian mixture model; Uncertainty; Robust design optimization; Steel frame; Genetic 

algorithm. 

 

1 Introduction 

Uncertainties in the structural engineering field include aleatory and epistemic uncertainties; the former 

comes from the natural randomness of geometric dimensions, material properties, external loads, and 

boundary conditions, and the latter is from insufficient knowledge of designers about simplified models 

used for analyzing and designing structures (Kiureghian and Ditlevsen 2009; Roy and Oberkampf 

2011). They must be considered to estimate the variation in the structural responses, because the 

variation measures correspond to the safety of the structural system. In the current practical design 

procedures of building frames, these uncertainties have been treated by the use of partial factors that 

are strength reduction and load factors for considering random variations in mechanical resistances of 

structural members and in external loads, respectively (AISC 2016b; ASCE 2017). However, since the 

partial factors have been calibrated using some simple probability distributions of input variables with 

different structural failure scenarios, the safety measures of building frames may involve uncertainty. 

Therefore, using the partial factors without uncertainty may lead to a poor solution for an optimization 

problem that is usually on the boundary of the feasible region, and accordingly, is sensitive to even 

small fluctuations in the input variables (Chateauneuf 2008). Thus, reliability-based design optimization 

(RBDO) and robust design optimization (RDO) have been extensively investigated for considering 

uncertainties in the structural optimization field (Qu and Haftka 2004; Schuëller and Jensen 2008; Ito 

et al. 2018). 

Under uncertain input variables, RBDO searches for a balance between the reduction of a structural 

cost and a confidence level in the structural safety measure by controlling the probability of failure of 

the structure below an allowable value, which is specified by a design code. Meanwhile, RDO aims at 

finding a solution that minimizes an objective function considering variation in the structural 

performance with respect to the uncertain parameters (Ben-Tal et al. 2009). When the bound in the 
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constraints of the RDO problem cannot be specifically determined, it is natural to move some constraint 

functions to objective functions and formulate the RDO problem with several conflicting performance 

measures, e.g., the structural cost and statistical properties of the structural responses (Beyer and 

Sendhoff 2007). Therefore, the RDO problem is to be formulated as a multi-objective optimization 

problem so that the designers can carry out trade-off analysis among the conflicting performance 

measures by finding a set of nondominated solutions called Pareto-optimal solutions (Pareto front). 

Several methods have been found for solving multi-objective structural optimization problems (Marler 

and Arora 2004); however, most of them are limited in two objective functions, and it is very difficult 

to characterize the properties of the Pareto-optimal solutions for a problem with many objective 

functions. Ohsaki et al. (2019) formulated a multi-objective RDO problem with many objective 

functions based on the order statistics. 

The first step of dealing with an RDO problem is to determine uncertainty sources. It is usually 

done by collecting experimental data and analyzing them statistically. Survey by Hess et al. (2002) 

provides detailed statistical data on the geometry of steel plates and the yield stress, ultimate strength, 

Young’s modulus, and Poisson’s ratio of steel materials. Aleatory uncertainty in external loads acting 

on building structures is described in ASCE (2017). Papadrakakis et al. (2005) modeled uncertainty in 

structural material and external loads by normal and log-normal distributions, respectively. Guo et al. 

(2013) considered variation in boundary conditions for robust structural topology optimization 

problems via level set approach. Jalalpour et al. (2013) investigated the effect of uncertainty in Young’s 

modulus on the solution to reliability-based topology optimization problem of truss structures. 

After the uncertainty sources are determined, the second step is to propagate uncertainty through a 

mechanical model for obtaining statistical parameters of the structural responses required for the 

optimization problem. The propagation process is repeated until the RDO solution is found. There exist 

two dominant approaches for this purpose: deterministic and probabilistic (Du and Chen 2000; 

Elishakoff and Ohsaki 2010). The former approach such as interval analysis is set-based wherein the 

uncertainty is bounded by a given set of the input variables. This approach is formulated based on 

rigorous nonlinear programming problem, thereby providing accurate solutions. However, it may lead 
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to a too conservative design since the bounds for the input variables are generally unknown in advance, 

and the response of the solution to the RDO problem corresponds to the worst-case variable set. 

Meanwhile, the latter approach is based on probabilistic properties of the input variables propagated 

through the mechanical model using, e.g., the Monte-Carlo simulation (MCS). Although this approach 

can produce a moderately conservative design, it is computationally expensive in general, especially 

when solving RDO problems with many variables. For both mentioned approaches, the uncertainty may 

also be propagated through surrogate models, which are used to approximate the structural responses 

(Jin et al. 2003). After these models are developed, statistical moments of the structural responses can 

be estimated using either Monte-Carlo integration method or Taylor series expansion at the mean values 

of input variables. The issue of the surrogate-based approach is that high-fidelity surrogate models 

themselves involve interpolation uncertainty (Arendt et al. 2013), which becomes significant when the 

number of input variables increases. Also, the accuracy of using Taylor series expansion to estimate the 

statistical moments strongly depends on accuracy in estimating high-order derivatives such as the 

Hessian of the response function. In the same manner, the polynomial chaos expansion method 

(Crestaux et al. 2009) can be used to fit the structural response by using an approximate model of a 

linear combination of polynomial basis functions and then utilizing the resulting model to estimate the 

statistical moments of the response. The multivariate basis functions for problems with multivariate 

objective or constraint functions are commonly generated by constructing every possible combination 

of univariate polynomials for each input variable. Therefore, the use of polynomial chaos expansion is 

subject to the curse of dimensionality, i.e., the number of multivariate basis functions increases with a 

polynomial order of the number of input variables, which quickly leads to a prohibitive numerical cost 

of constructing the models and estimating the statistical moments. 

The problem of minimizing the total mass of steel frames under some constraints on structural 

strength and serviceability requirements has been well investigated using heuristic methods such as 

genetic algorithm (Pezeshk et al. 2000), simulated annealing (Ohsaki et al. 2007), particle swarm 

optimization (Doğan and Saka 2012), teaching-learning method (Toğan 2012), and harmony search 

(Maheri and Narimani 2014); however, there have been few studies on multi-objective RDO problems 



5 

 

with more than two objectives. Papadrakakis et al. (2005) minimized the total mass and standard 

deviation of the total drift of a steel truss structure using a two-phase analysis, i.e., a training phase with 

a neural network and an optimization phase with an evolutionary algorithm. Aleatory uncertainty was 

considered in the cross-sectional dimensions, material properties, and external loads. The standard 

deviation of the total drift and mean values of constraints were evaluated using the MCS sampling on 

the obtained neural network model. Lagaros and Papadrakakis (2007) minimized the total mass and 

standard deviation of the maximum inter-story drift of a steel frame structure against seismic loading 

with a log-normal distribution. They directly used the MCS and finite element analysis to estimate the 

standard deviation of the objective and mean values of the constraints required for the RDO problem. 

Liu et al. (2013) formulated a multi-objective RDO problem for minimizing the total mass, mean value 

of seismic demand, and variation of seismic demand for a steel moment-resisting frame against seismic 

loading with a log-normal distribution. The evaluation of mean and variation values of seismic demand 

was not explicitly shown. Recently, Ohsaki et al. (2019) combined the tolerance interval and confidence 

interval of order statistics and the multi-objective RDO to minimize twenty order statistics of the 

maximum inter-story drift of a shear frame against seismic motions. They considered uncertainty in the 

story stiffness, floor mass, and damping coefficient. However, most of the previous structural RDO 

studies use the MCS to assist in the iterative computations for the optimization process and do not aim 

at statistically understanding the cause-effect relationship between the random inputs and the 

corresponding structural response for application to the optimum design. Once the cause-effect 

relationship is established, the evaluation of the randomness, such as mean, variance, and also the 

probability distribution of the objective and constraint functions can reduce the computational effort. In 

this study, therefore, we start by constructing probabilistic models for the input variables and structural 

responses. Then, we utilize these models for solving a multi-objective RDO problem. 

Gaussian mixture model (GMM) is a probabilistic model using a weighted sum of Gaussians for 

exploring an underlying joint probability distribution function (PDF) of random input variables and the 

corresponding output variables (responses) (Sung 2004; Hastie et al. 2009; McLachlan et al. 2019). 

Many powerful abilities of the GMM have been demonstrated in the field of statistical learning. It can 
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transform non-Gaussian random input variables to a weighted sum of Gaussians, thereby enabling an 

analytical solution for a moment-generating function, which is used to characterize probabilistic 

properties and employed in further reliability analyses of structural systems (Papadimitriou et al. 2018). 

Furthermore, the model has been demonstrated to provide simple regression functions that facilitate the 

calculations of the mean, variation, and higher-order central moments of the response of interest by 

reducing the computational effort in calculating the gradient and Hessian of the response. The GMM is 

characterized by a set of unknown parameters, namely, the mixing proportion vector, the number of 

Gaussians, the mean vectors, and the covariance matrices. A drawback of the GMM is its sensitivity to 

the amount of training data; therefore, an approach is required for determination of appropriate number 

of training data. 

In this study, we formulate a multi-objective RDO problem for planar steel frames against static 

loads in the presence of aleatory uncertainty in material properties, external loads, and design variables. 

Let s denote the vector of discrete design variables, which represents the set of pairs of nominal value 

of cross-sectional area and moment of inertia of structural members. Uncertainty in s is modeled in the 

wide range between the smallest and largest values in the catalog of the cross-sectional areas, although 

the uncertainty for each selected discrete value is restricted in a small range. Let u denote the vector of 

random parameters, i.e., material properties and external loads. Let f1, f2, and f3 denote the total mass of 

the structure, and the mean and variance values of the limit state function regarding the maximum inter-

story drift, respectively. The multi-objective RDO problem is formulated with three conflicting 

objectives f1, f2, and f3 under some constraints on design strength and serviceability requirements, 

denoted by gi, and on constructional requirements, denoted by hj, as follows: 

min. ( ) ( ) ( )1 2 3, , , ,f f fs s u s u  

subject to 

( ), 0, 1,2, ,ig i n =s u  

( ) 0, 1,2, ,jh j m =s  (1) 
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As s and u involve randomness, the constraint functions are generic functions with some statistical 

metrics such as the mean and variance as well as the probability distribution. This study uses the mean 

metric to measure the randomness of the constraint functions. Detailed derivations of the objective and 

constraint functions are given in Section 4.1. 

Since the set-based and probabilistic approaches (Beyer and Sendhoff 2007) may lead to either an 

excessively conservative design or a computationally expensive design process, we utilize the GMM in 

solving problem (1) to reduce the computational cost of estimating statistical values of the objective 

and constraint functions, while incorporating probabilistic propagation of random input variables. We 

first generate a dataset of input and output values for training the GMM using the MCS. Uncertain 

design variables and random parameters are equivalently considered in the formulation of the GMM. 

Before application to our design optimization problem, the accuracy of GMM performance is confirmed 

by three numerical experiments. The optimization problem is solved using a multi-objective genetic 

algorithm utilizing the trained GMM for calculating the statistical values of the objective and constraint 

functions to obtain Pareto-optimal solutions. Various methods have been proposed for selecting the best 

solution from the set of Pareto-optimal solutions (Greco et al. 2016), e.g., PROMETHEE-II method 

(Brans et al. 1986; Ma et al. 2019). However, the most appropriate approach depends on the problem 

type (Chen and Hwang 1992). The best trade-off solution is found by performing fuzzy-based 

compromise programming on the Pareto-optimal solutions since its effectiveness has been verified by 

many authors (Abido 2003; Vahdani et al. 2013). We demonstrate the robustness and feasibility of the 

proposed method for finding the robust optimal designs of two planar steel frame structures. 

Our main contributions to the RDO of structures are as follows. (1) We present the first attempt at 

utilizing the GMM for multi-objective RDO problem of planar steel frames to facilitate the computation 

of the statistical values of objective and constraint functions, which is still a challenging task since the 

design optimization of steel frames is a combinatorial problem. Once the GMMs are constructed, the 

statistical moments efficiently arrive with analytical results, which yields a quick convergence to the 

RDO solution. (2) We introduce the approach to consider uncertainty in discrete design variables that 

can be easily extracted from the GMM trained only once before carrying out optimization for a wide 
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range of uncertainty under various conditions. (3) Since it equally treats the randomness of design 

variables and parameters during its construction, we demonstrate that the GMM can be effectively used 

to solve the optimization problems with different bounds of constraint functions and training should be 

carried out only once before solving the optimization problem with various bounds of constraints. 

The remaining part of this paper is organized as follows. Section 2 provides a brief description of 

the concept of the GMM and the procedure to obtain the model for a particular problem. To verify the 

performance of the GMM and provide a proper number of training data points, we conduct three 

numerical experiments in Section 3, where a known bivariate function, a two-bar truss, and a planar 

steel frame are investigated. In Section 4, we formulate the RDO problem, describe the methods used 

for generating the training data and obtaining the best compromise solution, and introduce the 

optimization procedure. We apply the proposed method to the RDO of two planar steel frames in 

Section 5. Finally, Section 6 summarizes and concludes this paper.  

 

2 Gaussian mixture model 

Theoretical aspects of the GMM and the determination of its parameters are briefly described in this 

section for completeness of the paper. The readers may refer to Sung (2004) and McLachlan et al. 

(2019) for detailed derivations. 

2.1 Outline of GMM 

Let ( ) 
1

,
N

i i i
y

=
= x  be a set of N training data, where 

D

i  x X  are D-dimensional vectors of input 

variables and iy Y   are the corresponding observed output variables. We assume that the training 

data emerges from an underlying joint PDF of X  and Y  defined by , ( , )Yp yX x . We seek for a 

transformation from the space of the input variables to that of the output variable through a conditional 

PDF | ( | )X xYp y , which is derived from the joint PDF , ( , )Yp yX x  and the marginal PDF ( )p
X

x , as 

follows: 
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( )
( )

( )
,

|

,
|

Y

Y

p y
p y

p
=

X

X

X

x
x

x
 (2) 

The joint PDF of X  and Y  is assumed to be a weighted sum of Gaussians as  

( ) ( ),

1

, , ; ,
K

Y k k k

k

p y y 
=

= X x x μ Σ  (3) 

1

1, 0 1
K

k k

k

 
=

=    (4) 

, ,

T
T

k k Y k =  Xμ μ  (5) 

, ,

, ,Σ

k Y k

k

Y k YY k

 
=  

 

XX X

X

Σ Σ
Σ

Σ
 

(6) 

where ( ) ( )1, ; , ,k k D k ky +x μ Σ μ Σ  is the kth (D+1)-variate Gaussian; K is the number of Gaussians; 

k , kμ , and kΣ  are the mixing proportion, mean vector, and variance matrix of the kth Gaussian, 

respectively. They are unknown parameters of the GMM. 

The kth Gaussian ( ), ; ,k ky x μ Σ  in Eq. (3) can be decomposed as (Sung 2004) 

( ) ( )( ) ( )2

, ,, ; , | ; , ; ,k k k k k ky y m   = X XXx μ Σ x x x μ Σ  (7) 

where km  and 
2

k  are the conditional mean and conditional variance defined by 

( ) ( )1

, , , ,k Y k Y k k km  −= + −X XX Xx Σ Σ x μ  (8) 

2 1

, , , ,Σk YY k Y k k Y k −= − X XX XΣ Σ Σ  (9) 

Substituting ( ), ; ,k ky x μ Σ  in Eq. (7) into Eq. (3), the joint PDF can be rewritten as 

( ) ( )( ) ( )2

, , ,k

1

, | ; , ; ,
K

Y k k k k

k

p y y m   
=

= X X Xx x x x μ Σ  (10) 

The marginal PDF is directly derived from the joint PDF as 

( ) ( ) ( )( ) ( )

( )

2

, , ,k

1

, ,

1

, | ; , ; ,

; ,

K

Y k k k k

k

K

k k k

k

p p y dy y m dy   

 

+ +

=− −

=

= =

=

 



X X X X

X X

x x x x x μ Σ

x μ Σ

  (11) 
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The conditional PDF in Eq. (2) now becomes 

( )
( )( ) ( )

( )
( ) ( )( )

2

, ,
21

|

1
,k ,

1

| ; , ; ,

| | ; ,

; ,

K

k k k k k K
k

Y k k kK
k

k k

k

y m

p y w y m

   

 

 

=

=

=

= =





X X

X

X X

x x x μ Σ

x x x x

x μ Σ

  (12) 

where  

( )
( )

( )

, ,

, ,

1

; ,

; ,

k k k

k K

k k k

k

w
 

 
=

=



X X

X X

x μ Σ
x

x μ Σ

  
(13) 

is the mixing weight. 

The conditional mean function (regression function) of y, denoted by ( )g x , is derived from Eq. 

(12) as 

( )   ( ) ( )
1

E |
K

k k

k

g y w m
=

= = x x x x   (14) 

where ( )km x  and ( )kw x  are given in Eqs. (8) and (13), respectively. 

To compute the mean and variance of ( )g x  in Eq. (14) under the effect of the randomness in input 

variables  1 2, , ,x
T

Dx x x= , we utilize the second-order Taylor expansion (Beyer and Sendhoff 2007) 

with respect to x at the mean 
1 2
, , ,Xμ D

T

x x x   =    as 

( ) ( )
2

1 1

1
E

2

D D

ij

i j i j

g
g g

x x


= =


  = +   


X

X

μ

x μ  (15) 

( )

( )

2

1 1 1 1 1

2 2

1 1 1 1

var

1

4

D D D D D

ij ijk

i j i j ki j i j k

D D D D

ijkl ij kl

i j k l i j k l

g g g g
g

x x x x x

g g

x x x x

 

  

= = = = =

= = = =

   
  = +     

 
+ −

 

 



X XX X

XX

μ μμ μ

μμ

x

  (16) 

where ij  is the covariance of xi and xj; ijk  is the third-order co-moment of xi, xj, and xk; and ijkl  is 

the fourth-order co-moment of xi, xj, xk, and xl. The calculations of the mean and variance of ( )g x  are 

based on calculations of the gradient and Hessian of the GMM, which are derived in the Appendix. 
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2.2 Determination of GMM parameters 

Unknown GMM parameters are determined by employing an expectation-maximization (EM) 

algorithm. It is an iterative solver and widely used to maximize a log-likelihood function of training 

data, thereby estimating unknown parameters of statistical models (Hastie et al. 2009; McLachlan et al. 

2019). The log-likelihood function of a GMM, which measures how well a statistical model fits the 

observed training samples, is defined as 

( )
1 1

log , ; ,
N K

k i i k k

i k

y 
= =

 
=  

 
  x μ Σ   (17) 

We maximize  to find the best fit statistical model. However, since we cannot simply encapsulate 

the log function into the inner summation in Eq. (17), the maximization of  becomes difficult. To 

overcome this difficulty, the latent variables  1 2, , ,
T

Nz z z=Z  are introduced, where  1,2, ,iz K  

(Hastie et al. 2009). If iz k= , the ith data point belongs to the kth Gaussian. Therefore, the joint PDF 

of the complete set of N training data ( ) 
1

, ,
N

i i i i
y z

=
x  is simplified as (Hastie et al. 2009) 

( ) ( ), ,

1 1

, , , ; ,
ikzN K

Y k i i k k

i k

p y z y 
= =

=   X Z x x μ Σ   (18) 

where  

1, if

0, if

i

ik

i

z k
z

z k

=
= 


  (19) 

The log-likelihood of the complete data becomes 

( )
1 1

log , ; ,
N K

c ik k i i k k

i k

z y 
= =

=    x μ Σ   (20) 

E-step: Since ikz  is unknown in advance, the following conditional expected value ˆ
ikz  (Hastie et al. 

2009) is substituted for ikz  in Eq. (20): 

( )

( )
1

, ; ,
ˆ

, ; ,

k k k

ik K

k k k

k

y
z

y

 

 
=

=



x μ Σ

x μ Σ

 
(21) 
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M-step: We maximize ( )
1 1

ˆ log , ; ,
N K

c ik k i i k k

i k

z y 
= =

=    x μ Σ  under the constraint (4) to update the 

mixing proportion as 

1

1
ˆ

N

k ik

i

z
N


=

=    (22) 

The mean vector kμ  and the covariance matrix kΣ  are also updated as 

1

1

ˆ

ˆ

N

ik i

i
k N

ik

i

z

z

=

=

=




d

μ   (23) 

( ) ( )
1

1

ˆ

ˆ

N
T

ki i k i k

i
k N

ki

i

z

z

=

=

− −

=




d μ d μ

Σ   (24) 

where 
T

T

i i iy =  d x . 

Thus, the EM algorithm can be summarized as follows: 

Step 1: Fix number of Gaussians K with 1 50K   and the tolerance 
610 −= . 

Give initial values 
( )0

k , 
( )0

kμ , 
( )0

kΣ , and initialize the step number as s = 1. 

Step 2: Compute 
( )ˆ
s

ikz  with 
( )1s

k
−

, 
( )1s

k

−
μ , and 

( )1s

k

−
Σ  using Eq. (21). 

Step 3: Compute 
( )s

k  and 
( )s

kμ  with 
( )ˆ
s

ikz  using Eqs. (22) and (23), respectively. 

Step 4: Compute 
( )s

kΣ  with 
( )s

kμ  and 
( )ˆ
s

ikz  using Eq. (24). 

Step 5: Compare 
( )s

kμ and 
( )1s

k

−
μ . 

If 
( ) ( )1s s

k k 
−

− μ μ , stop. 

Else 1s s +  and return to Step 2. 

For a specified value of K, the initial mixing proportions are uniform, the initial mean vectors are 

K vectors that are randomly selected from the training set, and the initial variance matrices for K 

Gaussians are diagonal, where the ith diagonal element is the variance of the ith input variable. The EM 
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algorithm is assured to terminate after a finite number of iterations since it never reduces the  value 

at each generation (Hastie et al. 2009). However, to avoid the ill-conditioning of estimated covariance 

matrices of the GMM during the implementation of EM algorithm, we add a small positive regularizer 

of 0.001 to the diagonal components of kΣ . To perform EM algorithm, the MATLAB R2018a Statistics 

and Machine Learning Toolbox is utilized (MathWorks 2019). 

To determine the number of Gaussians K before implementation of the EM algorithm, we increase 

it step by step from 1 to 50, thereby producing a total of 50 GMMs for the model selection process, 

where 50 is a recommended value to limit the complexity of the GMM model (Chamroukhi 2016). The 

Bayesian information criterion (BIC) is chosen for the model selection process since its effectiveness 

in determining the number of components for GMMs has been verified by many authors (Campbell et 

al. 1997; Fraley and Raftery 1998). In the BIC context, the best GMM from among 50 GMM candidates 

minimizes BIC, which is equivalent to selecting the GMM with the largest posterior probability in the 

Bayesian consideration. The BIC is defined as follows (Hastie et al. 2009): 

p
BIC log

2

n
N= − +   (25) 

where  is the log-likelihood function in Eq. (17); pn  is the number of free parameters required for a 

total of K Gaussians; for a full covariance matrix, ( ) ( ) ( )( )p 1 1 0.5 1 2n K D K D D K= − + + + + +  with 

the three terms corresponding to the numbers of free parameters of K mixing proportions, K mean 

vectors, and K covariance matrices, respectively. 

 

3 Computer experiments 

Before application to the robust optimization problem of steel frames, the performance of the GMM is 

tested against three numerical experiments, which include a known bivariate conditional PDF, a two-

bar truss, and a planar steel frame. In the first experiment, we approximate the known conditional PDF 

by using Eq. (12). In the second experiment, the GMM is used to solve the RDO problem of a two-bar 

truss with explicit objective and constraint functions to compare the results with those in existing 
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studies. In the third example, we again use Eq. (12) to capture a random response of the steel frame and 

use Eq. (14) to predict this response for different independent samples of test data. If the performance 

of the GMM does not meet a desired level of accuracy, more training data points should be added. 

3.1 Bivariate model 

Consider a conditional bivariate PDF taken from Fu et al. (2011), as 

( )1 2 1 2| ,0.15 0.05Y x x x x+ +X  (26) 

where x1 and x2 are uniformly distributed over the interval of  0.3,0.3− . To investigate the performance 

of the GMM in characterizing conditional PDFs, we approximate the PDF in Eq. (26) by using the 

conditional PDF in Eq. (12) . To do so, a total of 4000 samples are generated, in which 2000 samples 

are randomly selected for training for constructing the GMM and the remaining 2000 samples for 

testing. Nine pairs of ( )1 2,x x  are then selected within the given interval for obtaining the corresponding 

nine true conditional PDFs. By incorporating y values of the test data and each pair of ( )1 2,x x  into Eq. 

(12), we obtain the estimated conditional PDF for each pair, which is plotted together with the true one 

in Fig. 1. As a result, the conditional PDF for each of the nine pairs of ( )1 2,x x  is estimated based on 

the joint PDF ( ), ,Yp yX x  in Eq. (10), which is a mixture of seven Gaussians, i.e., K = 7. The mean 

vectors of seven Gaussians and the corresponding mixing proportions are also obtained as μ1 = [-0.0320, 

0.0313, -0.0040]T, μ2 = [0.1869, 0.1266, 0.3064]T, μ3 = [0.0098, 0.2480, 0.2697]T,  

μ4 = [-0.1595, -0.2753, -0.4451]T, μ5 = [0.2399, -0.1456, 0.1066]T
, μ6 = [-0.0162, -0.1982, -0.2287]T,  

μ7 = [-0.2472, 0.0077, -0.2293]T, π1 = 0.3390, π2 = 0.1391, π3 = 0.1183, π4 = 0.0477, π5 = 0.0805, π6 = 

0.1552, and π7 = 0.1202. It is demonstrated that the GMM can yield a very good estimation of the given 

conditional PDF. 
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

(e)  

 

(f)  

 

(g)  

 

(h)  

 

(i)  

Fig. 1 True and estimated conditional PDFs at nine tested pairs of ( )1 2,x x : (a) ( )0.2,0.2− ; 

(b) ( )0.0,0.2 ; (c) ( )0.2,0.2 ; (d) ( )0.2,0.0− ; (e) ( )0.0,0.0 ; (f) ( )0.2,0.0 ; (g) ( )0.2, 0.2− − ; 

(h) ( )0.0, 0.2− ; and (i) ( )0.2, 0.2− . 
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3.2 Two-bar truss 
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Fig. 2 Two-bar truss. 

The GMM is used to solve the RDO problem of a two-bar truss taken from Lee et al. (2009) as shown 

in Fig. 2. The cross-sectional area of the truss members x1 and the horizontal span of the truss x2 are 

considered as the design variables. The density of bar material ρ, the external load Q, and the material’s 

tensile strength Fy are the three random parameters. Statistical properties of the design variables and 

random parameters are given in Table 1. The deterministic optimization problem of the truss is 

formulated to minimize the total material volume of the truss subject to constraints on the axial strength 

of the truss members as follows (Lee et al. 2009): 

min. ( ) 2

1 2 1 2, 1f x x x x= +  

subject to 

( ) 2

1 1 2 2

1 1 2

5 8 1
, 1 1 0

65 y

Q
g x x x

x x xF

 
= − + +  

 
 

( ) 2

2 1 2 2

1 1 2

5 8 1
, 1 1 0

65 y

Q
g x x x

x x xF

 
= − + −  

 
 

1 20.2 20, 0.1 1.6x x     (27) 
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Table 1 Probabilistic characteristics of random variables of the two-bar truss. 

Variable Description Mean  COV Distribution 

x1 Cross-sectional area [cm2] 1x
   0.02 Normal 

x2 Horizontal span [m] 2x  0.02 Normal 

ρ  Material density [kg/m3] 104 0.20 Beta* 

Q  External load [kN] 800 0.25 Gumbel 

Fy Tensile strength [MPa] 1050 0.24 Lognormal 

* Shape parameters of beta distribution are set as a = b = 5 for generating the training set. 

The RDO problem is formulated as follows with a single function using a weighted sum of the 

mean and variance values of the objective function in (27) (Lee et al. 2009): 

min. 1 2* *

f f

f f

F w w
 

 
= +  

subject to 

1 11 0g gG k = −   

2 22 0g gG k = −   

1 2
0.2 20, 0.1 1.6x x      (28) 

where μ and σ denote the mean and standard deviation, respectively; the weight factors w1 = w2 = 0.5; 

the scaling factors 
* 10f =  and 

* 2f = ; and the risk attitude factor k = 3. 

We generate a total of 8000 training samples using the MCS for developing three GMMs 

corresponding to f, g1, and g2. As a result, the obtained GMMs for f, g1, and g2 are mixtures of 45, 30, 

and 31 Gaussians, respectively. The corresponding computational times required for training three 

GMMs, with an Intel i7-7700HQ 2.80 GHz CPU and 8.0 GB memory, are 142, 115, and 132 sec, 

respectively. Eqs. (15) and (16) are used to estimate the mean and variance values of the objective and 

constraint functions in (27). The RDO solution is found by using a pattern search. In Table 2, the 

obtained RDO solution is reported and compared with that of previous studies by Lee et al. (2009) and 

Chatterjee et al. (2019), where a tensor product Gaussian quadrature (TPQ) and the MCS are used for 

estimation of statistical moments of the objective and constraint functions, respectively. All RDO 
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solutions are confirmed by using the MCS with 105 samples. It is observed that the GMM can quickly 

provide a reasonable RDO solution without using complex analyses as the Gaussian quadrature method 

and enormous computer resources as the MCS. 

 

Table 2 Comparison of robust optimization results for two-bar truss. 

Results 
Gaussian quadrature (TPQ) 

 (Lee et al. 2009) 

MCS 105 samples 

(Chatterjee et al. 2019) 

GMM 

(This study) 

1x
 [cm2] 11.5655 11.6795 11.5297 

2x [m] 0.3771 0.3771 0.3586 

F  1.2393 (1.2428) 1.2516 1.2463 (1.2292) 

G1  0 (0.0096) (0.0012) 0 (0.0116) 

G2 -0.4978 (-0.4931) (-0.4973) -0.4922 (-0.5084) 

Function calls 3672 >105 894 

Numbers in parentheses are confirmed values using the MCS with 105 samples. 

 As seen from Table 2, the obtained RDO solutions still violate the constraint G1. To make the RDO 

solution more reliable, we replace the constraint on 1g  in problem (28) using a tighter bound as 

1 11 0g gG k  = − −   (29) 

where 0.1 = . 

Now, the solution to problem (28) is 
1

11.4146x = cm2
  and 

2
0.4063x = m. The corresponding 

objective and constraint values are F = 1.2540, 1 0G =  and 2 0.4650G = − . It shows that the GMM can 

be effectively used to solve RDO problems with different bounds of constraints, which can be explained 

by the fact that the GMM equally handles the randomness of the design variables and parameters during 

its construction, and training should be carried out only once before solving the optimization problem 

with various bounds of constraints. 
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3.3 Steel frame 
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Fig. 3 Four-story three-bay steel frame. 

To examine the regression and probabilistic modeling performances of the GMM for structural models, 

we investigate a four-story three-bay steel frame taken from Zhang and Pandey (2013), as shown in  

Fig. 3. External loads include dead loads DL, short-term live load S, long-term live load L, snow load 

on the roof SL, and wind load WL. Vertical loads on each beam of the frame, indicated in Fig. 3, are 

described in Table 3. The function of interest is the limit state function of the frame, which is defined 

as 

( )
( )max

a

,
, 1g




= −

s u
s u  (30) 

where s is the vector of design variables, i.e., four pairs of the cross-sectional area and moment of inertia 

{(A1, I1), (A2, I2), (A3, I3), (A4, I4)} of four groups of members described in Fig. 3; u is the vector of 

random parameters, including Young’s modulus and external loads WL, Q11, Q12,…,Q43, with associated 



20 

 

PDFs specified in Table 4, where COV is the coefficient of variation; max  is the maximum inter-story 

drift; and a  is the allowable upper bound for max , which is equal to 11.7 mm. 

Table 3 Vertical loads applied to each beam of the steel frame. 

Load Combination 

Q11, Q13, Q21, Q23, Q31, Q33 DL + S1 + L1 

Q12, Q22, Q32 DL + S2 + L2 

Q41, Q42, Q43 DL + SL 

 

Table 4 Probabilistic characteristics of random parameters of the steel frame. 

Variable Description Mean  COV Distribution 

DL Dead load [kN/m] 20 0.10 Normal 

S1  Short term live load 1[kN/m] 10 0.10 Gumbel 

S2  Short term live load 2 [kN/m] 5 0.30 Gumbel 

L1  Long term live load 1[kN/m] 10 0.30 Gumbel 

L2  Long term live load 2 [kN/m] 5 0.30 Gumbel 

SL  Snow load [kN/m] 5 0.26 Gumbel 

WL  Wind load [kN] 8 0.37 Gumbel 

E  Young's Modulus [GPa] 210 0.08 Normal 

 

Table 5 Predefined intervals for the design variables in the steel frame. 

Design variable Interval [cm2] Design variable Interval [cm4] 

A1 [46, 122] I1 [2118, 12949] 

A2 [29, 90] I2 [735, 6551] 

A3 [39, 97] I3 [4922, 26599] 

A4 [24, 62] I4 [1652, 9610] 

 

To generate a training dataset, we uniformly sample the design variables s, over eight predefined 

intervals, as provided in Table 5. We also generate the random parameters u based on their associated 

PDFs given in Table 4 using the MCS. The training dataset of 3×104 samples of the design variables, 

the random parameters, and the limit state function value is created. Then, the GMM parameters are 

obtained using the EM algorithm on the training set. 
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To generate a test dataset, the mean value for each design variable is randomly picked within the 

corresponding interval as provided in Table 5. Then, we assume that the design variables s are normally 

distributed around the picked means with a COV of 0.05 for both the cross-sectional area and the 

moment of inertia. Meanwhile, the random parameters u are generated in the same way as creating the 

training set. A total of 2×104 samples of the test dataset are generated and used for obtaining a 

comparison between the performances of the GMM and MCS using finite element analyses. 

Fig. 4 (a) shows the process of automatic selection of the number of Gaussians K using BIC. The 

optimal number of Gaussians found in this experiment is 14 when BIC has the minimum value of 

5.1782×106. Fig. 4 (b) shows a scatter of g(s,u) values computed by the use of Eq. (14) (estimated) over 

those from finite element analyses (true). A high coefficient of determination R2 = 0.996 is observed, 

which is a reliable indicator for a good regression performance of the GMM. The probabilistic property 

of the limit state function g(s,u) under uncertainty is shown in Figs. 4(c) and (d), where the true versus 

estimated PDFs and cumulative distribution functions (CDFs) are compared, respectively. The mean 

values for the true and estimated g(s,u) are 0.2342 and 0.2335, respectively, and the corresponding 

variance values are 0.0822 and 0.0901. It is observed that the GMM has an ability to accurately extract 

the limit state function and characterize its probabilistic property for a frame structure in the presence 

of uncertainty in design variables and random parameters. 

 

(a)  

 

(b)  
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(c)  

 

(d)  

Fig. 4 Results of GMM performances test for four-story three-bay steel frame: (a) BIC vs K;  

(b) Scatter plot; (c) PDF; and (d) CDF. 

 

4 Robust design optimization of steel frames 

4.1 Formulation of robust design optimization problem 

We extend the deterministic optimum design problem of steel frames subject to the constraints on design 

strength, serviceability, and constructional requirements specified by the load and resistance design 

approach (Pezeshk et al. 2000; Doğan and Saka 2012; Toğan 2012; Maheri and Narimani 2014) to 

incorporate uncertainty and state our multi-objective RDO problem. Since the inter-story drift is used 

to measure the expected damage level of building frames, we consider it as an additional objective 

function in our problem.  

The design variable vector, denoted by 
0

s , represents the set of pairs of nominal value of cross-

sectional area and moment of inertia of members. Because the sections are selected from the list of 

standard steel sections, the components of 
0

s  are integer and deterministic, and the values of cross-

sectional area and moment of inertia as well as the elastic and plastic sectional moduli are linked. The 

random vector s is generated in the neighborhood of 
0

s  based on the specified PDF of geometric 

parameters such as the overall depth, flange width, web thickness, and flange thickness; see Section 
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4.2. The vector of random parameters, denoted by u, represents Young's modulus, the yield and tensile 

strengths, and the external loads. 

The objective functions 1f , 2f , and 3f  are the total structural mass, and the mean and variance 

values of the limit state function related to the maximum inter-story drift, respectively. Let en , iL , ,iW  

and j  and 1j −  denote the number of members including beams and columns, the length of the ith 

member, the nominal mass (kg/m) of the section for the ith member, and the lateral drifts of two adjacent 

story levels j and j−1, respectively. The allowable value of the inter-story drift is assigned as / 300jh  

for the story right below the jth story level with the story height jh . Hence, the objective functions 1f , 

2f , and 3f  for a frame with m story levels are defined as 

( ) ( )
e

0 0

1

1

n

i i i

i

f W s L
=

= s  (31) 

( ) ( ) ( )0 * * 12 1
2 2 2

2

E , 1, , max , ,
/ 300 / 300

m m

m

f f f
h h

   −
 −−

 = − =   
 

s s u s u  (32) 

( ) ( )0 *

3 2var , 1f f = − s s u  (33) 

The constraint on the mean performance of the ith beam-column member is assigned based on the 

AISC-LRFD interaction formula (AISC 2016b) as  

( ) ( ) ( )

r ,r, r , r,

c, c , c , c,0 * *

1, 1, 1,

r ,r, r , r,

c, c , c , c,

8
1, if 0.2

9
E , 0, ,

1, if 0.2
2

y ii x i i

i x i y i i

i i i

y ii x i i

i x i y i i

MP M P

P M M P
g g g

MP M P

P M M P

  
+ + −   

 
  

 =  =  
 

+ + −    
 

s s u s u  (34) 

where Pr and Pc are the required and available axial strengths of the structural members (either tension 

or compression), respectively; Mrx and Mry are the required flexural strengths about the major axis, x, 

and the minor axis, y, respectively; and Mcx and Mcy are the available flexural strengths about the major 

axis, x, and the minor axis, y, respectively. 

The available axial and flexural strengths in (34) are estimated in accordance with chapters E and 

F of ANSI/AISC 360-16 (AISC 2016b), respectively. To determine the effective length factors for the 
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estimation of the available strengths for columns of an unbraced frame, the French Rule (Dumonteil 

1992) is utilized as 

( )A B A B

c

A B

1.6 4 7.5G G G G
K

G G

+ + +
=

+
 (35) 

where 

c c

b b

/

/

I L
G

I L
=




 (36) 

with the subscripts A and B refer to the joints at lower (A) and upper (B) ends of the column being 

considered; and Ic(b) and Lc(b) are the moment of inertia and length of the column (beam) members 

connected to that joint, respectively. For a column in the 1st story, GA = 10 if the column is pin-

supported, and GA = 1 if it is fixed to a strong foundation. 

The constraint on the mean value of the total drift of the structure t  is given as 

( ) ( ) ( )0 * *

2 2 2E , 0, , 1
/ 400

t
g g g

H


 =  = − s s u s u  (37) 

where H/400 is the allowable value of t  of the frame with the overall height H. 

The constraint on the mean value of the long-term deflection of the kth beam members b,k  is 

assigned as 

( ) ( ) ( )
b,0 * *

3, 3, 3,

b,

E , 0, , 1
/ 360

k

k k l

k

g g g
L


 =  = − s s u s u  (38) 

where b,kL  and b, / 360kL  are the span and the allowable long-term deflection of the kth beam, 

respectively. 

The strong column-weak beam approach ensures that the columns are strong enough so that the 

frame exhibits an yielding mechanism over multiple stories of the frame, rather than an inelastic action 

concentrated in column hinges at a single story (AISC 2016a). Thus, the strong column-weak beam 

requirements defined for planar steel frames are stated as 
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( ) ( ) ( ) pc,0 * *

4, 4, 4,

pb,

=E , 0, , 1
l

l l l

l

M
g g g

M
   = − 




s s u s u  (39) 

where pc,lM  is sum of the flexural strengths of the columns that constitutes the lth joint, i.e., above 

and below columns; and pb,lM  is sum of the flexural strengths of the beams connected to the lth 

joint. The readers may refer to ANSI/AISC 341-16 (AISC 2016a) for detailed calculations of these 

strengths. 

The geometric constraints, which ensure the flange width of beam members bbf, connected to a 

column should not exceed than the flange width of the column bcf, are given as 

( ) bf ,0

5,

cf ,

1 0
m

m

m

b
g

b
= − s  (40) 

The geometric constraints, which ensure the depth of column section on the upper story c,nd  of 

column-column joint should not exceed the depth of the column in the lower story c, 1nd − , are defined 

as 

( ) c,0

6,

c, 1

1 0
n

n

n

d
g

d −

= − s  (41) 

Let bn , jn , bcn , and ccn  denote the number of beams, number of joints between beams and 

columns, number of beam-column connections, and number of column-column joints, respectively. 

Then, the multi-objective RDO problem with three objective functions is formulated as follows: 
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min. ( ) ( ) ( )0 0 0

1 2 3, ,f f fs s s  

subject to 

( )0

1, e0, 1,2, ,ig i n =s  

( )0

2 0g s  

( )0

3, b0, 1,2, ,kg k n =s  

( )0

4, j0, 1,2, ,lg l n =s  

( )0

5, bc0, 1,2, ,mg m n =s  

( )0

6, cc0, 1,2, ,ng n n =s  
(42) 

In our design optimization problem, column and beam members of a frame are classified into b1 

and b2 groups, respectively. The design variables 
0

s  represent the nominal values of the cross-sectional 

area and moment of inertia that are linked. Without compromising the structural integrity, we only 

estimate the GMMs corresponding to 
*

2f  value, 
*

1g  values of b1 column groups (each is the maximum 

value among the values for columns in the same group), 
*

1g  values of b2 beam groups, 
*

2g  value, and 

*

3g  values of b2 beam groups. Since the values of g4, g5, and g6 can be easily calculated from the list of 

standard steel sections, they are directly assigned as inequality constraints to the optimization problem. 

Nominal values are simply used for computing the total structural mass ( )0

1f s , because the uncertainty 

of cross-sectional dimension is normally distributed around the nominal value. 

4.2 Uncertainty characteristic 

We limit the uncertainty in our optimization problems to aleatory uncertainty, which is associated with 

the randomness of the random vectors s and u incorporated in problem (42). Generally, these vectors 

are evaluated by data of either onsite or laboratory experiments that contain a degree of variation due 

to unavoidably inaccurate measurements. After collecting the data, statistics tools can be applied to 



27 

 

generate a mathematical model to characterize the uncertainty. Thus, aleatory uncertainty is irreducible 

and described by either a CDF or a PDF. In this study, we refer to some previous surveys and ASCE 

(2017) to describe the aleatory uncertainty in s and u. 

The types of probability of the geometric properties related to the design variable vector s, including 

the overall depth, flange width, web thickness, and flange thickness of standard steel sections, are 

provided in Table 6. Those of the random parameters u, i.e., material properties and external loads are 

given in Table 7. 

 

Table 6 Probabilistic characteristic of geometric properties. 

Variable Nominal value 
Statistical property 

Mean/ Nominal COV Distribution 

Overall depth1 d 1.00 0.03 Normal 

Flange width1 bf 1.00 0.02 Normal 

Web thickness2 tw 1.00 0.05 Normal 

Flange thickness2 tf 1.00 0.05 Normal 

1 Hess et al. (2002); 2 assumed 

 

Table 7 Probabilistic characteristics of material and load random parameters. 

Variable Nominal value 
Statistical property 

Mean/ Nominal COV Distribution 

Young's Modulus1 E 1.00 0.04 Normal 

Yield stress1 Fy 1.10 0.06 Normal 

Tensile strength2 Fu 1.07  0.08 Normal 

Dead load3 DL 1.05 0.10 Normal 

Live load3 L 1.00 0.10 Gumbel 

Wind load3 WL 
0.92  

(Site-dependent) 

0.37 

(Site-dependent) 

Gumbel 

1 Bartlett et al. (2003); 2 Hess et al. (2002); 3 ASCE (2017) 
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4.3 Training data preparation 

As a machine-learning approach, the GMM requires a training dataset of various random vectors s, 

random parameters u, and the corresponding output responses of a particular planar steel frame. The 

training dataset is collected using linear elastic frame analyses. 

As inputs, the training samples of the design variables including geometric properties for the 

column and beam groups are uniformly generated over associated intervals. The MCS is then performed 

to generate data around those particular samples to characterize the probabilistic property of the 

sectional geometric dimensions, as given in Table 6. In other words, the used sampling technique is a 

simple random sampling scheme of two stages: generating uniformly a random set of samples and 

generating data around those samples. Alternatively, since the variances of the sectional geometric 

dimensions are very small, as shown in Table 6, only the first stage may be used. Meanwhile, the MCS 

is used to generate the random samples of Young's modulus, yield strength, tensile strength, and external 

loads, based on their basis probabilistic distributions listed in Table 7. 

To determine a proper value of the number of training samples for a particular problem, a total of 

five training sets of design variables and random parameters with different numbers of samples, i.e., 

104, 2×104, 3×104, 4×104, and 5×104, are used for training the GMM. Since problem (42) is formulated 

in a high dimensional space of s and u, a large number of training samples is required to effectively 

generalize the design space. After the GMMs are obtained, a total of 2×104 samples of an independent 

test dataset are generated and used to compute the coefficient of determination R2, which evaluates the 

goodness-of-fit of each GMM and the MCS using finite element analyses. It is observed that the 

obtained GMMs associated with 5×104 samples provide the highest R2 (R2 > 0.90 for all design 

examples), it is used for solving problem (42). In the case when the obtained GMM performance does 

not meet the desired accuracy, more training data points should be added. 

4.4 Best compromise solution 

The objective functions f2 and f3 of problem (42) are highly conflicting so that it is desirable to find a 

compromise solution (Marler and Arora 2004). The best compromise solution has been efficiently 
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selected from Pareto-optimal solutions by using a fuzzy-based method (Abido 2003). In this regard, a 

membership function for the ith objective function of each Pareto-optimal solution is defined as (Abido 

2003) 

min

,

max

, min max

, ,max min

max
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where the subscript j indicates the value of the jth Pareto-optimal solution, and max

if  and min

if  are the 

maximum and minimum values of the ith objective function, respectively. A normalized membership 

function for each Pareto-optimal solution is computed as (Abido 2003) 
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1 1
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where M is the number of Pareto-optimal solutions. The best compromise solution is the one with the 

highest value of the normalized membership function, j . 

4.5 Robust design optimization procedure 

The proposed RDO is implemented using the procedure in Fig. 5 with the following steps: 

Step 1: The random variable vector s and random parameter vector u for a particular steel frame are 

defined and characterized; see Section 4.2. The training data is generated for the GMM process; 

see Section 4.3. A total of 5×104 training data points are generated. 

Step 2: The GMM starts at the number of Gaussian K = 1, which increases step by step to K = 50, 

thereby producing 50 GMMs. The best GMM is chosen based on the minimum BIC in Eq. (25). 

Independent samples of a test dataset are generated and used for obtaining the discrepancy (or 

R2) between the performances of the obtained GMM and MCS using finite element analyses. 

The accuracy of the obtained GMM performance is verified by a desired value of R2 to decide 

whether more training data points should be added. 
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Step 3: Pareto-optimal solutions of problem (42) are found by employing the nondominated-sorting 

genetic algorithm II (NSGA-II) utilizing the trained GMM on the calculations of the mean 

values f2, g1, g2, and g3, and the variance f3. 

Step 4: The best compromise solution among Pareto-optimal solutions is obtained based on the fuzzy 

set theory using Eqs. (43) and (44); see Section 4.4. 

Add training points

Find the best compromise 

solution using Eqs. (43) and (44) 

Pareto-optimal solutions

 Sort Pareto-optimal solutions 

using NSGA-II

Define design variables and 

random parameters

Generate training data using 

Monte-Carlo method

Identify parameters of GMM 

with generated training data

Examine GMM performances 

using Eqs. (12) and (14)

Accuracy of GMM 
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End
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Fig. 5 Proposed RDO procedure. 

Since design of steel frame structures is to select appropriate sections for structural members from 

a list of commercially available sections, the RDO problem in this study is a combinatorial optimization 
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problem. Therefore, an elitist-strategy NSGA-II (Deb et al. 2002), available in the MATLAB R2018a 

Global Optimization Toolbox, is utilized for obtaining the Pareto-optimal solutions in Step 3. The 

effectiveness of a genetic algorithm-based algorithm in solving multi-objective combinatorial 

optimization problems has been verified (Konak et al. 2006). Some control parameters characterizing 

the use of NSGA-II are listed in Table 8. To examine its stochastic property, NSGA-II is performed 

several times for each design example with an Intel Xeon E5-2643V4 3.40 GHz CPU and 63.9 GB 

memory. Different seeds of the random number generator are used to generate different initial 

populations for NSGA-II. Note that, to employ NSGA-II for the discrete optimization problem, an array 

of integers is randomly generated at the beginning of the algorithm for the initial population. We also 

define a mapping function to transform the integer decision vector s0 to the linked random vector s, i.e., 

the cross-sectional dimensions, cross-sectional area, moment of inertia, elastic and plastic sectional 

moduli. Additionally, the crossover and mutation functions should be modified to guarantee that 

offsprings of the NSGA-II produced after each generation are integers. 

Table 8 Parameters for NSGA-II. 

Parameter Value 

Population size 1,000 

Probability of mutation  20% 

Maximum number of generations 100 

Fitness function tolerance 10-6 

Constraint tolerance 10-6 

Parallel computing fitness and nonlinear 

constraint functions 
true 
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5 Design examples 

5.1 Three-story, two-bay steel frame  
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Fig. 6 Three-story two-bay steel frame. 

Problem (42) is formulated for a benchmark problem of a three-story two-bay steel frame, as shown in 

Fig. 6. Although many deterministic optimal designs have been found for this frame on a minimum 

total mass using various optimization algorithms (Pezeshk et al. 2000; Toğan 2012; Maheri and 

Narimani 2014), there does not exist literature on the RDO problem considering uncertainty in material, 

geometry, and load parameters simultaneously. 

The frame consists of 15 members classified into two groups; namely, group (1) for columns and 

group (2) for beams, as shown in Fig. 6. The cross-sectional dimensions, external loads, and material 

properties, i.e., yield strength, tensile strength, and Young’s modulus, are sources of uncertainties. 

Nominal value of cross-sectional dimension of the members in each group is extracted from a list of 

American wide flange standard steel sections, as listed in Table 9. Nominal values of the yield stress, 

tensile strength, and Young’s modulus of the steel material are 250 MPa, 400 MPa, and 200 GPa, 

respectively. The mean values of external loads are shown in Fig. 6. The probabilistic properties of 

these values are given in Tables 6 and 7. 
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Table 9 List of columns and beams for three-story two-bay steel frame. 

Column  Beam 

W18×86 W12×72  W24×94 W18×65 

W18×76 W12×65  W24×84 W18×60 

W18×65 W12×58  W24×76 W16×77 

W18×60 W12×53  W24×68 W16×67 

W18×55 W12×50  W24×62 W16×57 

W16×89 W12×45  W24×55 W16×50 

W16×77 W12×40  W21×93 W16×45 

W16×67 W10×77  W21×83 W16×40 

W16×57 W10×68  W21×73 W14×61 

W16×50 W10×60  W21×68 W14×53 

W14×90 W10×54  W21×62 W14×48 

W14×82 W10×49  W21×57 W14×38 

W14×74 W10×45  W21×55 W14×34 

W14×68 W8×40  W21×50 W14×30 

W14×61 W8×35  W21×48 W14×26 

W14×53 W8×31  W18×71 W14×22 

 

To create the training data for this example, the intervals of the cross-sectional dimensions for the 

column group are d: [150, 500] mm, bf: [140, 400] mm, tw: [5.5, 16.0] mm, and tf: [6, 24] mm, and those 

for the beam group are d: [350, 620] mm, bf: [160, 250] mm, tw: [5.5, 16.0] mm, and tf: [9, 24] mm. A 

total of five GMMs corresponding to the responses f2 (GMM-1), g1,1 for the column group (GMM-2), 

g1,2 for the beam group (GMM-3), g2 (GMM-4), and g3 (GMM-5) are constructed. Fig. 7 shows the 

process of selection of the number of Gaussians using BIC for five GMMs of the frame. The optimal 

number of Gaussians for GMM-1, GMM-2, GMM-3, GMM-4, and GMM-5 are 33, 28, 20, 26, and 27, 

respectively. The corresponding variation ranges of the mixing proportions for the obtained GMMs are 

[0.0077, 0.0599], [0.0098, 0.0954], [0.0266, 0.1083], [0.0074, 0.0963], and [0.0103, 0.0596], 

respectively. After the GMMs are obtained, we utilize Eq. (15) to compute the mean values of the 

responses f2, g1, g2, and g3 when the steel section is fixed, in which the mean values of the design 

variables and random parameters are directly determined from the corresponding nominal values. The 

variance f3 is computed using the Taylor series expansion in Eq. (16). 



34 

 

 
Fig. 7 Selection process of five GMMs for three-story two-bay steel frame. 

 

Fig. 8 Pareto front and the best compromise design for three-story two-bay steel frame. 

 NSGA-II is performed three times and a set of 19 Pareto-optimal solutions, the best compromise 

solution, and a solution with the minimum value of the structural mass are identically obtained, as 

shown in Fig. 8. Table 10 provides the selection of steel sections for the column and beam groups. This 

selection is compared with the previous deterministic optimal designs. It is observed that the minimum 

total mass of the frame is 8229 kg that outperforms the design by Pezeshk et al. (2000) and is 2% and 

0.7% larger than the designs by Toğan (2012) and Maheri and Narimani (2014), respectively. The best 



35 

 

compromise design has the largest total mass of 8724 kg. However, it clearly shows a trade-off between 

the three objective functions thereby producing a very small variance f3 = 0.010 in the ratio of inter-

story drift to the allowable value, and reasonable structure design performance with f2 = −0.561, far 

enough from the limit state of inter-story drift defined by f2 = 0. 

Table 10 Comparison of optimization results for three-story two-bay steel frame. 

Group ID. 
Pezeshk et al. 

(2000) 

Toğan 

(2012) 

Maheri and 

Narimani (2014) 

NSGA-II   

Min. 

mass 

Robust 

design 

 

Column (1) W10×60 W10×49 W10×68 W14×53 W18×65  

Beam (2) W24×62 W24×62 W21×55 W24×62 W24×62  

1f  [kg] 8504 8069 8174 8229 8724  

2f  - - - − −  

3f  - - - 0.023 0.010  

2f (MCS) - - - −0.317 −0.560  

3f (MCS) - - - 0.028 0.012  

1,1g (MCS) - - - −0.128 −0.303  

1,2g (MCS) - - - −0.108 −0.149  

2g (MCS) - - - −0.617 −0.739  

3g (MCS) - - - −0.317 −0.395  

 

 To confirm their actual robustness and feasibility, the obtained robust optimal designs are used to 

characterize the probabilistic property of the limit state function regarding the maximum inter-story 

drift in Eq. (32) under uncertainty. The mean (f2) and variance (f3) values of the maximum inter-story 

drift for the minimum mass and the best compromise designs are computed by using the MCS with 105 

samples. The limit state functions of the constraints in Eqs. (34), (37), and (38) are also estimated and 

reported in Table 10. As a result, the obtained robust optimal designs are feasible as all the constraint 

values are negative. Also, the mean f2 and variance f3 are −0.560 and 0.012 for the best compromise 

design, and −0.317 and 0.028 for the minimum structural mass design, which are very close to those 
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obtained from the GMM-1. In Fig. 9, the PDFs and CDFs of the maximum inter-story drift limit state 

for the best compromise design generated by the MCS and the GMM-1 are compared. It shows that the 

PDF and CDF generated by the GMM-1 are in good agreement with those generated by the MCS. 

 

 
(a) 

 
(b) 

Fig. 9 Statistical property of the maximum inter-story drift for the robust design of three-story two-

bay steel frame: (a) PDF and (b) CDF. 
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5.2 Six-story two-bay steel frame 
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Fig. 10 Six-story two-bay steel frame. 

In this design example, problem (42) is formulated for a six-story two-bay steel frame taken from Doğan 

and Saka (2012), as shown in Fig. 10. The frame includes 30 members classified into six column groups 

[(1) to (6)] and two beam groups [(7) and (8)]. The cross-sections of the members in beam and column 



38 

 

groups are listed in Table 11. Uncertainty and its characteristic for all random input variables are 

described in the same way as the three-story two-bay steel frame in the first example. 

Table 11 List of columns and beams for six-story two-bay steel frame. 

Column  Beam 

W24×84 W16×50 W12×50  W24×62 W16×50 W12×40 

W24×76 W16×40 W12×45  W24×55 W16×45 W12×35 

W24×68 W14×99 W12×40  W21×62 W16×40 W12×30 

W24×62 W14×90 W10×68  W21×55 W16×36 W12×26 

W21×93 W14×82 W10×60  W21×48 W16×31 W12×22 

W21×83 W14×74 W10×54  W21×57 W16×26 W12×19 

W21×73 W14×68 W10×49  W21×50 W14×43 W12×16 

W21×68 W14×61 W10×45  W18×71 W14×38 W12×14 

W18×86 W14×53 W10×39  W18×65 W14×34 W10×33 

W18×76 W14×48 W8×40  W18×60 W14×30 W10×30 

W18×65 W12×79 W8×35  W18×55 W14×26 W10×26 

W18×60 W12×72 W8×31  W18×50 W14×22 W10×22 

W18×55 W12×65 W6×25  W18×46 W12×53 W10×19 

W16×77 W12×58 W6×20  W18×40 W12×50 W10×17 

W16×67 W12×53 W6×15  W18×35 W12×45 W10×15 

W16×57    W16×57   
 

Since there are many groups of columns and beams in this design example, NSGA-II is performed 

25 times to examine the statistical characteristics of the robust optimal solutions. For each NSGA-II 

trial, the minimum mass and the best compromise solutions are obtained after 100 generations. Fig. 11 

shows the variation in the total structural mass for the minimum mass and the best compromise 

solutions. The corresponding variation ranges are [7460, 7739] and [8520, 8694] kg, respectively. There 

exists a variation in the solution of 25 NSGA-II implementations. However, the differences in the 

minimum mass and in the best compromise solutions among the obtained solutions are not much higher 

than 3.7% and 2.0%, respectively. Figs. 12 (a), (b), and (c) show a set of 303, 218, and 284 Pareto-

optimal solutions obtained from 1st, 2nd, and 3rd trials of NSGA-II, respectively. Although there are 

differences in the number of solutions and in the solutions themselves, the shapes of the Pareto-front 

obtained from the three trials tend to be similar. In Table 12, the minimum mass of the structure is 7460 

kg (1st NSGA-II) which outperforms the previous deterministic optimal designs obtained using particle 



39 

 

swarm optimization (7533 kg) and harmony search (7829 kg). Meanwhile, the best compromise 

solution is 8568 kg (3rd NSGA-II) that is 14.9% heavier than that of the minimum mass design. The 

trade-off relation between the three objective functions is obviously observed. The minimum mass 

design although has a smaller mass, it is both un-safer, with f2 = -0.147, and more sensitive, with f3 = 

0.101, than the best compromise design, with f2 = -0.333 and f3 = 0.037. Note that, due to a large number 

of design column and beam groups, we use larger number of candidates of standard steel sections for 

each group, as provided in Table 11, than those in Table 9. This yields a difficulty in finding the best 

compromise solution as many Pareto-optimal solutions have almost the same normalized membership 

functions defined in Eq. (44). For practical designs, depending on the function of the structure, 

practicing designers should use some rules of thumb for both column and beam members to shorten the 

decision list. 

 

Fig. 11 Variation in the total structural mass due to different NSGA-II trials for six-story two-bay 

steel frame. 

To validate their robustness and feasibility, the minimum mass and the best compromise designs 

obtained from the first three NSGA-II trials are used to characterize the probabilistic property of the 

limit state function related to the maximum inter-story drift in Eq. (32) using the MCS with 105 samples. 

The constraint function values in Eqs. (34), (37), and (38) are also computed, as provided in Table 12. 

It is observed that all constraint function values are negative, which demonstrates the feasibility of the 
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obtained robust optimal designs. Fig. 13 shows the PDFs and CDFs of the maximum inter-story drift 

limit state in Eq. (32) for the best compromise designs obtained from the first three NSGA-II trials. An 

agreement between the PDF and CDF generated by the GMM and those generated by the MCS is 

observed, although the errors are larger than those for the small examples. 

 

(a) 

 

(b) 
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(c) 

Fig. 12 Pareto front and the best compromise design for six-story two-bay steel frame:  

(a) 1st NSGA-II; (b) 2nd NSGA-II; and (c) 3rd NSGA-II. 
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Table 12 Comparison of optimization results for six-story two-bay steel frame. 

Group ID. 
Particle swarm 

Doğan and Saka 

(2012) 

Harmony search 

Doğan and Saka 

(2012) 

1st NSGA-II   2nd NSGA-II   3rd NSGA-II 

Min. 

mass 

Robust 

design 

 Min. 

mass 

Robust 

design 

 Min. 

mass 

Robust 

design 

Column (1) W16×57 W18×55 W18×60 W18×60  W18×60 W24×62  W18×55 W24×62 

Column (2) W16×40 W12×50 W16×40 W16×40  W14×48 W16×40  W16×40 W14×53 

Column (3) W10×39 W8×31 W12×45 W12×50  W12×40 W12×40  W14×48 W12×50 

Column (4) W24×62 W21×73 W18×55 W18×60  W18×55 W18×55  W18×60 W24×62 

Column (5) W24×62 W18×65 W16×40 W16×40  W16×40 W16×50  W16×40 W18×60 

Column (6) W8×40 W12×40 W14×48 W14×53  W14×48 W14×48  W14×48 W18×55 

Beam (7) W14×30 W16×40 W18×35 W21×50  W18×35 W21×50  W18×35 W18×40 

Beam (8) W18×65 W14×22 W12×35 W12×35  W12×35 W12×40  W12×35 W14×34 

1f [kg] 7533 7829 7460 8649  7530 8574  7477 8568 

2f  - - − −  − −  − − 

3f  - -  0.036  0.101 0.034  0.103 0.037 

2f (MCS) - - − −0.410  −0.168 −0.391  −0.175 − 

3f (MCS) - -  0.042  0.095 0.037  0.087 0.041 

max. g1,1-6 (MCS) - - − −0.223  −0.118 −0.216  −0.163 −0.197 

max. g1,7-8 (MCS) - - − −0.009  −0.040 −0.289  −0.004 −0.079 

g2 (MCS) - - − −0.457  −0.239 −0.482  −0.245 −0.423 

max. g3,1-2 (MCS) - - − −0.177  −0.134 −0.181  −0.162 −0.277 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 13 Statistical property of the maximum inter-story drift for the robust design of six-story two-bay 

steel frame: (a) PDF-1st NSGA-II; (b) CDF-1st NSGA-II; (c) PDF-2nd NSGA-II; (d) CDF-2nd 

NSGA-II; (e) PDF-3rd NSGA-II; and (f) CDF-3rd NSGA-II. 
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6 Conclusions 

A new method has been presented for an application of GMM to the RDO of planar steel frames. 

Uncertainty in the discrete design variables is modeled in the wide range between the smallest and 

largest values in the catalog of the cross-sectional areas. The main idea of the application is to let random 

input variables and the corresponding structural response behave according to a joint distribution under 

the presence of uncertainty. The GMM aims at statistically approximating this distribution based on 

sampled training data for both characterizing the probabilistic property of the structural response and 

providing a simple regression function to facilitate the calculation of this response and its statistical 

parameters required for the RDO problem. The uncertainty in the small ranges of the selected discrete 

variables can also be easily extracted from the GMM trained only once before carrying out optimization 

under various conditions. Before application to the RDO problems, the GMM demonstrates its ability 

in accurately capturing of a given conditional PDF, quickly providing a reasonable RDO solution for a 

two-bar truss, and accurately characterizing the probabilistic property of a limit state function for a steel 

frame structure. The multi-objective RDO problem is formulated for the steel frame to minimize three 

conflicting objective functions, i.e., the total mass, and the mean and variance values of the maximum 

inter-story drift under some constraints on the design strength and serviceability requirements. Pareto-

optimal solutions of the optimization problem are found using a multi-objective genetic algorithm with 

supports from the trained GMM on the calculation of the objective and constraint functions. The best 

trade-off solution is also found to relieve the conflicting objective functions from the perspective of 

fuzzy-based compromise programming.  

Two numerical design examples have demonstrated the robustness and feasibility of the proposed 

method. It is shown that the GMM-based RDO can yield optimum solutions that well represent different 

levels of the trade-off between the conflicting objective functions. Based on these solutions, structural 

engineers can specify their design and the best compromise solution is one reasonable choice. 

Future researches may focus on the development of the GMM with multi-objective functions so 

that the performances of all structural members can be fully taken into account instead of using 

maximum response values for particular member groups. That means, y in Eq. (7) becomes a vector of 
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structural responses, rather than a scalar. In this study, only the regression function among many 

powerful abilities of the GMM is utilized. The regression function can also combine with the 

transformation ability of the GMM (Papadimitriou et al. 2018) to accurately estimate failure 

probabilities for reliability-based optimization problems. In addition, the clustering function of the 

GMM, i.e., grouping data into similar objects (Hastie et al. 2009), may have a potential to be applied 

for sorting the feasible space and reducing the solution space of the RDO problem. 

 

7 Replication of results  

The main steps for applying the proposed method to the RDO problem of planar steel frames are 

presented in detail in Section 4.5. Training data generated for constructing GMMs in Sections 5.1 and 

5.2 are available online at https://bit.ly/gmm_rdosteelframes. Models or source codes used in this study 

are available from the corresponding author by request for non-commercial purposes only. 
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Appendix: Gradient and Hessian of GMMs 

Let  1 2, , ,
T D

Dx x x= x  be D-dimensional vectors generated from a D-variate Gaussian 

( ) ( ),DpX x μ Σ , such that  
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https://bit.ly/gmm_rdosteelframes
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Let 
T=Σ UΛU  be the singular value decomposition of the covariance matrix Σ , where U  is an 

orthogonal matrix and. Λ  is a non-singular diagonal matrix with d  at the dth diagonal component. Let 

( )T D= − y U x μ  so that /e d dey x u  = , where  1,2, ,e D , and deu  is the ( ),d e th element of 

U . Taking the first derivatives of ( )pX x , we have 

( ) ( ) ( ) ( )

( ) ( )

1 1

2

1 1 1

1 1

2 2

1

2

T T

d d d

D D D
d e e

de

e d ee d d e

p
p p

x x x

y y y
p p u

y x 

− −

= = =

     
= − − − = −       

  
= − = − 

  
  

X X

X X

x x μ Σ x μ x y Λ y

x x

 (A.2) 

which is the dth element of vector ( ) 1p −− X x UΛ y , which yields the gradient of ( )pX x  as 

( ) ( ) ( )1p p −=  = −X Xg x x Σ μ x  (A.3) 

Let  1,2, ,c D , and taking the second derivatives of ( )pX x , we obtain  
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which is the ( ),c d th element of the matrix ( ) ( )
11 T Tp p

−−− +   X Xx UΛ U x gg (Carreira-Perpinan 

2000). Hence, the Hessian of ( )pX x  is 

( ) ( ) ( ) ( ) ( ) ( )( )
11 1 1TT Tp p p p

−− − − =  = − +   = − + − −   X X X XH x x Σ x gg x Σ Σ x μ x μ Σ  (A.5) 

Results in (A.3) and (A.5) lead to the gradient and Hessian of the GMM ( ), ,
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Since the mixing weight ( )kw x  of the regression function in Eq. (13) is a fraction of two GMMs, 

the following quotient rules, which is applied for calculating the derivatives of ( ) ( ) ( )/f x g x h x= , can 

be utilized to obtain the gradient and Hessian of the regression function in Eqs. (15) and (16): 
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