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Abstract

A method is presented for approximating a curved surface by a developable
rigid origami; a polyhedral shape which can be developed to a plane without
deformation of its facets. Form generation starts from a triangulated surface,
and an optimization problem is solved to obtain a polyhedron which satisfies
the geometric conditions for developability. The degrees of freedom of a rigid
origami mechanism with only triangular facets are often too large for the
engineering application, and therefore, it is sequentially reduced by fixing
(removing) some crease lines, along which the rigid facets rotate. However,
the crease line that is not fixed often becomes unable to rotate in the process
of fixing the crease lines; consequently, the polyhedron cannot be developed
to a plane. To avoid such an unfavorable locking situation, selection criteria
of the crease line to be fixed are proposed. They are defined based on the
eigenvalues and their derivatives of the stiffness matrix of the frame model,
which is the numerical model for form generation and mechanism analysis
of rigid origami. The performance of the proposed criteria is demonstrated
through the examples of surfaces with some patterns of crease lines.
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Figure 1: Typical crease patterns (paper models are created by the authors): (a) Miura-ori; (b)
Resch’s pattern; (c) waterbomb tessellation

1. Introduction

Rigid origami is a type of polyhedral origami whose deformation is con-
centrated on the crease lines during the folding and unfolding processes with-
out in-plane or out-of-plane deformation of each facet. Such a deformation
mechanism is called a rigid-foldable mechanism, which is determined only
by the arrangement of crease lines, i.e., by the crease pattern, and the facets
and crease lines can be substituted with rigid panels and rotational hinges,
respectively. This property is very suitable for engineering applications. It
is well known that Miura-ori, which is a rigid-foldable quadrilateral crease
pattern, has been applied to the foldable solar panels mounted on artificial
satellites [1], and also to the maps which can be folded compactly [2]. Re-
cently, many attempts have been made to apply the deformation mechanism
of rigid origami to a variety of purposes in various scales such as medical
equipment [3] and building structures [4]. Particularly in the field of archi-
tecture, a rigid-foldable mechanism has been introduced into a spatial struc-
ture such as a dome to develop an easy and safe construction method like
Panta-dome [5]. In addition, rigid origami is expected to realize a temporary
structure that is portable and easy to be assembled to a foldable shelter [6, 7].
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For the application of rigid origami to architectural purposes, it is necessary
to satisfy various demands reflecting the floor planning and the environment
of the structure. Therefore, it is important to generate a rigid-foldable shape
which is the same as or close to the desired shape. In this paper, the target
curved surface is approximated by a developable and rigid-foldable origami.
A frame model is used for the design and the mechanism analysis of the rigid
origami. The degrees of freedom (DOFs) of the folding mechanism is reduced
by fixing (removing) some crease lines, and the crease lines to be fixed are se-
lected based on the eigenvalues and their derivatives of the stiffness matrix
of the frame model.

Various methods have been proposed for generating rigid origami with
a generic configuration by generalizing a well-known rigid-foldable regular
crease pattern; e.g. Dudte et al. [8] and Song et al. [9] used Miura-ori [1] as
shown in Fig. 1(a), Tachi [10] used Resch’s pattern [11] in Fig. 1(b), Zhao et
al. [12] used waterbomb tessellation in Fig. 1(c) and Wu [13] used Yoshimura
pattern. The necessary and sufficient condition for the rigid-foldability of
a quadrilateral mesh is derived by Tachi [14, 15]. It is also called the loop
condition and expressed for the angles between the crease lines and the an-
gles between the normal vectors of the pairs of adjacent facets connected to
crease lines. Based on the loop condition, Tachi generated a general shaped
rigid origami with degree-four vertices using Miura-ori, discrete Voss surface
[16], or the combination of them as the initial shape. He and Guest [17, 18]
proposed a method for form generation of a rigid-foldable quadrilateral mesh
without relying on typical crease patterns such as Miura-ori. However, each
of the methods described above can handle each specific crease pattern, and
cannot generate various crease patterns. Furthermore, since the deforma-
tion mechanism of rigid origami is determined only by its crease pattern, it
is difficult to obtain various shapes with different DOFs.

In recent studies [19, 20, 21], the authors proposed a method for form
generation of rigid origami using an optimization method that does not de-
pend on the typical crease patterns. A developable and rigid-foldable poly-
hedral surface can be obtained by using their method. It approximates an
open curved surface of an arbitrary shape. An optimization problem is for-
mulated to minimize the sum of the squares of discrete Gaussian curvature
defined at the interior vertices as the angle defect [22] so that the polyhe-
dron has zero Gaussian curvature at each interior vertex and is developable
to a plane. The initial shape of the optimization process is the triangulated
target surface. However, a polyhedron with only triangular facets has a very
large number of DOFs. This is undesirable in view of engineering applica-
tion because the mechanism cannot be stabilized by simply supporting a part
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of the structure and the rotation of the crease lines should be constrained
to maintain the curved polyhedral shape. Therefore, some crease lines are
to be sequentially fixed (removed) to reduce the DOF. The adjacent facets
connected to each fixed crease line are integrated into a flat facet with more
than three vertices. The n-gonal flat facet (n > 3) is formed by adding the
squared norm of the cross product of their unit normal vectors to the objec-
tive function of the optimization problem. The crease lines to be fixed are
selected based on the angles between the facets connected to them. By solv-
ing the optimization problem multiple times while increasing the number of
fixed crease lines, multiple optimal shapes with the different DOFs can be ob-
tained. However, when an inappropriate crease line is fixed in the process of
form generation, some crease lines that are not fixed often become unable to
rotate, that is to say, the crease lines are locked. The facets connecting to the
locked crease line cannot rotate around it even though they are not coplanar
and the polyhedron cannot be developed to a plane without deformation of its
facets. Therefore, it is necessary to prevent crease lines being locked, and the
crease line to be fixed is selected again if any locked crease line exists, which
leads to a complex try-and-error process.

A frame model also has been developed in the authors’ previous studies
for the use in form generation and analysis of deformation mechanism. Al-
though the truss model [23, 24] and the rotational hinge model [25, 26] have
often been employed to design and analysis of rigid origami, they have some
drawbacks. The former is composed of pin-jointed bars mainly located at the
edges of a polyhedron and the variables of the analysis are the positions of its
nodes. To prevent deformation of the facet with more than three vertices, it is
necessary to locate the bars not only in the diagonal direction but also in the
shape of a polygonal pyramid or to assign additional components to the stiff-
ness matrix of the facet to prevent the out-of-plane deformation. The latter
is composed of rigid panels connected by hinges, and the rotation angles of
the hinges are the variables. Although the folded state is easily described by
the folding angles, the rotational hinge model is not suitable to the purpose of
this paper; i.e. form generation and analysis of deformation mechanism of the
rigid origami. The angles between the adjacent crease lines and the global
scale of the polyhedron should be included in design variables to uniquely de-
termine the shape of the polyhedron, and the complicated constraints on the
variables are necessary to make these angles compatible. Therefore, using
these variables is impractical since the 3D positions of the vertices are very
complicated expressions of the angles. It would be difficult and inefficient
to enforce constraints on positions of the vertices such as their displacement
ranges in the optimization problem using the rotational hinge model. In ad-
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dition, complex shell elements should be used with hinges to construct the
finite element model, and it is difficult to trace the large deformation process
using a general finite element analysis software; therefore, a special software
such as Rigid Origami Simulator developed by Tachi [25] is needed to trace
the deformation process of rigid origami. To overcome these drawbacks, the
authors developed a frame model [19, 20, 21] to carry out the form generation
and mechanism analysis without reconstruction of the model and conversion
of the variables. The method for stability analysis and finding mechanism of
partially rigid frames which have arbitrary inclined hinges [27, 28] is simply
applied to the evaluation of the infinitesimal mechanism of a frame model.
Large deformation analysis can be easily carried out using a general finite el-
ement analysis software to investigate the existence of the finite mechanism.

In this paper, a method is proposed for predicting the transition of the de-
formation mechanism of rigid origami due to choosing and fixing some crease
lines. It is predicted based on the eigenvalues and their derivatives of the
stiffness matrix which is assembled using the rigid-folding modes derived
from the compatibility matrix of the frame model and the fictitious stiffness
of the hinges. Two selection criteria of the crease lines to be fixed are intro-
duced to avoid undesirable locking of crease lines. By using a criterion intro-
duced in this paper, the number of solution processes of optimization during
form generation is reduced and the computational efficiency for form gener-
ation is improved. This paper is mainly divided into three parts. The first
part consists of Sections 2 and 3 and describes the process of form generation
based on the geometrical property of the frame model. The second part con-
sists of Sections 4 and 5 and investigates properties of rigid-fold mechanism
based on the mechanics of the frame model. The third part shows numerical
examples in Section 6. In Section 2, the configuration of a frame model is
shown and compatibility equations about the positions of nodes are derived
to ensure that the corresponding polyhedron is calculated consistently from
the nodal coordinates of the frame. An optimization problem for form gener-
ation is formulated and a procedure for generating a rigid-foldable origami
with small DOF is shown in Section 3. In Section 4, the change of the de-
formation mechanism is predicted based on the rigid-folding modes derived
using the singular value decomposition (SVD) of the matrix representing the
equilibrium equations of frames and the constraints on the moment around
the rotational axes of hinges that have artificial small stiffnesses. Based on
the result in Section 4, the selection criteria of the crease lines to be fixed are
formulated in Section 5. The effectiveness of the proposed criteria is demon-
strated in Section 6 by comparing the results of form generation of target
surfaces with some types of crease patterns using the proposed and other se-
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Figure 2: Configuration of a polyhedron with triangular facets and a frame model
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Figure 3: Configuration of a quadrilateral facet: (a) truss model; (b) frame model

lection criteria. In addition, development diagrams are generated for optimal
shapes, and large deformation analyses are carried out to confirm that the
obtained solution can be developed to a plane through a rigid-folding motion.

2. Frame model

In this paper, a form-finding method is presented for a polyhedron ap-
proximating a curved surface. A polyhedron consists of vertices, edges, and
facets (Fig. 2). Edges are classified into crease lines around which facets rotate
(Fig. 2), dividing edges which divide a facet with four or more vertices into
triangles (Fig. 3), and outer edges on the outer boundary of the polyhedron as
shown in Figs. 2 and 3. In other words, a facet is bounded by coplanar crease
lines and outer edges, and it is composed of several triangles connected by di-
viding edges if it has more than three vertices. When a crease line is fixed (re-
moved) in the process of form generation, it becomes a dividing edge, i.e. fixed
crease line. Furthermore, crease lines are classified into mountain fold crease
lines, valley fold crease lines, and unfolded crease lines (Fig. 2). A mountain
fold crease line forms a "protruding ridge", and a valley fold crease line forms
an "indented trough" [29]. If two facets are connected to an unfolded crease
line, they are parallel. Mountain fold crease lines, valley fold crease lines,
and unfolded crease lines are represented by solid lines, dotted lines, and
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Figure 4: A pair of triangles connected by a hinge

thin lines, respectively in Fig. 2. In this study, a frame model [19, 20, 21] is
used for the form generation and the analysis of the deformation mechanism
of rigid origami. It consists of the frame elements represented by the bold
lines in Fig. 2. Frame elements are connected by the hinge on each crease
line and rigidly connected on each dividing edge and at the arbitrary points
on the facets. The end point of a frame element is called node, and it is dis-
tinguished from the vertex. A node on the edge of the polyhedron is located
at the center point of the edge. The position of a node on the facet can be
arbitrarily specified, and in this study, the node is located at the barycen-
ter of each triangle facet including the triangle constituting the facet with
more than three vertices. Since the frame elements are rigidly connected on
the facet, the out-of-plane stiffness of the facet with more than three vertices
can be ensured without assembling a complicated configuration. For exam-
ple, a node outside of the plane and additional bar elements are necessary to
model a quadrilateral facet by the truss model as shown in Fig. 3(b). On the
other hand, using a frame model, rigid origami can be represented by fewer
elements than using an truss model as shown in Fig. 3(a). The number of in-
finitesimal deformation mechanism is examined by using the method for the
analysis of kinematic indeterminacy of partially rigid frames [27, 28]. The
detail of the method is shown in Section 4 and Appendix A. Furthermore, it
is necessary to investigate not only the infinitesimal deformation mechanism
but also the large-deformation mechanism in order to confirm that the ob-
tained rigid origami model can be continuously developed and folded. Large
deformation analysis can be easily carried out using the standard beam and
hinge elements of a general finite element analysis software.

The variables in the process of form generation are the coordinates of the
nodes of frame model on the triangle edges of polyhedron. They cannot be
set arbitrarily, because they must satisfy the compatibility conditions so that
the coordinates of the vertices of the corresponding polyhedron are calculated
consistently. The compatibility conditions reflect the connection of the edges
of the polyhedron. For the adjacent triangles ABC and BDC as shown in
Fig. 4, the coordinates of vertices B and C can be expressed in two ways using
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the coordinates of nodes 1, 4, 5 and 2, 3, 5. Let xv
i , yv

i and zv
i denote x-, y- and

z-coordinates of vertex i (i ∈B, C), respectively, and xe
j , ye

j and ze
j denote x-, y-

and z-coordinates of node j ( j = 1, . . . ,5), respectively. Then the coordinates of
vertices B and C are expressed as follows since a node on the edge is located
at the center point of the edge:

{
xv

B = xe
5 + xe

1 − xe
4 = xe

5 + xe
2 − xe

3

xv
C = xe

5 − xe
1 + xe

4 = xe
5 − xe

2 + xe
3{

yv
B = ye

5 + ye
1 − ye

4 = ye
5 + ye

2 − ye
3

yv
C = ye

5 − ye
1 + ye

4 = ye
5 − ye

2 + ye
3{

zv
B = ze

5 + ze
1 − ze

4 = ze
5 + ze

2 − ze
3

zv
C = ze

5 − ze
1 + ze

4 = ze
5 − ze

2 + ze
3

(1)

Therefore, the following equations hold:

xe
1 − xe

2 + xe
3 − xe

4 = 0

ye
1 − ye

2 + ye
3 − ye

4 = 0

ze
1 − ze

2 + ze
3 − ze

4 = 0

(2)

Let V and E denote the numbers of vertices and edges of the polyhedron,
respectively. The E-dimensional vectors xe, ye, and ze consisting of xe

i , ye
i ,

and ze
i (i = 1. . . . ,E), respectively, satisfy the compatibility equations derived

from Eq. (2) for all the interior edges, which can be formulated using a full
rank matrix C ∈R(E−V )×E as follows [21]:

Cxe = 0
Cye = 0
Cze = 0

(3)

The number of independent x-coordinates of the nodes on edges is equal to
V , and xe can be divided into x̄e ∈RV consisting of independent x-coordinates
and x̂e ∈ RE−V consisting of dependent x-coordinates. According to the first
equation of Eq. (3), x̂e can be calculated from x̄e as

[
Ĉ C̄

](
x̂e

x̄e

)
= Ĉx̂e + C̄x̄e = 0

⇒x̂e =−Ĉ−1C̄x̄e
(4)
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where Ĉ is a (E −V )× (E −V ) regular matrix. The similar relations hold
for ye and ze, respectively. All the positions of nodes of a frame model can
be determined by those of the independent nodes. The vector of the design
variables of form generation is represented by X= (

x̄eT, ȳeT, z̄eT)T ∈R3V .

3. Procedure of form generation

In this section, a procedure is described for form generation of a devel-
opable and rigid-foldable polyhedral shape approximating the target surface,
which is divided into triangular facets.

When a polyhedron can be developed to a plane, the Gaussian curvature
at each interior vertex should be equal to zero. This condition is called de-
velopability condition in this paper. The Gaussian curvature at each interior
vertex of the polyhedron is defined as the angle defect [22], i.e., the difference
between 2π and the sum of angles between the adjacent edges connected to
the interior vertex.

If rigid origami consists of only triangular facets, the DOF is often too
large for practical use. Thus, some crease lines are fixed (removed) to re-
duce the DOF, and the pairs of adjacent facets connected to the fixed crease
lines are integrated into flat facets. The condition that the polyhedron should
satisfy to ensure the flatness of the n-gonal facets (n > 3) is called flatness
condition in this paper.

The kth angle between the adjacent crease lines connected to vertex i
is represented by θi,k (i = 1, . . . ,V , k = 1, . . . , f i) where f i is the number of
crease lines connected to vertex i. The unit normal vectors of the adjacent
facets connected to edge j are denoted by n j,1 ∈R3 and n j,2 ∈R3 ( j = 1, . . . ,E),
respectively. Let Vin and Efix denote the sets of indices of interior vertices and
the crease lines to be fixed, respectively. The following equation holds for a
polyhedron which satisfies both the developability condition and the flatness
condition [19, 20, 21]:

F(X)= F1(X)+F2(X)= 0 (5)

F1(X)= ∑
i∈Vin

{
2π−

f i∑
j=1

θi,k(X)

}2

F2(X)= ∑
j∈Efix

∥n j,1(X)×n j,2(X)∥2

Since it is difficult to analytically determine the polyhedral shape satis-
fying Eq. (5), a solution is obtained by solving the optimization problem to
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minimize the non-negative function F(X). When F(X) converges to zero, the
optimal shape satisfies the developability and flatness conditions. In this
study, the z-coordinate of the target surface is represented as a function of
the (x, y) coordinates as z = f (x, y). Therefore, the error of the polyhedral
surface from the target surface is measured by the difference between the
z-coordinates of the vertices and the surface with the same (x, y)-coordinates.
In addition, it is assumed that the surface does not have any hole for simplic-
ity, and the projected shapes of the target surface and the polyhedron onto
xy-plane are assumed to exist in a rectangular region. The difference be-
tween z-coordinates of vertex i and its projected point onto the target surface
in z-direction is denoted by ∆zv

i (X) (i = 1, . . . ,V ). The approximation accu-
racy is ensured by introducing the upper-bound constraint on the absolute
value of ∆zv

i . To avoid an excessively acute triangular facet, the upper bound
θmax and lower bound θmin are assigned for θi,k(X). Let χ denote the set of
X satisfying the conditions on the shape of the polyhedron. The optimiza-
tion problem to obtain a developable polyhedron whose vertices are within a
specified distance in the z direction from a given target surface, which is ex-
pressed as a height over the xy-plane, is formulated as follows as a nonlinear
programming (NLP) problem:

min.
X

F(X)= F1(X)+F2(X)

s.t. |∆zv
i (X)| ≤∆z̄v (i = 1, . . . ,V )

θmin ≤ θi,k(X)≤ θmax (i = 1, . . . ,V , k = 1, . . . , f i)

X ∈ χ

(6)

χ is set according to each problem. In this paper, the projected boundaries of
the polyhedron onto xy-plane is fixed at its original shape, and accordingly,
the vertices at the corners of the polyhedron are fixed at their original posi-
tion. Since the projected shape of the polyhedron is rectangular, vertex i on
the jth projected boundary edge should be on the specified plane. Let xv

i and
yv

i represent the x- and y-coordinates of vertex i, and it is on the plane defined
as β1, jx+β2, j y+β3, j = 0 ( j = 1, . . . ,4) using specified coefficients β1, j,β2, j,β3, j.
Then, xv

i and yv
i satisfy the following equation:

β1, jxv
i +β2, j yv

i +β3, j = 0 (i ∈Vex, j, j = 1, . . . ,4) (7)

where Vex, j represents the set of vertices which are on the jth boundary edge
( j = 1, . . . ,4). Defining zv

i and z̄v
i as the z-coordinates of vertex i and its initial

value, respectively, zv
i of the corner vertex satisfy the following equation since

the corner vertices are fixed:
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zv
i − z̄v

i = 0 (i ∈Vc) (8)

where Vc represents the set of vertices which are at the corner of the poly-
hedron. The symmetry of the polyhedron also should be considered if the
target surface and its triangulation have the symmetry property. Let Σ rep-
resent the set of pairs of vertices {i, i′} which are located symmetrically. As-
suming that the plane of symmetry of vertices {i, i′} ∈ Σ is represented by
γ1,{i,i′}x+γ2,{i,i′} y+γ3,{i,i′} = 0, the coordinates of vertices i and i′ satisfy the
following equation:

 xv
i − xv

i′
yv

i − yv
i′

zv
i − zv

i′

= 2
(
γ1,{i,i′}xv

i +γ2,{i,i′} yv
i +γ3,{i,i′}

)
γ1,{i,i′}2 +γ2,{i,i′}2

 γ1,{i,i′}
γ2,{i,i′}

0

 (
{i, i′} ∈Σ

)
(9)

Since the coordinates of vertices of the polyhedron can be expressed as the
linear combination of the coordinates of nodes of the frame model [21], the
linear equality constraints (7), (8), and (9) can be combined as follows:

ΓX= 0 (10)

In the same way as the derivation of Eq. (4), the number of independent
variables can be reduced by using Eq. (10). Let X̄ and X̂ represent the vectors
of independent and dependent variables, respectively. X̂ can be calculated
from X̄ as

[
Γ̂ Γ̄

](
X̂
X̄

)
= Γ̂X̂+ Γ̄X̄= 0

⇒X̂=−Γ̂−1
Γ̄X̄

(11)

In Section 6, the number of variables are reduced by Eq. (11)
In addition, χ can include the nonlinear equality constraints or the in-

equality constraints. For example, the upper bound of the folding angle can
be assigned to restrict the shape of the polyhedron. The folding angle of
crease line j ( j ∈ Efree) is denoted by ρ j(X) where Efree is the set of indices
of crease lines that are not fixed. The absolute value of ρ j(X) is defined as
follows:

|ρ j(X)| = arccos
{
n j,1(X) ·n j,2(X)

}
( j ∈ Efree)

Then, the constraints on the folding angle can be written as
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|ρ j(X)| ≤ ρ̄ ( j ∈ Efree,0< ρ̄ <π) (12)

Other constraints also can be added to χ to satisfy the demand on the opti-
mized shape; however, the constraints should be assigned properly to obtain
a feasible solution.

Remark 1 It is possible to minimize a norm of coordinate differences under
the constraints F1(X) = 0 and F2(X) = 0. However, in this case, the optimiza-
tion process may terminate without finding a feasible solution. By contrast,
the optimal objective value of the problem (6) may have a small positive value,
and the optimal shape cannot always be developed to a plane without deforma-
tion of its facet. However, in view of engineering application, the deformation
of the facet is negligibly small in most cases as demonstrated in the numerical
examples. In this study, the optimization is regarded as successful when the
optimal objective value is less than the small positive value Ftol, which is set
empirically.

The optimization problem (6) is solved sequentially by fixing crease lines
to reduce the DOF of the deformation mechanism. Developable and rigid-
foldable polyhedra which have different DOFs can be obtained as solutions
of the optimization problem (6) with different numbers of fixed crease lines.
The criteria for selecting the crease line to be fixed are proposed in Section 5.
If some crease lines that are not fixed are locked, then an alternative crease
line is to be selected. The procedure of form generation of developable and
rigid-foldable polyhedra that have facets with more than three vertices and
small DOFs is summarized as follows:

Step 1. Triangulate the target surface, and assign the nodes and the ele-
ments of frame model.

Step 2. Initialize the index set of fixed crease lines as Efix =ϕ, and empty the
solution list.

Step 3. Solve the problem (6) to obtain a developable polyhedron.

Step 4. If the optimization is not converged or the optimal objective value is
more than Ftol, then go to Step 7; otherwise, go to Step 5.

Step 5. Evaluate the infinitesimal deformation mechanism of the obtained
polyhedron using the method described in Section 4. If DOF ≥ 1 and
there is no locked crease line, add the solution to the solution list and
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go to Step 6; if DOF ≥ 1 and the locked crease line exists, go to Step
7; otherwise, go to Step 8.

Step 6. Add the index of the crease line to be fixed to Efix, in accordance with
the criterion presented in Section 5, and return to Step 3.

Step 7. If Efix = ϕ, no developable polyhedron is obtained and try the dif-
ferent crease pattern; otherwise, replace the index of the last fixed
crease line in Efix with index of another crease line.

Step 8. Generate a development diagram of each obtained polyhedron in the
solution list using the procedure described below, and evaluate the
errors of the length of corresponding edges in the three-dimensional
shape and the development diagram.

Step 9. Carry out large-deformation analysis of each developable polyhedron
in the solution list, and evaluate its finite rigid-foldability.

The initial shape for first solving the optimization problem in Step 3 in
the form generation procedure is the triangulated target surface generated
in Step 1. From the second optimization process, the initial shape is the poly-
hedron obtained in the previous optimization process, which has an optimal
objective value less than Ftol and no locked crease line. Most of the optimal
shapes obtained in Step 3 satisfy the developability and flatness conditions
with small errors. However, the error may be sometimes too large, and we
should confirm in Step 8 that the development diagram of the obtained poly-
hedron can be generated with good accuracy. Since the value of the objective
function F(X) in the problem (6) cannot be minimized exactly to 0, the opti-
mal solution contains error in the flatness condition, and the developability of
the polyhedron is evaluated by generating the development diagram instead
of simply confirming that the value of F(X) is small enough. According to
the surface flattening method proposed by Wang et al. [30], the development
diagram is generated by minimizing the sum of the squares of edge length er-
rors between the three-dimensional shape and the development diagram. Let
l j and ld

j denote the lengths of edge j ( j = 1, . . . ,E) in the three-dimensional
shape and the development diagram, respectively. In addition, let F and nk
(k = 1, . . . ,F) denote the number of facets and the unit normal vector of facet k,
respectively. The direction of nk is defined so that the relation nk ·z≥ 0 is sat-
isfied where z = (0, 0, 1)T, if all the facets do not overlap with each other and
are not flipped. The vector of x- and y-coordinates of the independent nodes
in the development diagram, denoted by Xd ∈ R2V , is obtained by solving the

13



following optimization problem which minimizes the non-negative function
D(Xd): 

min.
Xd

D(Xd)=
∑E

j=1

{
ld

j (X
d)− l j

}2

∑E
j=1 l2

j

s.t. nk(Xd) ·z≥ 0 (k = 1, . . . ,F)

Xd ∈ χd

(13)

where χd denotes the set of variables which satisfy the condition so that
the position of the development diagram is determined uniquely. The ini-
tial guess of the problem (13) can be arbitrarily set under the condition that
it has the same connectivity of edges as the three-dimensional shape and sat-
isfies the constraints of the optimization problem. In this study, the projected
shape of the three-dimensional shape onto xy-plane is the initial guess of the
problem (13). In addition, although the optimal shape obtained in Step 3
satisfies the developability and flatness conditions, continuous development
from the surface to a plane is not guaranteed without deformation of the
facets. Thus, the large-deformation analysis is carried out in Step 9 to con-
firm the existence of a finite deformation mechanism using a general finite
element analysis software. If the deformation of each facet throughout the
process of the analysis is small enough, it can be concluded that the obtained
polyhedron is rigid-foldable. When a locked crease line exists in the optimal
shape, it cannot be deployed to a plane without deformation of its facets even
if it satisfies the developability condition. In such a case, it is necessary to
change the crease line to be fixed in Step 7 and solve the optimization prob-
lem again.

The truss model or the rotational hinge model can be applied to the pro-
posed form generation process described above. However, if the truss model
is used, some bar elements should be added to reduce the DOF, and adding
the elements is more complicated than simply fixing (removing) the hinge of
the frame model. On the other hand, if the rotational hinge model is used
and the variables of the form generation process are the inner angles of tri-
angles and the folding angles, the complicated constraints on the angles are
necessary so that the shape of the polyhedron is appropriately represented
by the angles.
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4. Prediction of transition of deformation mechanism by fixing crease
lines

In Sections 2 and 3, the geometrical properties of the frame model have
been described and the optimization problem has been formulated using the
geometrical variables. In the following Sections 4 and 5, the deformation
mechanism of the frame model is investigated based on the mechanical for-
mulations of stiffness and stability.

4.1. Derivation of the deformation mode

In this section, infinitesimal rigid-folding modes are investigated using
the method for stability analysis and finding mechanism of partially rigid
frames which have arbitrarily inclined hinges [27, 28]. The transition of the
deformation mechanism of the frame model by fixing the crease lines is pre-
dicted in Section 4.2 based on the infinitesimal rigid-folding modes derived
from the eigenvectors of the generalized stiffness matrix. The selection cri-
teria of the crease lines to be fixed are defined in Section 5 which reflect the
prediction of the transition of the deformation mechanism.

The number of elements, nodes, and hinges of the frame model are de-
noted by m, n, and h, respectively. The total number of fixed nodal displace-
ment degrees of freedom including both the translation and rotation is de-
noted by s. Let SN ∈R(6n−s)×6m and SR ∈Rh×6m represent the matrices for the
equilibrium equations of a frame and the constraints of the moments around
the rotation axes of hinges, respectively. In the range of infinitesimal defor-
mation, a vector e ∈R6m representing the deformations of frame elements can
be described by u ∈R6n−s representing the unconstraint nodal displacements
and φ ∈Rh representing the hinge rotations as follows:

e=ST
Nu+ST

Rφ (14)

The detailed derivation of SN and SR is shown in Appendix A. The vectors
u and φ are combined into ν ∈R6n−s+h, and the displacement vector ν should
satisfy the following compatibility equations represented by S = [ST

N ST
R] ∈

R6m×(6n−s+h) so that the deformation of each frame element is zero:

ST
Nu+ST

Rφ= [
ST

N ST
R

](
u
φ

)
=Sν= 0 (15)

The displacement vector ν satisfying Eq. (15) is expressed as a linear combi-
nation of the bases of ker(S) [31] and the dimension d of ker(S) is the number
of kinematic indeterminacy. The bases of ker(S) are the right singular vectors
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of S corresponding to zero singular values. Defining r = rank(S), the number
of kinematic indeterminacy d is computed as

d = 6n− s+h− r (16)

When the nodal displacements are appropriately constrained so that the rigid-
body motions of the entire model are constrained and the hinge rotations are
not constrained, s = 6 holds in the three-dimensional space, and d is equal
to the DOF of the internal deformation of the frame model. Let η1, . . . ,ηd ∈
R6n−s+h denote the right singular vectors of S corresponding to zero singular
values, which are normalized as ∥ηi∥ = 1 (i = 1, . . . ,d). Then, the arbitrary
displacement which does not cause deformation of the frame element is ex-
pressed using a= (a1, . . . ,ad)T ∈Rd and H= [

η1 · · ·ηd
] ∈R(6n−s+h)×d as follows:

ν= a1η1 +·· ·+adηd

= [
η1 · · · ηd

] a1
...

ad


≡Ha

(17)

The matrix H is divided into two matrices Hu ∈ R(6n−s)×d and Hφ ∈ Rh×d cor-
responding to the rows 1 to 6n−s and the rows 6n−s+1 to 6n−s+h of H. The
arbitrary nodal displacement vector u and the hinge rotation vector φ with-
out deformation of the frame element are derived from Eq. (17) as follows:

u=Hua, φ=Hφa (18)

As described above, the deformation modes of rigid origami represented
by the frame model are obtained by using the mechanism analysis method of
the partially rigid frames. The displacement modes of the vertices and the
folding angle variation modes of rigid origami can be easily and simultane-
ously obtained from the nodal displacement modes of the frame and the hinge
rotation modes, respectively, whereas only one of them can be obtained using
the truss model or the rotational hinge model.

In addition, the equilibrium equation of the frame model without defor-
mation of its element is derived by assigning the fictitious rotational stiffness
K j ( j = 1, . . . ,h, K j ≥ 0) at hinge (crease line) j. The external load P ∈ R6n−s

is applied to the unconstrained degrees of freedom of nodal displacement.
Defining K ∈Rh×h as the diagonal matrix in which jth diagonal element is K j,
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the total potential energy Π of the frame without deformation of the frame
element is formulated as follows using Eq. (18):

Π= 1
2
φTKφ−PTu

= 1
2

aT
(
HT

φKHφ

)
a− (HuP)T a

≡ 1
2

aTK̃a− P̃Ta

(19)

According to the stationary condition of Π with respect to a, the equilibrium
equation is derived as

P̃= K̃a (20)

In this study, P̃, K̃ ∈ Rd×d, and a are called pseudo external load, pseudo
stiffness matrix, and pseudo displacement, respectively.

Remark 2 In Section 5, the ratios of the eigenvalue derivatives and the com-
ponents of the eigenmodes of the stiffness matrix are used to formulate the
selection criteria of the crease line to be fixed. Therefore, the stiffnesses of the
hinges may not necessarily be small; only their ratios are important.

The ith eigenvalue and the corresponding eigenvector of pseudo stiffness
matrix K̃, denoted by λi and αi (i = 1, . . . ,d), respectively, satisfy the following
equation:

K̃αi =λiαi (21)

Thus, λi is the stiffness in the direction represented by the nodal displace-
ment ui =Huαi and the hinge rotation φi =Hφαi. The eigenvector αi (∥αi∥ =
1, i = 1, . . . ,d) is supposed to be the orthonormal basis of the d-dimensional
vector space, and A ∈ Rd×d is the orthogonal matrix whose ith column is αi.
In the following, the i× i identity matrix is denoted by Ii. Since H satisfies
HTH= Id, the following equation holds:

(HA)T(HA)=ATHTHA= Id (22)

Therefore, Hαi (i = 1, . . . ,d) can be used as the orthogonal deformation mode
of the frame model, whose norm is equal to one. The arbitrary hinge rota-
tion φ without deformation of each frame element can be expressed using a
coefficient vector b= (b1, . . . ,bd)T ∈Rd as
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φ= b1Hφα1 +·· ·+bdHφαd

= b1φ1 +·· ·+bdφd

= [
φ1 · · · φd

] b1
...

bd


≡Φb

(23)

On the other hand, since αi satisfies the following relationship derived
from Eq. (21)

αT
j K̃αi =λiα

T
j αi =

{
0 (i ̸= j)
λi (i = j)

the following equation holds:

 αT
1
...
αT

d

K̃
[
α1 · · · αd

]=
 αT

1 K̃α1 · · · αT
1 K̃αd

...
. . .

...
αT

dK̃α1 · · · αT
dK̃αd

=

 λi 0
. . .

0 λd


⇔ATK̃A=Λ

(24)

where Λ = diag(λ1, . . . ,λd). Substituting K̃ = HT
φKHφ, φi = Hφαi and Φ =

HφA into Eq. (24), Φ ∈Rh×d satisfies

 αT
1 K̃α1 · · · αT

1 K̃αd
...

. . .
...

αT
dK̃α1 · · · αT

dK̃αd

=

 φT
1 Kφ1 · · · φT

1 Kφd
...

. . .
...

φT
dKφ1 · · · φT

dKφd

=

 λi 0
. . .

0 λd


⇔ΦTKΦ=Λ

(25)

4.2. Prediction of the existence of locked crease lines
In this section, transition of the deformation mechanism by fixing the

crease lines is predicted based on the result of the analysis of infinitesimal
mechanism. The deformation mechanism after fixing the crease line is eval-
uated by the deformation modes before fixing the crease line. To ensure va-
lidity of the estimation of the change of deformation mechanism, it should
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be assumed that the change of the shape of the polyhedron is small enough.
When a crease line is fixed, the DOF of the mechanism decreases by 1, which
is modeled as a process of reducing the size of the pseudo stiffness matrix.
The reduction of DOF is also simulated as a process of increasing one eigen-
value to infinity as the stiffness of a hinge is increased to infinity. Suppose
the rotational stiffness of hinge j is increased to a moderately large value
to simulate the process of fixing crease line j ( j ∈ Efree). Let ∆K j (∆K j ≫ 0)
denote the increase of the rotational stiffness of hinge j. Then, K′ = K+∆K j
represents the diagonal matrix whose elements are the rotational stiffness of
the hinges after increasing the stiffness of hinge j, where K is the diagonal
matrix whose elements are the original rotational stiffness of hinges and ∆K j
is the matrix whose ( j, j) element is ∆K j and the other elements are 0, respec-
tively. Assuming that Hφ is invariant under the small change of the shape of
the polyhedron due to fixing the crease line, the pseudo stiffness matrix after
increasing the stiffness is calculated as K̃′ =HT

φK′Hφ. The following equation
holds for i, k = 1, . . . ,d:

1
∆K j

α′T
i K̃′α′

k =
1

∆K j
α′T

i HT
φ

(
K+∆K j

)
Hφα

′
k

⇔ λ′
k

∆K j
α′T

i α
′
k =φ′T

i

{
1

∆K j

(
K+∆K j

)}
φ′

k

⇔ λ′
k

∆K j
α′T

i α
′
k ≃φ′T

i

(
1

∆K j
∆K j

)
φ′

k =φ′
i jφ

′
k j

⇔φ′
i jφ

′
k j ≃

{
0 (i ̸= k)
λ′

k
∆K j

(i = k)

(26)

where λ′
i and α′

i (i = 1, . . . ,d) are the ith eigenvalue and the corresponding
eigenvector of the pseudo stiffness matrix K̃′ after increasing the rotational
stiffness of hinge j, respectively, and φ′

i j is the jth element of φ′
i = Hφα

′
i.

Since φ′
i jφ

′
k j ≃ 0 holds for any combination of i and k which have different

values, φ′
i j ≃ 0 (i = 1, . . . ,d) holds except one mode, i.e., hinge j can rotate in

only one mode. If φ′
k j is not close to 0, the kth eigenvalue can be represented

as λ′
k ≃ ∆K jφ

′2
k j ≫ 0 according to Eq. (26), and it leads to a extremely high

stiffness of the frame in the direction φ′
k. Therefore, hinge j becomes fixed

as its rotational stiffness is increased to a moderately large value.
On the other hand, the change of eigenvalues and eigenvectors of the

pseudo stiffness matrix K̃ under the increment of the rotational stiffness of
the hinge can be estimated by the derivatives of eigenvalues and eigenvectors
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of K̃ with respect to the rotational stiffness. Detail of the derivation is shown
in Appendix B. Assuming that the ith eigenvalue λi (i = 1, . . . ,d) is distinct,
its derivative with respect to jth hinge’s rotational stiffness K j ( j = 1, . . . ,h)
is expressed as follows:

∂λi

∂K j
=αT

i
∂K̃
∂K j

αi

=αT
i HT

φ

∂K
∂K j

Hφαi

=φT
i
∂K
∂K j

φi

=φ2
i j

(27)

where φi j is the jth element of φi, which is the ( j, i) element of Φ.

Remark 3 Assumption of distinct eigenvalues is generally satisfied because
the rotational stiffness at each hinge is fictitious and can be assigned arbitrar-
ily to avoid repeated eigenvalues. If repeated eigenvalues exist due to symme-
try properties of the polyhedron, small random variations may be given for the
hinge stiffnesses without any effect on the criteria derived below.

According to Eq. (27), at least one eigenvalue is increased as the rota-
tional stiffness K j is increased since there is no locked hinges before K j is in-
creased, and φi j ̸= 0 holds for at least one mode. Thus, according to Eq. (26), if
the rotational stiffness of hinge j is increased to a moderately large value, φi j
(i = 1, . . . ,d) becomes 0 except one mode, say mode i′ corresponding to a large
increase of the eigenvalue. In this respect, it is natural to select the hinge
with the maximum sensitivity coefficient of eigenvalue ∂λi/∂K j to efficiently
reduce the DOF of the mechanism. However, for more detailed investigation,
we need to consider the variation of eigenvectors.

The derivative of the ith eigenvector αi with respect to K j corresponding
to the distinct eigenvalue is calculated as follows [32]:

∂αi

∂K j
=−

d∑
k=1
k ̸=i

1
λk −λi

(
αT

k
∂K̃
∂K j

αi

)
αk =−

d∑
k=1
k ̸=i

1
λk −λi

φk jφi jαk (28)

Using the relation φi =Hφαi, Eq. (28) is rewritten as

∂φi

∂K j
=Hφ

∂αi

∂K j
=−φi j

d∑
k=1
k ̸=i

1
λk −λi

φk jφk (29)
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From Eqs. (27) and (29), and using the relation ∂λi/∂K j ≥ 0 that holds for
any i (i = 1, . . . ,d), the derivatives of the distinct eigenvalue and the corre-
sponding eigenvector satisfy the following equation:

∂φi

∂K j
=−sgn(φi j)

√
∂λi

∂K j

d∑
k=1
k ̸=i

sgn(φk j)
λk −λi

√
∂λk

∂K j
φk (30)

where sgn(φk j) and sgn(φi j) are the signs of φk j and φi j, respectively.
Suppose φi j (i = 1, . . . ,d) becomes 0 as K j is increased except mode i′ cor-

responding to a large increase of the eigenvalue. In the case that hinge j′

( j′ ̸= j) is locked, φi j′ = 0 also holds except mode i′. If ∂λi/∂K j (i = 1, . . . ,d)
have large values, then from Eq. (30) the absolute values of ∂φi j/∂K j have
large values, and the values of φi j (i ̸= i′) rapidly converge to 0 as K j is
increased without drastically changing the values of φi j′ ( j′ ̸= j) as demon-
strated in the numerical examples. Therefore, in this case, hinge j can be
fixed independently without locking other hinges. Furthermore, suppose
hinge j is fixed and there exists hinge p (p ̸= j) approximately satisfying
ψ j ·ψp = 1 where ψ j = (ψ j1, . . . ,ψ jd)T represents the normalized jth row of Φ,
whose ith element ψ ji is defined as

ψ ji =
φi j√∑d
i=1φ

2
i j

(31)

In other words, φip ≃ cφi j is satisfied for all modes i = 1, . . . ,d with a constant
c. Then, from Eq. (30), ∂φi j/∂K j ≃ c∂φip/∂K j is satisfied, and ψ j ·ψp ≃ 1 or
φip ≃ cφi j is always satisfied as K j is increased to a moderately large value.
Therefore, φip (i ̸= i′) converges to 0, if φi j (i ̸= i′) converges to 0 as K j is
increased. Consequently, the following properties hold:

Properties of eigenmodes of stiffness matrix:

1. When hinge j with a large maximum eigenvalue derivative is fixed, it
is unlikely that there exists a locked hinge among the unfixed hinges
when the rotation of hinge j in the deformation mechanism is modified
to 0 to reduce the DOF of the mechanism.

2. If hinge j is fixed and there exists hinge p (p ̸= j) approximately satis-
fying ψ j ·ψp = 1 or φi j = cφip for all i = 1, . . . ,d, then hinge p is likely
to be locked.
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5. Selection criterion of the crease lines to be fixed

In this section, a criterion is introduced for the selection of crease lines to
be fixed in Steps 6 and 7 of the form generation procedure described in Sec-
tion 3. It is important to fix an appropriate crease line so that the objective
function of the optimization problem (6) easily converges to zero and unfixed
crease lines are not locked after fixing the crease line. Therefore, it is nec-
essary to determine the crease lines to be fixed in consideration of both the
shape of the polyhedron approximating the target surface and the possibility
of existence of a locked crease line as discussed in Section 4.

The score of crease line j ∈ Efree in terms of the shape of the polyhedron
is denoted by SS

j , which is defined by the folding angle ρ j of crease line j as

SS
j =

|ρ j|∑h
j=1 |ρ j|

(32)

A small value of SS
j leads to nearly parallel adjacent facets connected to

crease line j, and consequently, a small shape change of the polyhedron after
fixing crease line j. Thus, the objective function of problem (6) is likely to
converge to zero when the crease line with the smallest score SS

j is fixed.
On the other hand, the score SF

j of crease line j ∈ Efree is defined as follows
using the eigenvalue derivatives of the pseudo stiffness matrix K̃ with respect
to the rotational stiffness K j of crease line j:

SF
j =

max
i

(
∂λi
∂K j

)
∑h

j=1 max
i

(
∂λi
∂K j

) (33)

Based on Property 1 in Section 4, a larger value of SF
j leads to a smaller

possibility of locking a crease line that is not fixed. Furthermore, if all the
eigenvalues of K̃ are distinct, SF

j can be expressed by substituting Eq. (27)
into Eq. (33) as

SF
j =

max
i

(
φ2

i j

)
∑h

j=1 max
i

(
φ2

i j

) (34)

The numerator of SF
j indicates how dominant the rotation of crease line j

is among the rotations in all the deformation modes. Because φi j is the jth
component of φi, a large value of SF

j suggests that crease line j can rotate in-
dependently, and there is a small possibility of locking an unfixed crease line.
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Therefore, SF
j can be used to define the score of crease line j in terms of the

deformation mechanism. However, since the matrix Φ, whose ( j, i) element
is φi j, is not normalized with respect to both rows and columns, simply com-
paring the values of φ2

i j may be insufficient to determine the crease line to be
fixed. Here, Φ is normalized with respect to its columns based on Eq. (25).
Assuming K1 = ·· · = Kh = K ; i.e. K = KIh, the following equation holds for
k, l = 1, . . . ,d:

φT
l φk =

{
0 (k ̸= l)
λk
K (k = l)

Hence, defining Φ̂ ∈Rh×d as the matrix whose ith column is the ith column of
Φ multiplied by

√
K /λi, Φ̂ satisfies the following equation and it is normal-

ized with respect to its columns:

Φ̂
T
Φ̂=


K
λ1
φT

1φ1 · · · 0
...

. . .
...

0 · · · K
λd

φT
dφd


= Id

(35)

Instead of SF
j in Eq. (33), another score ŜF

j of crease line j can be defined by
the ( j, i) element φ̂i j of Φ̂ as follows:

ŜF
j =

max
i

(
φ̂2

i j

)
∑h

j=1 max
i

(
φ̂2

i j

) (36)

To incorporate both of the change of the shape and the change of the defor-
mation mechanism of the polyhedron after fixing a crease line, the following
two different scores S j and Ŝ j of crease line j ∈ Efree are used as the crite-
ria to determine the crease line to be fixed in the process of form generation
described in Section 3:

S j =
SS

j

SF
j

(37)

Ŝ j =
SS

j

ŜF
j

(38)
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Figure 5: Crease pattern 1

The crease line that has the lowest score is fixed sequentially. Multiple crease
lines can also be fixed simultaneously if the polyhedron has a symmetry prop-
erty. Let j1, . . . , jh denote the indices of crease lines in ascending order of S j
or Ŝ j, i.e., S j1 ≤ ·· · ≤ S jh or Ŝ j1 ≤ ·· · ≤ Ŝ jh holds. When hfix (1≤ hfix ≤ h) crease
lines are simultaneously fixed, hfix indices j1, . . . , jhfix are added to Efix in Step
6 of the form generation procedure. If there is a locked crease line in the opti-
mal shape obtained in the subsequent optimization process, j1, . . . , jhfix ∈ Efix
are replaced with jhfix+1, . . . , jhfix+h′

fix
where h′

fix is the number of indices added
to Efix in Step 7.

6. Numerical examples

6.1. Model description and parameter settings

In Sections 6.2, 6.3 and 6.4, the examples of form generation are shown for
the rigid-foldable origami models with two different crease patterns shown in
Figs. 5 and 6. The performances of the selection criteria of the crease line to
be fixed introduced in Section 5 are evaluated by comparing the form gener-
ation results by using S j, Ŝ j, SS

j , and randomly selecting the crease line to
be fixed. The results are discussed statistically by randomly generating 100
target surfaces for each pattern; i.e., in total, 200 cases of from generation are
performed in this section. Furthermore, the examples which have dome and
hyperbolic paraboloid (HP) shapes, respectively, with more complex crease
patterns are shown in Sections 6.5 and 6.6.

A 3×3 Bézier surface [33] is used as the target surface. The x- and y-
coordinates of its control points are located at uniform intervals as shown in
Fig. 7. The projected shape of the target surface onto xy-plane is a 3×3 m
square, and the z-coordinates are randomly set in the range between 0 and 3
m.
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Figure 6: Crease pattern 2
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Figure 7: Control points of Bézier surface

The parameters for the optimization problem (6) are assigned as ∆z̄v =
0.30 m, θmin = π/6 and θmax = 2π/3. In Sections 6.2, 6.3 and 6.4, the con-
straints on the projected boundaries and the corner vertices of the polyhe-
dron represented by Eq. (7) and Eq. (8) are considered. However, the symme-
try condition represented by Eq. (9) and the constraints on the folding angles
represented by Eq. (12) are not assigned. The number of variables in the
optimization is reduced by Eq. (11). The tolerance Ftol of F(X) in the prob-
lem (6) is 1.0×10−7. The rotation stiffness of the hinges are randomly set
in the range between 1.0×10−3 −0.5×10−6 and 1.0×10−3 +0.5×10−6 (Nm)
to avoid the existence of repeated eigenvalues. The optimization problem (6)
is solved using SLSQP (Sequential Least SQuares Programming) available
in Python library SciPy. Infinitesimal deformation modes are obtained by
SVD in Python library Numpy. Abaqus 2016 [34] is used in large deforma-
tion analysis. The frame model is constructed with three-dimensional beam
elements which have cylindrical cross sections of 20 mm diameter and 1 mm
wall thickness. Their Young’s modulus and Poisson’s ratio are 200 GPa and
0.3, respectively. Hinge connectors representing the revolute joints are used
for modeling the crease lines. Although the rotation stiffness of the hinge

25



x

y

z

(a)

j
free

will not be locked

j
lock

will be locked

j
max

j
min

(b)

Figure 8: Example of the optimal shape including the crease lines which will be locked: (a)
target surface; (b) optimal shape before fixing crease line jfix

connector is not necessary to the large-deformation analysis, the small rota-
tion stiffness 1.0×10−3 (Nm) is introduced to each hinge connector to stabilize
the analysis. To deploy the polyhedron onto xy-plane, forced displacement in
z-direction is applied at each node on the facet. The elongation ∆l j of edge
j ( j = 1, . . . ,E) and the error of the dihedral angle ∆ρfix

j between the facets
connected to the fixed crease line j ∈ Efix is calculated from the nodal dis-
placements of the frame model. If both ∆l j for all the edges and ∆ρfix

j for all
the fixed crease lines are acceptably small in view of engineering application,
the obtained polyhedral surface is regarded as developable and rigid-foldable.
Computation is carried out on a PC with Intel(R) Xeon(R) E5-1620 v3 CPU
3.50 GHz, 24.0 GB RAM, and four cores.

6.2. Numerical example including the locked crease lines
This subsection shows an example of optimization process where some

crease lines that are not fixed will be locked after fixing a crease line. The
transition of the deformation mechanism is investigated by increasing the
rotational stiffness of the hinge (crease line) which has the maximum or the
minimum value of SF

j defined by Eq. (33). The target surface is shown in
Fig. 8(a) and the crease pattern 1 shown in Fig. 5 is applied for the initial
shape. The optimal shape is shown in Fig. 8(b) which has a 7-DOF mecha-
nism, and none of its crease lines is currently locked.

The values of SF
j and ŜF

j at crease line jmax are the largest, respectively,
among the crease lines, and those at crease line jmin are the smallest. There-
fore, the transition of the rotation modes are investigated by increasing the
rotation stiffness of crease lines jmax and jmin, respectively, to make one
eigenvalue of the pseudo stiffness matrix extremely larger than the other six
eigenvalues. The shape of the polyhedron is fixed in this investigation. The
elements φi j (i = 1. . . . ,7) of the seven rotation modes of crease lines jmax and
jmin before increasing the rotational stiffness of crease line jmax or jmin are
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Table 1: Eigenvalues and rotation modes (φi j : multiplied by 103)

i λi φi jmin φi jmax φi jlock φi jfree

1 3.79×10−6 −0.31 −0.71 −0.61 2.50
2 1.08×10−4 4.22 −5.05 8.30 −65.96
3 1.24×10−4 2.14 −18.28 4.20 20.48
4 1.37×10−4 −0.91 42.04 −1.79 5.41
5 2.40×10−4 10.52 6.27 20.69 −79.75
6 3.13×10−4 −1.01 6.81 −1.98 −315.03
7 4.11×10−4 2.33 481.06 4.59 −6.94

shown in Table 1. The rotation modes of crease lines jlocked and jfree shown
in Fig. 8(b), which are locked and not locked after increasing the rotational
stiffness of crease line jmin to a large value, are also listed in Table 1. Ta-
bles 2 and 3 show the rotation modes of the crease lines when the rotational
stiffnesses K jmax and K jmax are multiplied by 1014, respectively. As seen from
these tables, if the rotational stiffness of one crease line is significantly in-
creased, the largest eigenvalue becomes extremely larger than the others,
and the crease line whose rotational stiffness is increased can rotate only in
the rotation mode corresponding to the largest eigenvalue, i.e. it is fixed. The
result in Table 2 indicates that crease line jmax is fixed to reduce the DOF
to six without locking other crease lines. On the other hand, when crease
line jmin is fixed, crease line jlock is locked, because it does not have non-zero
component except in the rotation mode corresponding to the largest eigen-
value as shown in Table 3. In this example, the crease lines indicated by the
thin lines in Fig. 8(b) are locked when K jmin is multiplied by 1014. Comparing
the results in Tables 2 and 3, it can be confirmed that the crease lines that
are not fixed are locked as K jmin corresponding to the smallest values of SF

j
and ŜF

j is increased to the moderately large value, whereas no crease line is
locked as K jmax corresponding to the largest values of SF

j and ŜF
j is increased

to moderately large value. From Table 1, the inner products of ψ jmin
and ψ j

( j ∈ { jlock, jfree}) are calculated as 1.00 and −0.20, respectively. Therefore, if
the values of SF

j and ŜF
j of the crease line to be fixed are small, the crease

line jlock whose corresponding ψ jlock
is almost parallel to ψ j of the crease line

to be fixed is likely to be locked as described in Property 2 in Section 4.

6.3. Crease pattern 1

The initial shape of the form generation in this subsection has the crease
pattern 1 which is shown in Fig. 5. The DOF of the optimal shape is 21 when
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Table 2: Eigenvalues and rotation modes when K jmax is multiplied by 1014 (φi j : multiplied
by 103)

i λi φi jmin φi jmax φi jlock φi jfree

1 4.14×10−6 −0.31 0.00 −0.62 2.44
2 1.07×10−4 4.34 0.00 8.53 −64.42
3 1.22×10−4 2.27 0.00 4.46 19.88
4 1.38×10−4 1.42 0.00 2.79 −7.73
5 2.40×10−4 10.46 0.00 20.58 −79.83
6 3.14×10−4 1.06 0.00 2.08 314.78
7 2.34×1010 2.24 483.36 4.40 −12.00

Table 3: Eigenvalues and rotation modes when K jmin is multiplied by 1014 (φi j : multiplied by
103)

i λi φi jmin φi jmax φi jlock φi jfree

1 3.92×10−6 0.00 0.25 0.00 0.34
2 1.18×10−4 0.00 3.84 0.00 −52.18
3 1.32×10−4 0.00 2.23 0.00 −3.15
4 1.40×10−4 0.00 55.36 0.00 2.61
5 3.13×10−4 0.00 −0.24 0.00 −321.57
6 4.04×10−4 0.00 −471.39 0.00 −0.39
7 1.40×107 11.85 91.35 23.31 −65.63
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Table 4: Numbers of vertices, edges, facets, and independent variables

Section Vertex Edge Facet Independent variable
6.2 49 120 72 115
6.3 52 117 78 124

6.4, 6.5 (symmetric) 121 320 200 83
6.4, 6.5 (asymmetric) 121 320 200 315

Table 5: Average results of form generation for crease pattern 1

Nreduce Nlock Nexceed F(X)
S j 20.00 1.13 0.04 1.18×10−9

Ŝ j 20.00 0.06 0.01 1.38×10−9

SS
j 19.97 24.94 0.03 2.19×10−9

random 19.99 7.32 0.20 2.44×10−9

the crease lines are not fixed. Form generation is carried out by sequentially
solving optimization problems with increasing number of fixed crease lines.
The numbers of vertices, edges, and facets of the polyhedron with triangular
facets are summarized in Table 4. The numbers of independent variables in
the optimization problem (6), which is 115 in this subsection, are also shown
in Table 4. Let Nreduce, Nlock, and Nexceed denote the reduced DOFs from
21 in form generation process, the number of times any locked crease line
exists, and the number of times the optimal objective value exceeds the tol-
erance, respectively. The 0-DOF optimal shape may be obtained in the final
optimization cycle of the form generation procedure described in Section 3;
however, it is not counted in Nreduce, Nlock, and Nexceed. Table 5 shows the
average values of Nreduce, Nlock, and Nexceed among the results of form gener-
ation for 100 different target surfaces by using each selection criterion of the
crease line to be fixed. The average values of F(X) are also shown in Table 5.
Although the average values of Nreduce are almost the same among the four
selection criteria, the average value of Nlock is significantly reduced by using
S j or Ŝ j, and the latter has a slightly better performance. In addition, the
value of F(X) is also decreased by using S j or Ŝ j. Therefore, the selection
criteria S j and Ŝ j improve both the accuracy and the efficiency of the form
generation for various target surfaces when the crease pattern 1 is applied.

Fig. 10 shows the 1-DOF optimal shape for the target surface shown in
Fig. 9 which is obtained by using Ŝ j as the selection criterion. The 20 crease
lines of the initial triangulated polyhedron are fixed, and all the crease lines
which are not fixed can rotate in the folding and unfolding process. The opti-
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Figure 9: Target surface for the example in which crease pattern 1 is applied
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Figure 10: 1-DOF optimal shape for the target surface in Fig. 9 and the crease pattern 1 in
Fig. 5: (a) isometric projection; (b) projection onto xy-plane; (c) development diagram

mal objective value of F(X) of this solution is 1.02×10−8, which is sufficiently
small. The value of D(Xd) in Eq. (13) is 3.45×10−10, and the development
diagram of the obtained polyhedron can be generated with good accuracy
as shown in Fig. 10(c). The average values of |∆l j| ( j = 1, . . . ,E) and |∆ρfix

j |
( j ∈ Efix) throughout the process of large-deformation analysis are 0.25 mm
and 0.018 deg., respectively. They are small enough and it can be concluded
that the obtained polyhedron shown in Fig. 10 can be developed to a plane
continuously in rigid-folding motion. In the form generation procedure for
the target surface shown in Fig. 9, the optimization problem 6 is solved 22
times, and all the optimal objective values are less than Ftol = 1.0× 10−7,
whose average value is 1.31×10−9. All the optimal shapes do not contain any
locked crease line except for the final optimal shape whose 21 crease lines are
fixed and the DOF is equal to zero. Therefore, Nreduce, Nlock, and Nexceed are
20, 0, and 0, respectively, in this example.

The average computation times of the 20 solutions for solving the opti-
mization problems (6) and (13), performing the large deformation analysis,
and selecting the crease lines to be fixed are 72.4 sec., 3.31 sec., 37.0 sec.,
and 0.0113 sec., respectively. The total computation time to obtain the 20
solutions is 2367 sec..
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Table 6: Average results of form generation for crease pattern 2

Nreduce Nlock Nexceed F(X)
S j 19.96 2.74 0.00 1.17×10−9

Ŝ j 19.97 0.92 0.02 1.28×10−9

SS
j 19.73 28.60 0.14 1.93×10−9

random 19.81 13.32 0.19 4.41×10−9
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Figure 11: 1-DOF optimal shape for the target surface in Fig. 9 and the crease pattern 2 in
Fig. 6: (a) isometric projection; (b) projection onto xy-plane; (c) development diagram

6.4. Crease pattern 2

The initial shape of the form generation in this subsection has the crease
pattern 2 which is shown in Fig. 6. The DOF of the optimal shape obtained
by the initial triangulated polyhedron without fixed crease lines is 21. As
shown in Table 4, the number of independent variables in the optimization
problem (6) is 124. The average values of Nreduce, Nlock, Nexceed, and F(X)
are summarized in Table 6. As shown in Table 6, both the accuracy and the
efficiency of the form generation is improved by using the selection criterion
S j or Ŝ j also when the crease pattern 2 is applied, which means that the
criterion SS

j based on the geometrical property only is not appropriate, and
the mechanical properties are necessary to be considered for an appropriate
determination of the crease line to be fixed. Note that Ŝ j has a slightly better
performance than S j in view of Nlock also for pattern 2.

The 1-DOF optimal shape approximating the surface in Fig. 9 is shown
in Fig. 11 which is obtained by using the criterion Ŝ j. The values of F(X) and
D(Xd) are 2.24×10−9 and 3.45×10−10, respectively. In addition, the aver-
age values of |∆l j| ( j = 1, . . . ,E) and |∆ρfix

j | ( j ∈ Efix) throughout the process of
large-deformation analysis are calculated as 0.21 mm and 0.009 deg., respec-
tively. Therefore, the obtained polyhedron shown in Fig. 11 can be regarded
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Figure 12: Target dome surface with positive gaussian curvature
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Figure 13: Initial triangulation and planes of symmetry: (a) isometric projection; (b) projection
onto xy-plane

as developable and rigid-foldable. In this form generation example, Nreduce,
Nlock, and Nexceed are 20, 0, and 0, respectively, and the average optimal ob-
jective value is 2.69×10−10.

The average computation times of the 20 solutions for solving the opti-
mization problems (6) and (13), performing the large deformation analysis,
and selecting the crease lines to be fixed are 79.3 sec., 3.83 sec., 38.6 sec.,
and 0.00840 sec., respectively. The total computation time to obtain the 20
solutions is 2558 sec..

6.5. Dome surface

In this subsection, the target surface is the dome surface as shown in
Fig. 12 whose height is 1.5 m and the projected shape onto xy-plane is a 3×3
m square. In addition to the constraints on the boundary shape of the polyhe-
dron, the symmetry property is considered in the constraints of optimization
problem (6). The triangulation pattern and the planes of symmetry are shown
in Fig. 13. S j defined by Eq. (37) is used as the selection criterion of the crease
line to be fixed in this subsection. The DOF of the mechanism of the initial
shape is 37, and it is reduced by fixing the crease lines which are located
at symmetrical positions. As shown in Table 4, the number of independent
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Table 7: Results of form generation for the dome surface

symmetry asymmetry
Nlock 1 1
Nexceed 0 0
Min. DOF 3 1
No. of opt. 11 38
Ave. F(X) 1.42×10−9 2.78×10−9

Ave. D(Xd) 1.13×10−10 5.89×10−10

Ave. |∆l j| [mm] 0.793 1.09
Ave. |∆ρfix

j | [deg.] 6.59×10−2 9.63×10−2

variables in the optimization problem (6) in this subsection is 83 when the
symmetry condition is considered or 315 when the symmetry condition is not
considered. The results of the form generation with and without the symme-
try conditions, respectively, are shown in Table 7. The optimization problem
(6) is solved 11 times when the symmetry is considered and 38 times when
the symmetry is not considered. In both cases, one optimal shape contains
the locked crease lines. Although the average values of objective functions in
problem (6) and (13) and the deformation of the polyhedron in the process of
large deformation analysis are reduced by considering the symmetry condi-
tion, the minimal DOF of the mechanism of the symmetric model is 3, which
is larger than that of the asymmetric model. Since two or four crease lines are
simultaneously fixed and the DOF is reduced by two or four, it is difficult to
obtain the single-DOF solution when the symmetry condition is considered.

Fig. 14 shows the symmetric 3-DOF optimal shape, where the 34 crease
lines of the initial triangulated polyhedron are fixed, and all the crease lines
which are not fixed can rotate in the folding and unfolding process. The
optimal objective values of F(X) and D(Xd) of this solution are 1.29×10−10

and 4.70×10−11, respectively, and the development diagram can be gener-
ated with good accuracy as shown in Fig. 14(c). The average values of |∆l j|
( j = 1, . . . ,E) and |∆ρfix

j | ( j ∈ Efix) throughout the process of large-deformation
analysis are 1.83 mm and 0.213 deg., respectively. Therefore, it can be con-
cluded that the optimal shape shown in Fig. 14 is developable to a plane with
a small deformation.

When the symmetry is considered, the average computation times for
solving the optimization problems (6) and (13), performing the large defor-
mation analysis, and selecting the crease lines to be fixed are 202 sec., 1.91
sec., 46.4 sec., 0.964 sec., respectively. The total computation time to obtain
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Figure 14: 3-DOF optimal shape for the target dome surface: (a) isometric projection; (b)
projection onto xy-plane; (c) development diagram
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Figure 15: Target HP surface with negative gaussian curvature

the 10 solutions without locked crease lines is 2760 sec. including the time
for generating one solution with locked crease lines. On the other hand, when
the symmetry is not considered, the average computation times are 1015 sec.,
20.3 sec., 52.7 sec., and 0.882 sec., respectively, and the total computation
time to obtain the 37 solutions is 42768 sec.. The computation cost is con-
siderably reduced by considering the symmetry and reducing the number of
independent variables.

6.6. HP surface

In this subsection, the target surface is the HP surface as shown in Fig. 15.
The height is 1.8 m and projected shape onto xy-plane is a 3×3 m square. The
triangulation pattern and the planes of symmetry are shown in Fig. 16, and
the DOF of the mechanism of the initial shape is 37. S j is also used in this
subsection to select the crease line to be fixed. The number of the independent
variables in the optimization is the same as in the examples in Section 6.5.
The results of the form generation are shown in Table 8. They have the same
tendency as the results of the dome surface.

Fig. 17 shows the 3-DOF optimal shape obtained by considering the sym-
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Figure 16: Initial triangulation and planes of symmetry: (a) isometric projection; (b) projection
onto xy-plane

Table 8: Results of form generation for the dome surface

symmetry asymmetry
Nlock 0 0
Nexceed 0 0
Min. DOF 3 1
No. of opt. 10 37
Ave. F(X) 2.60×10−9 1.72×10−9

Ave. D(Xd) 1.08×10−10 9.18×10−10

Ave. |∆l j| [mm] 0.279 0.286
Ave. |∆ρfix

j | [deg.] 1.44×10−2 2.19×10−2
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metry condition, which does not contain any locked crease line. The opti-
mal objective values of F(X) and D(Xd) of this solution are 1.69×10−9 and
9.19× 10−11, respectively, and the development diagram can be generated
with good accuracy as shown in Fig. 17(c). The average values of |∆l j| ( j =
1, . . . ,E) and |∆ρfix

j | ( j ∈ Efix) throughout the process of large-deformation
analysis are 0.434 mm and 1.28×10−2 deg., respectively. Therefore, it can
be concluded that the optimal shape shown in Fig. 17 is developable to a
plane and practically rigid-foldable.

When the symmetry is considered, the average computation times for
solving the optimization problems (6) and (13), performing the large defor-
mation analysis, and selecting the crease lines to be fixed are 218 sec., 1.65
sec., 48.5 sec., 1.01 sec., respectively. The total computation time to obtain
the 10 solutions is 2687 sec.. On the other hand, when the symmetry is not
considered, the average computation times are 1133 sec., 19.3 sec., 57.3 sec.,
and 0.874 sec., respectively, and the total computation time to obtain the 37
solutions is 44771 sec..

Although the computation time highly depends on the implementation of
the program, according to Table 4, it tends to increase as the model becomes
more complex. If we assume the average computation time for solving the
problem (6) is proportional to the square of the number of independent vari-
ables, the coefficients for the models in Sections 6.3 ~6.6 without considering
symmetry conditions are 0.00895, 0.00832, 0.01165 and 0.01220, respectively.
Therefore, the order is a little more than square of the number of indepen-
dent variables. When the DOF of the initial shape is large, it is necessary
to repeat the form generation process many times to reduce the DOF to the
small value, and the total computation time considerably increases. There-
fore, it is important to reduce the number of independent variables in the
optimization problem utilizing the additional geometrical properties such as
the symmetry conditions.

7. Conclusion

This paper has presented a form generation method of a developable rigid
origami structure based on the mechanical property of partially rigid frames.
A generated polyhedral surface approximates a target curved surface. Based
on the method proposed in the authors’ previous studies [19, 20, 21], form
generation starts from a triangulated target surface and its crease lines are
sequentially fixed to reduce the DOF of the deformation mechanism. The
transition of the deformation mechanism due to fixing the crease lines is pre-
dicted, and selection criteria of the crease lines to be fixed are proposed to
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Figure 17: 3-DOF optimal shape for the target HP surface: (a) isometric projection; (b) projec-
tion onto xy-plane; (c) development diagram

prevent the unfixed crease lines from being locked. The deformation mech-
anism of rigid origami is investigated by using the frame model, and the
deformation modes are derived by the method for stability and mechanism
analysis of a partially rigid frame with arbitrary inclined hinges.

A procedure has been developed for detecting the existence of a locked
crease line in the optimal shape after fixing a crease line based on the eigen-
value and eigenvector derivatives of the pseudo stiffness matrix of the frame
model with respect to the fictitious rotational stiffness of the hinges (crease
lines). The pseudo stiffness matrix of the frame is defined by the matrix of
the hinge rotation modes and the diagonal matrix whose elements are the ro-
tational stiffness of the hinges. Assuming that the eigenvalues of the pseudo
stiffness matrix are distinct, the relationship between the eigenvalue deriva-
tives and the eigenvector derivatives has been derived in Section 4 to show
that a locked crease line likely exists if a crease line with the relatively small
maximum eigenvalue derivative is fixed.

The selection criteria of the crease line to be fixed have been defined in
consideration of both the convergence of the optimization for form generation
and the possibility of the existence of a locked crease line. The convergence
of the optimization is evaluated by the folding angles of the crease lines to be
fixed, and the possibility of the existence of a locked crease line is evaluated
by the maximum eigenvalue derivative or the maximum squared element
of the orthonormalized rotation modes of the crease line to be fixed. Two
selection criteria have been introduced, and their performances have been
confirmed in numerical examples.

The form generation procedure has been carried out for 100 randomly
generated target surfaces for each of the two crease patterns, i.e., in total 200
cases of form generation have been performed. Two selection criteria intro-
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duced in this paper significantly reduce the number of times a crease line is
locked in the form generation process in comparison to the case where the
crease line to be fixed is selected based on the folding angle only or selected
randomly. In addition, the optimal objective value representing the error of
rigid folding is also reduced by using the introduced criteria. Therefore, it
can be concluded that both the accuracy and the efficiency of form genera-
tion can be improved by considering both the geometry and the deformation
mechanism of the rigid origami structure. Furthermore, comparing the two
proposed criteria, the performance of the criterion defined by the orthonor-
malized hinge rotation modes is better than the other criterion defined by
the eigenvalue derivatives of the pseudo stiffness matrix of the frame model.

Form generation has also been carried out for a dome surface and an HP
surface to demonstrate applicability of the proposed method to the curved
surface with positive and negative gaussian curvatures, respectively. The
crease patterns in these examples are more complex than those in the exam-
ples of randomly generated target surfaces, and the symmetry conditions are
considered in the optimization problem. The number of independent vari-
ables in the optimization problem can be reduced to about one quarter, and
some crease lines are simultaneously fixed to reduce the multiple DOFs by as-
signing the symmetry conditions. However, the single-DOF optimal solutions
could not been obtained for either of dome and HP surfaces. These examples
have shown that the proposed method can be applied to any curved surface
irrespective of the sign of Gaussian curvature.
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Appendix A. Derivation of compatibility equations

The method is summarized for constructing the compatibility equations
(15) about nodal displacement of the frame model described in Section 4;
see Refs. [27, 28] for details. The global coordinates (x, y, z) and the lo-
cal coordinates of member k (= 1, . . . ,m) of the frame model are defined as
shown in Fig. A.1(a). As shown in Fig. A.1(b), the axial force and the tor-
sional moment of member k are represented by Nk and Tk, respectively,
and the bending moments around axes 2 and 3 at node i ∈ {1,2} are de-
noted by Mk

i,2 and Mk
i,3, respectively. The member-end shear forces are elimi-

nated because they can be calculated from Mk
i,2 and Mk

i,3. These six indepen-
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Figure A.1: Definition of member coordinates and member end forces: (a) local and global
coordinates; (b) independent member-end forces

dent member-end forces of member k are combined into a vector Fk ∈ R6 as:
Fk =

(
Nk, Tk, Mk

1,2, Mk
1,3, Mk

2,2, Mk
2,3

)T
. The member-end force vector F ∈ R6m

is defined as: F= (
F1T, . . . ,FmT)T whose elements are the member-end forces

of all members in the frame model. When the frame model has n nodes
and the number of constrained degrees of freedom of the nodal displace-
ment is s, 6n− s equilibrium equations are derived. Defining P ∈ R6n−s and
SN ∈R(6n−s)×6m as the nodal load vector and the equilibrium matrix, the equi-
librium equations can be expressed as follows:

P=SNF (A.1)

If there are h hinges in the model, h equations are obtained representing
the constraints of the moments around the rotation axes of hinges. Let M ∈Rh

denote the vector whose elements are the designated moments around the
axes of hinges. The constraints of the moment so that the axis of each compo-
nent is directed to its corresponding hinge direction are expressed using the
matrix SR ∈Rh×6m as

M=SRF (A.2)

On the other hand, the following equation can be derived based on the
principle of virtual work:

FTe=PTu+MTφ (A.3)

where e, u, and φ represents the deformations of the members, the uncon-
strained displacements of nodes and the change of the rotation angle of the
hinges, respectively. Assuming that e can be represented by the linear com-
bination of u and φ, e can be expressed as Eq. (14) by substituting Eq. (A.1)
and Eq. (A.2) into Eq. (A.3). Therefore, dividing S into two components as

39



S = [
ST

N ST
R

]
, the compatibility equations are derived as Eq. (15) to ensure

that the deformation of each member is zero.

Appendix B. Derivation of eigenvalue and eigenvector derivatives

The details of the derivation are presented below for the eigenvalue and
eigenvector derivatives of the pseudo stiffness matrix K̃ with respect to the
rotation stiffness of the hinge. It is assumed that the eigenvalues λi (i =
1, . . . ,d) are distinct. Differentiating Eq. (21) with respect to K j ( j = 1, . . . ,h)
and rearranging it yield:

(
K̃−λiI

) ∂αi

∂K j
=−

(
∂K̃
∂K j

− ∂λi

∂K j
I
)
αi (i = 1, . . . ,d) (B.1)

By pre-multiplying αT
i to the both sides of Eq. (B.1) and using Eq. (21) and

K̃T = K̃, the following equation is derived:

αT
i

(
∂K̃
∂K j

− ∂λi

∂K j
I
)
αi = 0 (i = 1, . . . ,d) (B.2)

Hence, the derivative of eigenvalue λi with respect to K j can be derived as
Eq. (27) from the right side of Eq. (B.1).

Since the rank of
(
K̃−λiI

)
in the left-hand-side of Eq. (B.1) is less than

d −1, ∂αi/∂K j cannot be determined uniquely from Eq. (B.1). However, us-
ing a coefficient vector c = (c1, . . . , cd)T ∈ Rd, it can be expressed as a linear
combination of d orthonormal eigenvectors αi (i = 1, . . . ,d) as follows [32]:

∂αi

∂K j
= c1α1 +·· ·+ cdαd

= [
α1 · · · αd

] c1
...

cd


=Ac

(B.3)

Substituting ∂αi/∂K j =Ac into Eq. (B.1), pre-multiplying AT to its both sides,
and using Eq. (24), we derive the following equation to obtain c:

AT (
K̃−λiI

)
Ac=−AT

(
∂K̃
∂K j

− ∂λi

∂K j
I
)
αi

⇔(Λ−λiI)c=−AT
(
∂K̃
∂K j

− ∂λi

∂K j
I
)
αi

(B.4)

40



Assuming λk ̸= λi (k = 1, . . . ,d, k ̸= i), ck can be determined from Eq. (B.4) as
follows by using αT

kαi = 0:

ck =− 1
λk −λi

αT
k
∂K̃
∂K j

αi =− 1
λk −λi

φ jiφ jk (B.5)

In addition, ci can be determined by differentiating αT
i αi = 1 with respect to

K j and dividing it by 2 as follows:

1
2

{(
∂αi

∂K j

)T
+αT

i
∂αi

∂K j

}
=αT

i Ac= ci = 0 (B.6)

According to Eqs. (B.5) and (B.6), ∂αi/∂K j can be expressed as Eq. (29).
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