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Abstract 

Tensegrity structures have recently found new applications as energy absorbers in the field of 

aerospace engineering. In this study, we introduce an optimization method to maximize the 

energy absorption capability of a 3D tensegrity lattice composed of truncated octahedral units. 

The stored strain energy of the tensegrity lattice subjected to forced vertical displacement is 

maximized under constraints on the stress, structural material volume, and volume occupied by 

the lattice. The force density of the bar that defines the shape of each unit is regarded as a 

parameter, and the design variables are the cross-sectional areas of cables and bars as well as the 

level of prestresses on the lattice. Buckling of the bars is extensively utilized to significantly 

increase energy absorption. The nonlinear behavior of bars allowing buckling is modeled as a 

smoothed function of bi-linear elastic material, in which imperfection in the bar shape is also 

taken into account. Numerical examples show that tensegrity lattices, with flexibility in the 

vertical direction and adequate (shear) stiffness in the horizontal direction, can be obtained by 

solving the optimization problem. It is also shown that energy absorption by the structure scales 

cubically when its sizes and prestress level are uniformly scaled. 
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1. Introduction 

Tensegrity structures are a class of self-standing pin jointed structures consisting of bars (struts) 

in compression and thin cables in tension [1]. Earlier research efforts focused on their form-

finding [2] and stability [3], which are the two fundamental problems for the design of tensegrity 

structures. According to the strictest definition of tensegrity structures, which is also called class-

1 tensegrity [4], the bars are usually not continuously connected, i.e., they are topologically 

isolated from each other. Isolation of the compressive members renders tensegrity structures 

particularly well suited for impact absorption applications, because the load-bearing capability of 

tensegrity structures remains intact even after undergoing severe deformation [5]. By exploiting 

their flexibility, tensegrity structures are utilized as devices for reducing impact forces [6], 

isolating dynamic forces [7], absorbing energy [8], and some other applications [9]. Among these, 

lattice structures consisting of tensegrity units have been also extensively studied to construct 

flexible large-scale systems [10, 11], of which wave-propagation properties were also studied 

[12].  

In the field of aerospace engineering, tensegrity structures have been proposed as planetary 

landing devices, relying on their distinct properties: first of all, they are free-standing such that 

supports are unnecessary to maintain their stability; secondly, they are lightweight and can be 

packed into a small size to be launched from the earth; and finally, they can absorb energy from 

large impact loads to protect interior systems and payloads.  

SunSpiral et al. [6] presented the concept of using a ball-like tensegrity probe to absorb significant 

impact forces, and to explore the planet as a surface mobility after landing by actively controlling 

its shape [13]. They further showed that the tensegrity probe may be able to operate on Titan with 

a science payload mass fraction of 50%, which is more than twice of the mass fraction of 

conventional devices, due to its multi-purpose usage.  

Goyal et al. [8] demonstrated efficient energy absorption performance of the D-bar tensegrity 

system by comparison to that of a buckled bent beam with uniform full circular cross-section. 

The energy from external loads is stored as elastic energy in the members, for the purpose of 

avoiding local structural instabilities. This system exhibits an ability to store more energy than 



 
 

3 

the equivalent buckling-dominated system, but at the cost of significantly higher structural 

complexity. 

Rimoli and Pal [9] presented a novel 3-dimensional tensegrity lattice, which is built from a 

combination of truncated octahedral unit cells via mirroring operations. They investigated the 

mechanical response of tensegrity lattices in the nonlinear regime, demonstrating that the 

structures have superior strength in the low-density regime attributed to the nonlinear geometric 

effects and buckling associated with the unit cell. It was then concluded that the tensegrity-based 

metamaterials are good candidates for energy absorption applications. Rimoli [5] further 

developed a reduced-order model to capture buckling and post-buckling behaviors of the bars as 

well as dynamic responses of tensegrity-based structures, when they are used as impact-tolerant 

components in planetary landers. By applying this model to the 3D tensegrity lattice, it was also 

shown that the structure exhibits multiple regimes with distinct behaviors, in a similar fashion to 

phase transitions in continuum systems [14, 15]. 

In the area of energy absorption, studies up to date mostly focus on presenting novel structural 

configurations and deformation regimes. There are only a few existing reports on optimizing their 

performance in energy absorption, although optimization methods have been mostly restricted to 

form-finding [16，17]. This motivates our current study on maximizing the energy absorption 

capability of a 3D tensegrity lattice assembled from truncated octahedral unit cells [9]. We study 

this 3D tensegrity lattice because of its 3D tiling property; i.e., it was the first lattice that can be 

easily extended to include much more unit cells in each of the three directions to construct a large-

scale periodic structure. For the purposed of this study, we limit ourselves to the study of its 

elementary cell, consisting of eight truncated octahedral unit cells, which have threefold 

symmetry and are super-stable [18, 19] under certain conditions.  

The objective function to be maximized is the strain energy under forced vertical displacement. 

Unlike some of the existing studies considering only global buckling [20] or reduced order model 

for local buckling, post-buckling behavior of the bars is analyzed in this study by recourse to a 

nonlinear elastic model, in which geometry imperfections of the bars are also taken into 

consideration.  
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The remainder of the paper is organized as follows. In Section 2 we introduce the basic properties 

and the configurations of the tensegrity lattice and its unit cells to be studied. The smooth 

formulation for post-buckling of bars and yield condition for a rectangular cross section are 

presented in Section 3. In Section 4 we formulate the optimization problem, followed by 

numerical case studies in Section 5. The conclusions of this work are laid out in Section 6. 

2. Basic properties of truncated octahedral tensegrity lattice 

The eight-unit tensegrity lattice studied in this paper is shown in Figure 1, where the thick and 

thin lines represent the bars in compression and cables in tension, respectively. The lattice is 

assembled from the regular truncated octahedral unit cells as depicted in [9], see Figure 2. Most 

of the bars of the lattice are topologically isolated, except for those connected to the nodes on the 

assembly boundary of different unit cells. For the completeness of the paper, this section presents 

some of the basic properties and the analytical conditions on self-equilibrium as well as stability 

of the truncated octahedral unit cells partially following our previous work [18]. 

Octahedron can be used for generating various types of tensegrity structures [21]. The vertices of 

a regular octahedron in Figure 2(a) are truncated by planes to generate the regular truncated 

octahedron in Figure 2(b). The cables of the truncated octahedral tensegrity are classified into the 

edge cables lying on the original edges of the truncated octahedron and the cutting cables lying 

on its cut edges. The bars are located inside of the truncated octahedron. Hence, a regular 

truncated octahedral tensegrity structure consists of 24 nodes, 12 bars, 24 cutting cables, and 12 

edge cables, i.e., 48 members in total. 

The prestresses at the self-equilibrated state are obtained in terms of force density, which is 

defined as the ratio of the member force to the member length. Denote the force densities of the 

edge cables, cutting cables, and bars as eq , cq , and bq , respectively. Due to symmetry of the 

structure, members in each of three types have the same length and the same prestress, and 

accordingly, they have the same force density.  
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(a)                            (b)                

Figure 1. Undeformed shape of eight-unit tensegrity lattice;  

(a) plan/elevation view, (b) diagonal view. 

             

(a)                         (b)                         (c) 

Figure 2. Generation of regular truncated octahedral tensegrity structure;  

(a) regular octahedron, (b) truncated octahedron, (c) truncated octahedral tensegrity. 

 

Let 
24 24E  denote the force density matrix, for which the elements are linear functions of 

the force densities. The self-equilibrium equations in x-, y-, and z-directions are given as follows 

by using the coordinate vectors x, y, and z 24  [1, 2]: 

 =Ex 0 ,  =Ey 0 ,  =Ez 0  (1) 

Define   and   as  

 e b

2

q q


+
= ,  e b

2

q q


−
=  (2) 

Since the cables and bars are in tensile and compressive states, respectively, the force densities 

are positive in cables and negative in bars; therefore, 0   holds. For self-equilibrium of the 
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regular truncated octahedral tensegrity structure, we have the force density cq  of cutting cables 

solved as follows [18]: 

 

2 2 4 2 2 4

c

5 14

4
q

     



− + + +
=  (3) 

It is notable that when the level of prestresses in terms of force densities e c b( , , )q q q  is adjusted 

to e c b( , , )q q q    using a scaling parameter  , the self-equilibrium equations in Eq. (1) are 

satisfied by the same configuration in terms of nodal coordinates x, y, z, because the force density 

matrix E  is simply scaled to E . Furthermore, the self-equilibrium equations will not be 

violated with affine transformation of the initial symmetric self-equilibrated shape [3], which 

gives us the chance to study the structure without special caution on its scale. 

The regular truncated octahedral tensegrity has only one prestress mode but 19 infinitesimal 

mechanisms. Furthermore, if b e/1 0q q−    holds and member failure (cable yielding and bar 

buckling) is not considered, this structure is super-stable; i.e., it is always stable irrespective of 

the material properties as well as the level of prestresses [3].  

Eight units of regular truncated octahedral tensegrity structures are combined to obtain the 

tensegrity lattice as shown in Figure 1. The units are transformed symmetrically with respect to 

the horizontal plane and the two vertical planes and connected on the planes of symmetry. Four 

nodes of each truncating section are connected to those of another symmetrically located unit, 

where one of the duplicated cutting cables on each plane are removed. Hence, the total number 

of members is 48  8 − 4  12 = 336, including 96 struts, 96 edge cables, and 144 cutting cables. 

Note that 48 pairs of the cutting cables are shared by the two adjacent units, and the initial forces 

of these cutting cables are doubled to satisfy self-equilibrium equations after combing the 

duplicated cutting cables. The number of nodes of the eight-unit tensegrity lattice is 144 after 

removing the duplicated nodes on the planes of symmetry. Moreover, two bars of adjacent units 

may share a node on the internal boundary. Therefore, the tensegrity lattice is classified as class-

2, although each unit is a class-1 tensegrity [4]. 
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3. Large-deformation analysis of a bar under forced axial deformation 

In this section, Euler buckling of a bar is incorporated for accurate simulation of large deformation 

of the tensegrity lattice. Formulations for post-buckling analysis and evaluation of maximum edge 

stress are presented for a single bar subjected to axial deformation. 

3.1 Non-dimensional formulations for bilinear elastic bar buckling 

Let P  denote the axial force applied to one end of a simply supported bar of length L , cross-

sectional area A , and cross-sectional moment of inertia I . The material of bar is assumed to 

have a linear elastic behavior with Young's modulus E . Let   be axial deformation of the bar. 

In the linear regime, P  and   are related through the equation P k=  , where /k EA L=  is 

the axial stiffness of the bar. The bar under compression buckles when P  reaches the critical 

load determined by the Euler buckling load 
2 2

cr /P EI L= − , when no geometry imperfection is 

considered. The negative sign for crP  indicates that the critical (buckling) load is compressive.  

 

Figure 3. Bilinear elastic buckling model for axial force P  and axial deformation  . 

 

The simplest model for Euler buckling is a bilinear model as shown in Figure 3, where the axial 

force is constant after buckling (this is an approximation to the elastica solution, in which the 

post-buckling regime is dictated by elliptical integrals). This load-deformation relation for a bar 

can be expressed as 

 
cr cr

cr

if  (after buckling)
( )

if  (before buckling)

P
P

k

  
 = 

   
 (4) 

where cr  ( 0)  is the critical axial deformation corresponding to the Euler buckling load 

crP P=  ( 0) . Here, we have  
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2

cr

I

AL


 = −  (5) 

Assuming the bar remains in elastic range, this nonlinear behavior is purely attributed to 

geometrical nonlinearity, thus it is fully reversible. Consequently, for the forced axial deformation, 

the load-deformation relation can be expressed in terms of the potential energy ( )W  , which is 

the elastic strain energy in this case, such that ( ) d ( ) / dP W =   . 

For the sake of generality, we define the non-dimensional bar deformation  ( 0)  as follows:  

 
cr| |




=


 (6) 

from which we have the following equation for the case before buckling: 

 cr cr

cr

| | | |
| |

k k P 


 =  =


 (7) 

Therefore, the load-deformation relation in Eq. (4) can be expressed as  

 cr( ) | | ( )P P p = , where 
1 if 1

( )
if 1

p



 

−  −
= 

 −
 (8) 

The nonlinear strain energy W  
is 

 ( ) ( )dW P =    (9) 

Alternatively, the strain energy can be written in terms of the non-dimensional bar deformation 


 

by changing variable as cr| | =  : 

 cr cr cr cr cr cr( ) | | ( ) | | d | | ( )d | | ( )W P p P p P w     =  =  =    (10) 

where ( )w   is the non-dimensional strain energy, which can be obtained as follows from 

integration for each region of   by assuming zero strain energy at the origin and continuity 

between different regions:  
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2

1
if 1

2
( )

1
if 1

2

w

 



 


− −  −

= 
  −


 (11) 

Note that the corresponding bar force P  and tangent stiffness K  can be obtained by simple 

differentiation of ( )W   with respect to   using the chain rule. 

3.2 Smooth model for post-buckling approximation 

The piecewise definitions of the strain energy and the corresponding force-deformation relation, 

given in Section 3.1, can lead to both numerical and analytical challenges, when we analyze 

structures in nonlinear regimes with buckled bars. Moreover, imperfection in geometry of the bars 

has not been considered in the bilinear buckling model. Thus, we introduce a smooth elastic strain 

energy ( )w   that can serve as an approximation of Eq. (11) for the behavior of slender bars 

under compression:  

 

 
( 1)

2 2

1 1
( ) dilog( ) dilog( 1)w e e e    

 

+= − + − − +  (12) 

where 0   is a parameter for controlling the smoothness of the approximation around the 

critical point, and dilog( )  is the dilogarithm function defined as 

 
1

ln( )
dilog( ) d

1

t
t

t



 =
−  (13) 

We will now show that the approximation ( ) ( )w w →  when  → . The first term on the 

right-hand side of Eq. (12) is independent of  , and the second term is trivial when we take the 

limit  → :  

 
2

1 1
lim dilog( )

2
e

 →

 
= − 

 
 (14) 

Thus, we have 

 ( 1)

2

1 1
lim ( ) lim dilog( 1)

2
w e e  

 
 



+

→ →

 
= − − − − + 

 
 (15) 
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The value of the limit in the last term in Eq. (15) depends on the value of  , yielding  

 
( 1)

22

0 if 1
1

lim dilog( 1) 1 1
if 1

2 2

e e  





  

+

→

 −
  

− + =  
+ +  −  



 (16) 

Hence, we have the non-dimensional strain energy as  

 
2

1
if 1

2
( ) lim ( )

1
if 1

2

w w


 

 

 
→


− −  −

= = 
  −


 (17) 

and the approximated strain energy ( )W   is given as 

 cr cr( ) | | ( )W P w =      (18) 

The corresponding approximated bar force ( )P   is obtained as follows:  

 
cr

cr

d d d d 1
( ) | | ( )

d d d d | |

W W W
P P p


 

 
= = = =

  
    (19) 

where the non-dimensional approximate bar force ( )p   is given by 

 ( 1)d ( ) 1
( ) 1 ln( 1)

d

w
p e e  


 

+= = − + − +     (20) 

Analogously, the approximated tangent stiffness ( )K   is given by 

 cr

cr

| |
( ) ( )

| |

P
K k =


, where 

( 1)

( 1)

d
( )

d 1

p e e
k

e e

  

  




+

+

−
= =

− +
    (21) 

Note that the scalar 1/   can be interpreted as a measure of imperfection of the beam. We can 

have smooth relations close enough to a perfect bar with bilinear relation when 1/   is small 

enough. That is, the strain energy behaves as a perfect bar when the imperfection vanishes; i.e., 

1/ 0 → . As 1/   increases, the transition between the two regimes becomes smoother, as it is 

a beam with an imperfection. 
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Figure 4. A buckled bar with sinusoidal curve. 

 

3.3 Yield condition for a buckled bar 

The approximation of the strain energy and consequent load and stiffness approximations 

included in the previous section do not require knowledge about the actual off-axis deformation 

of the beam after bulking. However, an estimation of such shape is required to determine the 

maximum stress experienced along the bent beam to establish realistic load (or deformation) 

limits in the optimization problem. In order to determine the relation between axial deformation 

and maximum stress on the beam we assume that the buckled bar has a sinusoidal shape as shown 

in Figure 4. In the large-deformation analysis of a slender bar, the critical deformation cr| |  is 

small, and the change in the distance between the two end nodes is not significant. Therefore, we 

define the lateral deformation y of the buckled bar, based on the standard Lagrangian formulation, 

as a function of the axial coordinate x at the undeformed state as 

 0

0

sin ,    (0 )y b x x L
L


=       (22) 

where b is the deformation in the middle of the buckled beam in y-direction. By numerically 

fitting lengths of the straight and curved bars, respectively, before and after buckling, we can find 

the relation between b and  . 

It is obvious from Figure 4 that the maximum bending moment M occurs in the middle of the 

buckled bar, which is derived as 

 cr| |M P b=     (23) 

Moreover, the maximum absolute value of the stress max  exists at the compressive edge in the 

middle of the buckled bar; i.e., max  is computed using the section modulus bZ  as 
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 cr
max

b

| |P M

A Z
 = +     (24) 

  

Figure 5. Rectangular cross section of a bar. 

 

In this study, we consider the rectangular cross section as shown in Figure 5, which has the 

thickness t (< a) in y-direction and the width a in the perpendicular axis. The maximum stress 

max  is written as follows, since the beam deforms around the weak (y-)axis: 

 
2 3 2 2 3 2 2

0 0
max 2 2

0

/ (12 ) [ / (12 )] ( 6 )

/ 6 12

Ebt L Ebt L b Et t b

bt bt L

  


+
= + =        (25) 

To guarantee the buckled bar remains in the elastic range, we have the following constraint on 

max  

 max y      (26) 

where y  is the yield stress of the material. In the following optimization problem, we vary the 

width a in proportion to the cross-sectional area A with a fixed thickness t. Hence, we have the 

following inequality constraint for the lateral deformation b of each bar:  

 

2

y 0

2
ˆ

2

6

L t
b b

Et




 −=     (27) 

4. Formulation of optimization problem 

In the optimization problem, the objective function is the strain energy S  stored in the tensegrity 

lattice, before any bar yields violating Eq. (26) or Eq. (27). Here, for simplicity, the strain and 

stress due to initial prestress is included in evaluation of the total strain energy. A small value is 

assigned for the radius of gyration of the bar section so that Euler buckling precedes the yielding 

of a bar. 

t

a
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As explained in Section 2, the shape of a tensegrity is determined by the force densities only. The 

force density bq  ( 0)  of the bars, with a fixed value e 1.0q =  for the edge cables, is varied 

as a parameter to change the shape of the tensegrity lattice, but it is not considered as a design 

variable in this study; and therefore, the undeformed shape does not change during the 

optimization process. Let the nominal volume of the structure denote the volume of the smallest 

cuboid in which the structure is inscribed. The scales of the tensegrity lattices corresponding to 

various values of bq  are specified so that they have the same nominal volume.  

The cross-sectional areas of bars and cables are denoted by bA  and cA , respectively, and they 

are chosen as design variables. Let bL  and cL  denote the total lengths of bars and cables, 

respectively. The constraints are given as follows so that the total material volume does not 

change from its initial volume 0V : 

 b b c c 0A L A L V+ =  (28) 

Another design variable is the scaling coefficient   representing the level of prestresses. It is 

multiplied to the axial forces of all members at the initial undeformed state derived from the self-

equilibrium analysis in Section 2. 

The optimization problem for finding bA , cA , and   to maximize the total strain energy 

cb( , , )AS A   stored before any bar yields is formulated as 

 

b

b c c 0

L U
b b b

L U
c c c

U

c

b

L

, , )

subject to  

                 

             

Maximize  

    

                 

(S A

A L A L V

A A A

A A A

A





 

+ =

 

 

 

 (29) 

where the superscripts ‘U’ and ‘L’ indicate the upper and lower bounds of the variables. 

Note that size of the lattice can be scaled uniformly after obtaining an optimal solution for the 

predefined size. Suppose the dimension of the lattice is scaled by the factor s; i.e., the length L0, 

the thickness t, and the width a are respectively scaled to sL0, st, and sa. Accordingly, the cross-

sectional areas bA  and cA  become 2

bs A  and 2

cs A , respectively. Moreover, the tangent 

stiffness matrix K  becomes sK , if the specified stress level is also scaled by s to 2s  . From 
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Eq. (27), the upper bound deflection b̂  of the bar becomes ˆsb , leading to the fact that the 

maximum stress max  in Eq. (25) does not change. Hence,   becomes 2s  , and the reaction 

force is multiplied by 
2s . The stored strain energy S becomes s3S, since the scale for the 

displacement and axial deformation is s. On the other hand, when the specified material volume 

0V  is scaled by the factor s for the lattice with the fixed force density bq , the optimal values of 

the prestress level   and cross-sectional areas bA  and cA , and consequently, the reaction 

force and the stored strain energy S are proportionally scaled by s. 

5. Numerical examples 

We optimize an eight-unit tensegrity lattice as shown in Figure 1. The material of all members 

(including bars and cables) is steel with Young's modulus E (= 2.05105 N/mm2). The yield stress 

of the bars is 500 N/mm2, and that of the cables is assumed to be sufficiently large so that cables 

remain in elastic range. The nominal volume of the tensegrity lattice is assigned as 0.032 m3, and 

consequently, the bar length is about 170 mm. The radius of gyration around the week axis of the 

bars with rectangular section is assumed to be 0.3 mm; i.e., the thickness t is 1.04 mm, so that 

elastic buckling occurs before yielding. 

In the examples, we adopt 16 =  for approximation of the perfectly bilinear axial force-

deformation relation as shown in Figure 6. The blue chain line shows variation of the non-

dimensional axial force ( )p   with respect to the non-dimensional axial deformation   for a 

bar. The variations of non-dimensional strain energy ( )w   and stiffness ( )k   with respect to 

the non-dimensional axial deformation   for the same bar are plotted as solid red and dotted 

green lines respectively.  
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Figure 6. Variations of the non-dimensional approximated axial force p , strain energy w , and 

stiffness k  with respect to the non-dimensional axial deformation   ( 16 = ). 

In the bottom plane, Z-directional displacement is constrained at all nodes, X- and Y-directional 

displacements are constrained at one node, and X- or Y-directional displacement at two other 

nodes is constrained. This way, rigid-body motions of the tensegrity lattice are constrained 

allowing uniform expansion of the bottom squares. On the other hand, the 16 nodes in the top 

plane are enforced to move downward in the negative Z-direction with the same magnitude 

without displacement constraints in X- and Y-directions; thus, the top squares can also expand 

uniformly. Forced displacement in the negative Z-direction is applied incrementally with the 

constant increment 0.2 mm at each loading step. Deformation of the structure is computed using 

displacement increment method, and the unbalanced forces are reduced using Newton iteration. 

In the large-deformation analysis in this study, the compressive behavior of a bar is computed 

using the relation presented in Section 3.2, while tension in the bar is allowed. Slackening of 

cables is checked after the optimization procedure. Tangent stiffness matrix is derived as sum of 

the linear stiffness matrix and the geometrical stiffness matrix [1]. The maximum stress of each 

bar after buckling is computed using Eq. (25), and the incremental step is terminated when the 

yield condition in Eq. (26) is violated. Strain energy stored in the members is computed from Eqs. 

(12) and (18). 

As noted in Section 2, each truncated octahedral unit is super-stable when b1 0q−    while 

eq  is fixed at 1.0. Therefore, the parameter bq  is varied as −0.3, −0.4, −0.5, −0.6, −0.7, and 
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−0.8. The specified total material volume of members is 2.2687103 mm3. The lower and upper 

bounds of the stress level   are 0.01 and 2.0, respectively. The lower and upper bounds of cross-

sectional areas are 1.0 and 50.0 mm2, respectively, for the bars, and 0.1 and 5.0 mm2, respectively, 

for the cables. The optimization problem is solved using sequential quadratic programming 

available as the function fmincon in the optimization toolbox of MATLAB R2018a. Sensitivity 

coefficients of the objective function are computed using finite difference approximation. 

Optimal solutions as well as the optimal objective values are listed in Table 1 for various values 

of bq . The final vertical downward displacement d, when the maximum stress reaches the yield 

stress, is also shown in Table 1 for each optimal solution. The cross-sectional area of cables has 

its lower-bound value for almost all cases except for b 0.7q = −  and −0.8, and the cross-sectional 

area of bars increases as bq  is decreased. There is no obvious relation between the stress level 

and the objective function value; however, both of them have the largest values for the case of 

b 0.6q = − , and both of the values for b 0.2q = −  are larger than those for b 0.3q = − . The 

deformed shapes of the optimal solutions are shown in Figure 7. As indicated in Table 1, the total 

length bL  of bars decreases as bq  decreases; accordingly, the squares at the truncated vertices 

of the octahedron become smaller and the angle between a bar and Z-axis becomes smaller; 

consequently, the initial stiffness increases.  

Table 1: Optimization results for different shapes of the tensegrity lattice. 

bq  bL   

(104mm) 

bA  

(mm2) 

cA  

(mm2) 
  S  (Nmm) d (mm) 

− 1.6683 4.1038 0.1000 0.4315 1452.5  47.8 

−0.3 1.5682 4.3688 0.1000 0.4222 719.2  34.2 

−0.4 1.4734 4.6536 0.1000 0.5159 732.8  49.8 

−0.5 1.3873 4.9467 0.1000 0.5693 1943.4  49.8 

−0.6 1.3114 5.2374 0.1000 0.5823 3098.4  48.8 

− 1.2453 5.4791 0.1403 0.2512 2215.4  30.4 

−0.8 1.1865 5.7980 0.1005 0.3619 1952.6  20.8 

 

Relation between the vertical downward displacement of the top nodes and the sum of vertical 

reaction forces are plotted in Figure 8. As seen from the figure, the vertical stiffness, which is 

indicated by the slope of the curve, mostly decreases as the downward displacement is increased, 

although hardening occurs for the optimal solutions with bq  close to −1. Furthermore, the 

maximum reaction force increases as bq  is decreased except for the case of b 0.3q = − . The 
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structure has a limit-point-type instability for b 0.8q = − ; i.e., it has a snap-through behavior if 

the deformation is controlled by the vertical load instead of the vertical displacement. 

Discontinuity in the tangent stiffness occurs when a bar buckles.  

The maximum and minimum axial forces of each type of members are plotted with respect to the 

vertical displacement in Figure 9. Note that the axial force has positive value in tensile state. The 

green lines are the axial forces that take the maximum or minimum values after undergoing some 

amount of deformation. The number of buckled bars increases as vertical displacement is 

increased. However, the maximum and minimum axial forces do not change so much in the large 

deformation range, which means that the increase of reaction force in Figure 8 is due to the 

geometrical effect such as change in the member directions. Although we do not consider 

slackening or yielding of cables, the cable forces have non-smooth distributions, which is caused 

by buckling of bars. 

The strain energy stored in cables, bars, and all members are respectively plotted with respect to 

the vertical displacement in Figure 10. It can be observed that the strain energy in the bars has a 

small proportion compared to that in the cables in the early stage before buckling, and the 

proportion increases rapidly after buckling. At the final stage where one of the bars yields, the 

strain energy in the bars is much greater than that in the cables, ranging from 1.47 (qb = −0.8) to 

7.25 (qb = −0.2) times, although there are much less bars than cables. 

The minimum eigenvalue of the tangent stiffness matrix is plotted with respect to the vertical 

displacement in Figure 11 to evaluate the stiffness in the weakest direction. The minimum 

eigenvalue of the tangent stiffness matrix is positive, showing that the structure is stable during 

the enforced displacement, except for the case of qb = −0.8: there exists a nearly-zero eigenvalue, 

when the vertical displacement is 14.6 mm and the reaction force achieves its largest value. The 

displacement mode of the structure corresponding to this nearly-zero eigenvalue is shown in 

Figure 12 with an arrow at each node. It can be observed that most of the nodal displacements are 

almost perpendicular to the vertical enforced displacement, showing a bifurcation type buckling 

could occur at this point. 

Figure 13 shows the relation between forced displacement and reaction force in the horizontal 

direction at the nodes in the top plane. The horizontal displacement in the negative X-direction is 
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applied at the top nodes after enforcing 20 mm vertical displacement. For the cases with b 0.2q = −  

and −0.3 in Figures 13(a) and (b), analysis terminated due to bar yielding, while for the cases with 

b 0.5q = −  and −0.7 in Figures 13(c) and (d), analysis terminated due to instability in the range of 

small horizontal deformation. Therefore, the optimized tensegrity lattice after vertical 

deformation has positive horizontal stiffness when the force density of bars is sufficiently large 

(negative with small absolute value). However, horizontal stiffness may be lost when bq  is 

small due to shear deformation of the upper and lower units. 

6. Conclusions 

An optimization method has been presented for tensegrity lattices composed of eight truncated 

octahedral units, in which the stored strain energy before a bar yields under forced vertical 

displacement is maximized under constraints on the structural material volume.  

A new formulation is presented for the relation between the axial compressive force and 

displacement of a bar using dilogarithm function for smoothing the discontinuity due to buckling. 

The maximum edge stress after buckling is estimated assuming the lateral displacement in 

sinusoidal shape. Thus, the constraint on the yielding of bar is implicitly incorporated in the 

optimization problem by terminating the analysis when yielding occurs in a bar. As a result of 

uniformly scaling the optimal solution to a specific size, energy absorption by the structure is 

scaled in a cubic manner. 

It has been shown in the numerical examples that a flexible structure with degrading vertical 

stiffness is obtained as a result of optimization. Although structures generally retain compression 

stiffness even after large deformation, in some cases a bifurcation buckling in the horizontal 

direction may occur due to loss of stiffness for shear deformation of the units. The variations of 

axial forces and strain energy against vertical displacement are also investigated to clarify the 

mechanism of degrading stiffness. Although the axial forces in the members become almost 

constant in the large deformation, the reaction force increases due to the change of directions of 

members. The strain energy is stored mostly in cables when the deformation is small, and the bars 

have much greater contribution to energy absorption in the large deformation range, emphasizing 

the advantage in considering bar buckling for energy absorption purpose. 
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It has been confirmed in the numerical examples that the optimized tensegrity lattice after vertical 

deformation has positive horizontal stiffness when the force density of bars is sufficiently large 

(negative with small absolute value). In this way, a tensegrity lattice with flexibility in vertical 

direction and adequate horizontal shear stiffness can be obtained for application as an isolation 

system mitigating vibration of the structure against vertical motion. 

Finally, our study was limited to the behavior of an 8-unit elementary lattice, due to its ability to 

tile the entire 3-dimensional space. Further research should investigate if lattice size-effects are 

present. 
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(a) b 0.3q = −               (b) b 0.5q = −  

 

(c) b 0.7q = −  

Figure 7:  Deformed shape of optimal solutions. 

  



 
 

23 

         

(a) b 0.2q = −                         (b) b 0.3q = −  

        

(c) b 0.5q = −                     (d) b 0.7q = −  

   

(e) b 0.8q = −  

Figure 8:  Relation between vertical displacement and reaction force. 
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(a) b 0.2q = −               (b) b 0.3q = −  

   

(c) b 0.5q = −            (d) b 0.7q = −  

  

(e) b 0.8q = −  

Figure 9:  Relations between vertical displacement and member forces. 
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(a) b 0.2q = −                 (b) b 0.3q = −  

            

(c) b 0.5q = −              (d) b 0.7q = −  

     

                                    (e) b 0.8q = −  

Figure 10:  Relation between vertical displacement and strain energy. 
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(a) b 0.2q = −                 (b) b 0.3q = −  

         

(c) b 0.5q = −                       (d) b 0.7q = −  

   

(e) b 0.8q = −  

Figure 11:  Relation between vertical displacement and minimum eigenvalue of tangent 

stiffness matrix. 
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(a) diagonal view                       (b) top view 

Figure 12: Displacement mode corresponding to the nearly-zero eigenvalue of tangent stiffness 

for qb = −0.8. 

 

          

(a) b 0.2q = −                       (b) b 0.3q = −  

          

(c) b 0.5q = −     (d) b 0.7q = −  

Figure 13:  Horizontal displacement and horizontal reaction force.  
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