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Abstract 

This work proposes a Bayesian optimization (BO) method for solving multi-objective robust design 

optimization (RDO) problems of steel frames under aleatory uncertainty in external loads and material 

properties. Joint and individual probabilistic constrained RDO problems are formulated to consider two 

different ways the frame reaches its collapse state. Each problem involves three conflicting objective 

functions, namely, the total mass of the frame, the mean and variance of the maximum inter-story drift. 

Since the uncertain objective and probabilistic constraint functions of both problems are implicit within 

a finite element analysis program and the computation of the probabilistic constraints is an NP-hard 

problem, BO is used to guide the optimization process toward better solutions after it completes an 

iteration and offers a set of near Pareto-optimal solutions when it terminates. Specifically, Bayesian 

regression models called Gaussian processes (GPs) serve as surrogates for the structural responses. Two 

acquisition functions are then developed for the two RDO problems and a maximization problem of 

these functions is formulated as a mixed-integer nonlinear programming (MINLP) problem. A new 

random search coupled with simulated annealing is devised to solve the MINLP problem, thereby 

locating the most promising point in the input variable space at which the current solutions maximize 

their chance to be improved and the GP models are refined before the BO starts a new iteration. A test 

problem and two design examples show that exact or good Pareto-optimal solutions to the RDO 

problems can be found by the proposed method with 20 iterations. 
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1. Introduction 

In designing an engineering structure, design parameters such as structural dimensions, material 

properties, and external loads are uncertain in nature [1,2]. Designers often accommodate this issue by 

seeking a robust design for the structure according to specified design objectives and specifications. 

With the aim of minimizing the worst value of the objective function, the robust design can be found 

using a minimax approach that takes into account the worst effects of the uncertain parameters [3–6]. 

If the minimum gap between the worst and nominal values of the objective function is of interest, the 

designers can use a gap minimization approach for their design [7]. Meanwhile, when the goal is to 

minimize the sensitivity of the uncertain objective function, a variance minimization approach [8,9] can 

be adopted by which the robustness of the structure can be measured by variation of the uncertain 

objective function. This study focuses on the latter approach. 

 In the variance minimization approach, the uncertain parameters are described by their probability 

density functions (PDFs), or equivalently, their cumulative distribution functions (CDFs). Then, the 

robust design optimization (RDO) problem is commonly formulated as a multi-objective optimization 

problem to manage the trade-off between the expected and variance values of the uncertain objective 

function [10–15]. Since the uncertain parameters also affect the constraints of the RDO problem, it is 

natural to formulate the problem using a set of probabilistic constraints (i.e., chance constraints [4]), 

which are related to the probabilities that certain design requirements are satisfied under the effects of 

uncertainty. Particularly, in this study, two multi-objective RDO problems of a steel frame are 

investigated under aleatory uncertainty in material properties and external loads. These problems 

correspond to two different ways the frame approaches its collapse state. When the limit state functions 

(LSFs) correlate with each other, the first RDO problem is formulated with a joint probabilistic 

constraint, where the probability is taken over the entire system of random LSFs. On the other hand, 

the second RDO problem is formulated with a finite number of individual probabilistic constraints on 

the uncertain LSFs, which are statistically independent. The joint and individual constrained RDO 
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problems also set the basis for further application to a general case where all possible failure modes for 

a structure can be identified. 

Let 𝐬 = [𝑠1, … , 𝑠𝑑1]
𝑇
⊂  𝑑1  denote a 𝑑1-dimensional vector of discrete design variables of the 

steel frame. Each element of 𝐬 is selected from a given list of standard steel sections, i.e., 𝑠𝑖 ∈ 𝑖 

(𝑖 = 1,… , 𝑑1). Let 𝐫 denote a 𝑑2-dimensional vector of continuous uncertain parameters, i.e., material 

properties and external loads. The marginal PDFs of 𝐫 elements are given and supported on a set  ⊂

 𝑑2 . Let 𝑓1(𝐬) : 𝑑1 →   and 𝑓(𝐬, 𝐫) : 𝑑1 × 𝑑2 →   represent the total mass and the LSF 

corresponding to the maximum inter-story drift of the frame, respectively. The mean and variance of 

𝑓(𝐬, 𝐫) are denoted as 𝑓2(𝐬) = [𝑓(𝐬, 𝐫)] and 𝑓3(𝐬) = var[𝑓(𝐬, 𝐫)], respectively. Also, let  𝑔𝑖(𝐬, 𝐫): 

𝑑1 × 𝑑2 →  represent the LSFs of certain requirements on the serviceability and strength of the 

frame, and ℎ𝑗(𝐬) : 
𝑑1 →   indicate deterministic constraints on the geometry of the structural 

elements. By extending the authors’ work [15] to include the joint and individual probabilistic 

constraints in the optimization problem, this study formulates the following two multi-objective RDO 

problems: 

min.
𝐬
[𝑓1(𝐬), 𝑓2(𝐬), 𝑓3(𝐬)] 

subject to 

 [𝑔𝑖(𝐬, 𝐫) ≤ 0, 𝑖 = 1,… , 𝐼 ] ≥ 1 − 𝜀 

 ℎ𝑗(𝐬) ≤ 0 ,  𝑗 = 1,… , 𝐽 

 𝑠𝑖 ∈ 𝑖,  𝑖 = 1,… , 𝑑1 (1) 

where [∙] denotes the probability of occurring [∙] with respect to all instances of 𝐫 and 𝜀 ∈ (0,1) is a 

prescribed risk level of the joint probabilistic constraint. 

min.
𝐬
[𝑓1(𝐬), 𝑓2(𝐬), 𝑓3(𝐬)]  

subject to 

 [𝑔𝑖(𝐬, 𝐫) ≤ 0 ] ≥ 1 − 𝜀𝑖,  𝑖 = 1,… , 𝐼 

 ℎ𝑗(𝐬) ≤ 0 ,  𝑗 = 1,… , 𝐽 (2) 
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 𝑠𝑖 ∈ 𝑖,  𝑖 = 1,… , 𝑑1 

where 𝜀𝑖 ∈ (0,1) is a prescribed risk level of the 𝑖th probabilistic constraint. 

Although problems (1) and (2) are important for finding a robust design of a frame, they are very 

difficult to solve due to the following four issues. First, a search that directly calculates the objective 

and constraint functions during the optimization process may be impossible because uncertain objective 

and probabilistic constraint functions of these problems are non-linear and implicit within a finite 

element analysis program. Second, checking the feasibility of a specified candidate solution to both 

problems is challenging as the computation of the probabilistic constraints is an NP-hard problem [16]. 

For this purpose, sampling methods, e.g., the Monte-Carlo simulation (MCS), can be used, but they are 

computationally demanding due to the curse of dimensionality. Third, evaluation of the mean and 

variance values of the uncertain objective function is a challenging task. Although the Monte-Carlo 

integration [17] and polynomial chaos expansion [18] are two reliable and simple methods to handle 

this task, they are also subject to the curse of dimensionality. The Taylor series approximation [19] and 

Bayes-Hermite quadrature [20] may be used with respective restrictions that the uncertain objective 

function is differentiable and the uncertain parameters should be normally distributed. Finally, it may 

be impossible to obtain exact optimal solutions to the two problems because their feasible regions, 

defined by the probability function [∙] , are non-convex in general. Existing approaches in the 

literature, e.g., deterministic model approach [21], scenario approach [22], sample average 

approximation approach [23], and convex approximation approach [24], have attempted to find 

approximate solutions to several special cases of problems (1) and (2). For example, the deterministic 

model approach solves the problems with linear objective and constraint functions, and normally 

distributed random parameters. The scenario approach requires that the objective and probabilistic 

constraint functions should be convex with respect to the design variables 𝐬. The sample average 

approximation approach works well when the objective function is linear and explicitly given, while 

the convex approximation approach relies on the assumption that the constraint functions 𝑔𝑖(𝐬, 𝐫)  are 

convex with respect to 𝐬 for every instance of 𝐫. In addition to the scope of their applications, the 

performance of the existing approaches in solving multi-objective problems remains unknown as they 
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have been only applied to single-objective problems. Obviously, it is inconvenient to use the 

aforementioned approaches to solve the RDO problems of the steel frames in this study.  

Bayesian optimization (BO) [25,26], also well-known as the Efficient Global Optimization (EGO) 

[27], is a powerful sequential method to solve optimization problems with unknown objective and/or 

constraint functions as problems (1) and (2). It consists of two primary ingredients, i.e., a Bayesian 

regression model called Gaussian process (GP) and an acquisition function. The GP approximates the 

uncertain objective and probabilistic constraint functions, while the acquisition function guides the 

algorithm toward better solutions by deciding where the GP approximations should be refined. Different 

acquisition functions for solving single-objective problems are available in a recent tutorial [28]. The 

goal is then to find a new point in the joint space of 𝐬 and 𝐫 (or input variable space) that maximizes the 

acquisition function, and to use this point for improving accuracy of the approximate objective and/or 

constraint functions. The BO, therefore, iterates through constructing GP models, maximizing the 

acquisition function to locate the new sampling point, and refining the GP models at that point. It outputs 

the solution when the number of iterations reaches an upper bound. Recently, the BO has demonstrated 

its ability in solving combinatorial optimization problems [29], designing materials with mixed 

quantitative and qualitative variables [30], and solving nominal multi-objective optimization problems 

of structures [31,32]. 

This study proposes using the BO for solving problems (1) and (2) as it does not require special 

forms of the uncertain objective and probabilistic constraint functions, contrary to the existing 

approaches. In this way, the non-linear and implicit nature of problems (1) and (2) can be addressed by 

using the mean functions of the GP models as surrogates for the uncertain objective and probabilistic 

constraint functions. These surrogates, in turn, facilitate the evaluation of the probabilistic constraints 

for a particular candidate solution 𝐬 using a saddlepoint approximation developed by the authors [33]. 

Thus, the feasibility of 𝐬 can be reasonably confirmed in each iteration of the BO. Furthermore, the 

mean and variance of the objective function 𝑓(𝐬, 𝐫) for a given 𝐬 can be estimated using the second-

order Taylor series approximation, in which the gradient and Hessian of 𝑓(𝐬, 𝐫) with respect to 𝐫 are 
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calculated based on the mean function of its GP surrogate. With reasonable calculations of the 

objectives and constraints of problems (1) and (2), an optimization strategy is devised to guide the BO 

toward better candidate solutions and to offer good Pareto-optimal solutions to each problem when it 

terminates. In particular, the maximization problem of an acquisition function is formulated in each 

iteration of the BO as a mixed-integer nonlinear programming (MINLP) problem that is solved using a 

novel random sampling method coupled with simulated annealing. Finally, the proposed BO is applied 

to finding the robust designs of a two-bar truss and two planar steel frames. The obtained robust designs 

are then compared with exact robust designs or verified by the MCS. 

The remainder of this paper is structured as follows. Section 2 describes two key ingredients of the 

BO in which two acquisition functions for problems (1) and (2) are developed. Section 3 introduces a 

new optimization strategy for solving the MINLP problem of the acquisition functions. The 

optimization procedure with the proposed BO is also introduced in this section. In Section 4, the 

performance of the proposed BO is demonstrated through a simple bi-objective RDO problem of a two-

bar truss. Section 5 provides two design examples of planar steel frames. Finally, Section 6 draws main 

conclusions of this paper. Detailed mathematical foundations of the GP model and the saddlepoint 

approximation are provided in Appendices A and B, respectively. 

2. Proposed Bayesian optimization 

2.1. GP models as surrogates for uncertain objective and probabilistic constraint functions 

Consider a training dataset  = {𝐗, 𝐲} = {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑁 , where 𝐱𝑖 = [𝐬𝑖

𝑇 , 𝐫𝑖
𝑇]
𝑇
∈ 𝑑 (𝑑 = 𝑑1 + 𝑑2) are 𝑑-

dimensional vectors of uncertain input variables and 𝑦𝑖 ∈  are the corresponding output variables (or 

uncertain LSFs).  is created by randomly generating a set of 𝑁 feasible samples of the discrete design 

variables 𝐬 and the uncertain parameters 𝐫 using Latin-hypercube sampling (LHS). The number of 

initial sample points 𝑁 depends on the number of design variables and uncertain parameters 𝑑, for 

example, 𝑁 ≥ 15𝑑 [34]. As 𝐬 for a frame design is integer, the values of its samples are determined by 

rounding the corresponding real values generated by LHS to the nearest integers. The LSFs 𝑦𝑖  are 
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calculated using a finite element analysis. Since it is desirable to obtain highly accurate GP models for 

the uncertain objective function and the constraint functions over the region of non-positive LSFs 

𝑓(𝐬, 𝐫) ≤ 0 and 𝑔𝑖(𝐬, 𝐫) ≤ 0, the feasible samples for creating  are defined as those associated with 

these non-positive LSFs. 

To describe the relationship between the uncertain input and output variables, the mapping 𝑦 =

𝑔(𝐱) :  𝑑 →   is established, where 𝑔(𝐱)  at a particular input variable vector 𝐱  is a probabilistic 

regression model that is characterized by a mean and a variance, for which the detailed derivations are 

provided in Appendix A. More specifically, the posterior distribution in Eq. (A.7) is used in each 

iteration of the BO as 𝑔(𝐱), which can be either the uncertain objective function or the probabilistic 

constraint functions of problems (1) and (2). Starting with a Gaussian prior over 𝑔(𝐱) and a likelihood 

in Eq. (A.1), the posterior distribution is derived by conditioning on the training dataset  . This 

posterior distribution contains information about the mean and variance of the prediction of an output 

variable for a new set of the input variables, as provided in Eqs. (A.8) and (A.9), respectively. 

2.2. Acquisition functions 

In the BO context, the acquisition function maps our belief about an improvement in the current solution 

to a measure of how promising each point in the input variable space is if it is evaluated in the next 

iteration. Thus, the most promising point should maximize the acquisition function. This point is then 

used to refine the GP surrogates for the uncertain objective and probabilistic constraint functions before 

the BO starts a new iteration. 

Let Ω={𝐟1, … , 𝐟𝑀} ∈ 
𝑘

 and 𝐟R ∈ 
𝑘

 denote the current set of 𝑀  Pareto-optimal solutions in a 

space of 𝑘 objective functions and a fixed reference point that is dominated by all elements of Ω, 

respectively. Here, 𝐟R does not necessarily correspond to a particular vector of the input variables. As a 

result, Ω and 𝐟R together define a so-called hypervolume (HV) indicator measure [35] that is used to 

assess the quality of different sets of Pareto-optimal solutions to a multi-objective optimization problem. 

In other words, if two different sets of Pareto-optimal solutions to the multi-objective optimization 

problem are in consideration, the set with larger HV  is better than the other one. For a better 
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understanding, Fig. 1(a) shows an example of the HV for a set of four Pareto-optimal solutions to a bi-

objective minimization problem. In this case, the HV is defined by an area measure. In a general case, 

however, it is a Lebesgue measure of the 𝑘-dimensional subspace dominated by Ω, and is bounded 

above by 𝐟R. Mathematically, the HV is given as follow: 

HV(Ω, 𝐟R) = Λ({𝐟 ∈ 
𝑘|∃𝐟𝑚 ∈ Ω : 𝐟𝑚 ≼ 𝐟 and 𝐟 ≼ 𝐟R }) (3) 

where Λ(∙) denotes the Lebesgue measure,  𝐟 is a point in the 𝑘-dimensional space of the objective 

functions, and 𝐟𝑚 ≼ 𝐟 implies 𝐟𝑚  dominates 𝐟. The HV in this study is estimated using a sampling-

based technique incorporated in the MATLAB function hypervolume [36]. 

To improve the solutions after each iteration of the BO, a new sampling point 𝐱n = [𝐬n
𝑇 , 𝐫n

𝑇]𝑇 in the 

input variable space should be determined so that the union of its objective function vector and Ω forms 

a new measure of HV  better than that of the previous iteration. To indicate this improvement, a 

hypervolume improvement indicator [37], denoted as HVI, is formulated as 

HVI(𝐟|Ω, 𝐟R) = HV(𝐟 ∪ Ω, 𝐟R) − HV(Ω, 𝐟R) (4) 

where 𝐟 ∪ Ω denotes the union of 𝐟 and Ω. It is desirable that HVI > 0 for an improvement in the HV. 

For a significant improvement, the HVI should be maximized. Fig. 1(b) shows an example of the HVI 

(i.e., hatched area) for an objective function vector 𝐟 and a set of four Pareto-optimal solutions to a bi-

objective minimization problem. 
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Fig. 1. Examples of the HV and HVI with two objective functions: (a) HV (gray region); (b) HVI 

(hatched region). 
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Although the HVI in Eq. (4) can be used to assess whether an improvement in the current solutions 

is achieved after the BO specifies the new design 𝐬n for the next iteration, it becomes useless if 𝐬n is 

infeasible. This requirement, in the presence of uncertainty, can be transformed into maximizing the 

chance that a candidate solution 𝐬 satisfies both the probabilistic and deterministic constraints of each 

RDO problem. 

For problem (1), let 1,1(𝐬, 𝐫) be a function to express the expectation that 𝐬 satisfies the joint 

probabilistic constraint. Here, 𝐫 is referred to as a particular point in the random parameter space. 

1,1(𝐬, 𝐫), therefore, can be formulated as follows: 

𝑔̅(𝐬, 𝐫) = max{𝑔𝑖(𝐬, 𝐫), … , 𝑔𝐼(𝐬, 𝐫)} ≈ max{𝑔̂𝑖(𝐬, 𝐫), … , 𝑔𝐼(𝐬, 𝐫)} (5) 

1,1(𝐬, 𝐫) = [𝑔̅(𝐬, 𝐫) ≤ 0 ] − 1 + 𝜀 (6) 

where 𝑔𝑖(𝐬, 𝐫), as described by Eq. (A.7), is the GP model for the probabilistic constraint function 

𝑔𝑖(𝐬, 𝐫) . Thus, if 𝐱 = [𝐬𝑇 , 𝐫𝑇]𝑇  maximizes 1,1 , it increases the chance for 𝐬  to satisfy the joint 

probabilistic constraint of problem (1). 

For problem (2), let 1,2(𝐬, 𝐫) be a function expressing the expectation that 𝐬 satisfies all individual 

probabilistic constraints. Since 𝑔𝑖(𝐬, 𝐫) is represented by the GP model 𝑔𝑖(𝐬, 𝐫) with mean 𝜇𝑔̂𝑖(𝐬, 𝐫) and 

standard deviation 𝜎𝑔̂𝑖(𝐬, 𝐫) , and all probabilistic constraints are statistically independent in this 

problem, 1,2(𝐬, 𝐫) can be defined as follows: 

[𝑔𝑖(𝐬, 𝐫) ≤ 0 ] ≈ [𝑔𝑖(𝐬, 𝐫) ≤ 0 ] =
1

2
[1 + erf (

−𝜇𝑔̂𝑖(𝐬, 𝐫)

√2𝜎𝑔̂𝑖(𝐬, 𝐫)
)] 

(7) 

1,2(𝐬, 𝐫)=∏[[𝑔𝑖(𝐬, 𝐫) ≤ 0 ] − 1 + 𝜀𝑖]
𝐼

𝑖=1

 

                ≈∏{
1

2
[1 + erf (

−𝜇𝑔̂𝑖(𝐬, 𝐫)

√2𝜎𝑔̂𝑖(𝐬, 𝐫)
)] − 1 + 𝜀𝑖}

𝐼

𝑖=1

 
(8) 
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where erf(∙) indicates the Gauss error function to evaluate the CDF of the Gaussian variable 𝑔𝑖(𝐬, 𝐫) . 

If 𝐱 maximizes 1,2, it also increases the chance for 𝐬 to satisfy all individual probabilistic constraints 

of problem (2). 

For both problems, the following feasibility indicator function 2(𝐬) is used to indicate whether 𝐬 

satisfies all deterministic constraints ℎ𝑗(𝐬) ≤ 0 

2(𝐬) = {
1,  if ℎ𝑗(𝐬) ≤ 0,  𝑗 = 1,… , 𝐽  

0,  otherwise
 (9) 

Finally, to incorporate different improvement criteria in the objective functions and in the constraint 

functions into a single improvement criterion, the following acquisition functions α1(𝐬, 𝐫) and α2(𝐬, 𝐫) 

are formulated for problems (1) and (2), respectively. 

α1(𝐬, 𝐫) =HVI(𝐟|Ω, 𝐟R)1,1(𝐬, 𝐫)2(𝐬) (10) 

α2(𝐬, 𝐫) =HVI(𝐟|Ω, 𝐟R)1,2(𝐬, 𝐫)2(𝐬) (11) 

For each RDO problem, therefore, the next sampling point, denoted as 𝐱n = [𝐬n
𝑇 , 𝐫n

𝑇]𝑇, is the maximizer 

of the corresponding acquisition function. Maximizing α1(𝐬, 𝐫) or α2(𝐬, 𝐫) is associated with solving 

an MINLP problem because each acquisition function is nonlinear, and 𝐬  and 𝐫  are discrete and 

continuous vectors, respectively. To handle this MINLP problem, the next section develops an 

optimization strategy.  

3. Solution approach 

3.1. Sorting Pareto-optimal solutions 

Let Ωa denote a set of already-generated candidate solutions 𝐬 that consists of all design points of the 

initial training dataset at the first iteration of the BO as well as all candidate solutions generated so far 

at each of the other iterations. Based on Ωa, an elitist non-dominated sorting approach [38] is employed 

to find approximate Pareto-optimal solutions to the RDO problems in each iteration of the BO. This 

approach requires efficient evaluations of the mean and variance of the uncertain objective function, 

i.e., 𝑓2(𝐬) and 𝑓3(𝐬), and the probabilities in the probabilistic constraints of problems (1) and (2) for 
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obtaining a set of feasible solutions, denoted as Ωf. Since 𝑓(𝐬, 𝐫) in each BO iteration is approximated 

by 𝑓(𝐬, 𝐫), Eqs. (B.1) and (B.2), which are derived from the second-order Taylor series expansion, are 

used to evaluate the mean 𝑓2(𝐬)  and the variance 𝑓3(𝐬) , respectively. Furthermore, the joint and 

individual probabilistic constraints in each iteration of the BO can be estimated using a saddlepoint 

approximation [33], which is derived based on the GP surrogates for the probabilistic constraint 

functions; cf. Appendix B. 

3.2. Maximizing the acquisition functions 

The MINLP problem of two acquisition functions in Eqs. (10) and (11) can be stated as follows: 

[𝐬n, 𝐫n] = argmax
𝐬,𝐫

[α1(2)(𝐬, 𝐫)] 

subject to 

 HVI(𝐟|Ω, 𝐟R) > 0 

 𝑠𝑖 ∈ 𝑖,  𝑖 = 1,… , 𝑑1 

 𝐫 ∈  (12) 

where α1(𝐬, 𝐫)  and α2(𝐬, 𝐫)  correspond to problems (1) and (2), respectively; and the set   is 

independent of the risk levels and assigned as the 95% confidence interval of the uncertain parameters 

𝐫 to solve problem (12). 

Although several techniques are available for solving a convex MINLP problem such as branch-

and-bound method, single-tree method, multi-tree method, cutting plane method, and mixed-integer 

second-order cone program, they are not applicable to problem (12) because α1(𝐬, 𝐫) and α2(𝐬, 𝐫) are 

non-convex functions. One approach is first to replace α1(𝐬, 𝐫) and α2(𝐬, 𝐫) with piecewise linear 

approximations [39] and then to solve the resulting approximate problem using a mixed-integer linear 

programming algorithm. However, as both α1(𝐬, 𝐫) and α2(𝐬, 𝐫) are multivariate-implicit functions, 

modeling their piecewise linear approximations may be impossible. Another approach is to use 

population-based heuristic methods, e.g., genetic algorithm, differential evolution, or particle swarm 

optimization, but they would significantly increase the computational burden for the task of maximizing 

the acquisition function, especially when either 𝐬 or 𝐫 is a high-dimensional vector. 



 

12 

 

As HVI(𝐟|Ω, 𝐟R) and 2(𝐬) are functions of 𝐬, and 𝐫 only appears in 1,1(𝐬, 𝐫) and 1,2(𝐬, 𝐫), an 

optimization strategy that couples a random sampling method with simulated annealing is developed 

for solving problem (12). This strategy is an extension of a two-stage random search proposed by the 

authors [40], which includes a stage of determining 𝐫, followed by a stage of determining 𝐬 for solving 

upper- and lower-level optimization of a single-objective discrete RDO problem with deterministic 

constraints and unknown-but-bounded uncertainty in the design parameters. In this study, these two 

stages are further divided into the following four steps: (1) generate a set Ωs of a finite number of new 

candidate solutions 𝐬; (2) calculate HVI(𝐟|Ω, 𝐟R) and 2(𝐬) for each member of Ωs, and retain in Ωs the 

members that yield positive HVI(𝐟|Ω, 𝐟R), 2(𝐬) = 1, and negative values of the approximate constraint 

functions; (3) formulate problem (12) for each retained member of Ωs and solve it using simulated 

annealing [41] to find the associated uncertain parameters 𝐫; and (4) select the set of 𝐬 and 𝐫 that 

maximizes α1(𝐬, 𝐫) or α2(𝐬, 𝐫) and assign it as the next sampling point 𝐱n = [𝐬n
𝑇 , 𝐫n

𝑇]𝑇 . It is worth 

noting that any gradient-based or population-based algorithms can be used for solving problem (12) 

formulated in step (3) with a given 𝐬. However, the simulated annealing is selected in this study because 

it is able to overcome the drawbacks of both the gradient-based and population-based algorithms that 

are premature termination and computationally demanding, respectively. 

To create Ωs in the first step, two groups of new candidate solutions 𝐬 are generated. The first group 

consists of the points generated by performing random perturbations (in the design variable space) 

surrounding each of the current Pareto-optimal solutions, which can be regarded as a neighborhood 

search. In fact, each integer element of every Pareto-optimal solution is randomly increased or 

decreased by an integer value such as 1, 2, 3, or 4. Here, it is expected that a significant improvement 

in HV can be achieved by performing the neighborhood search in the design variable space for the 

current Pareto-optimal solutions even though the neighborhood in this space differs from that in the 

objective function space. Note that the generation of the first group may slow the proposed BO if the 

current Pareto-optimal solutions involve many members, say, more than 20. In this case, the Pareto-

optimal solutions in the objective function space can be first divided into a moderately small number of 

disjoint clusters using the Gaussian mixture model clustering method [42]. In this way, the solutions 
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from the same cluster can be referred to as the samples generated from a Gaussian of which the mean 

vector is defined as the center of the cluster. Then, a representative member for each cluster can be 

selected as it is nearest to the center of the cluster. Hence, the random perturbations, in the design 

variable space, can be performed surrounding each of the representative members. The second group 

of Ωs is generated by uniformly sampling points from the design domain, which can be regarded as a 

global search. Once Ωs is created, its members that already appear in the training dataset  are deleted.  

To enrich the feasible set Ωf used for sorting Pareto-optimal solutions (cf. Section 3.1), the current 

set of new candidate solutions Ωs  is added to the current set of already-generated solutions Ωa  to 

construct a new set Ωa that is used in the next iteration of the BO. 

3.3. Optimization procedure 

Fig. 2 summarizes the optimization procedure for solving problems (1) and (2) using the proposed BO. 

The following six steps are executed sequentially. 

Step 1: Generate samples of the design variables 𝐬 and the uncertain parameters 𝐫 using LHS. Also 

generate the training dataset  by performing the finite element analysis for these samples; cf. 

Section 2.1. 

Step 2: Based on the generated training dataset, construct GP models to approximate LSFs of the 

uncertain objective and probabilistic constraint functions; cf. Section 2.1 and Appendix A. 

Step 3: Sort the Pareto-optimal solutions from the set of already-generated candidate solutions Ωa; cf. 

Section 3.1. 

Step 4: Terminate the BO and output the Pareto-optimal solutions if one of the following criteria is 

satisfied: (1) the number of BO iterations reaches an upper limit, which is specified by the user 

to manage the trade-off between the solution quality and the computational cost for carrying 

out the BO; (2) the difference of the current HV and that of the previous iteration is less than a 

small positive value, e.g., 10−9; and (3) the set Ωs used for maximizing the acquisition function 

has no feasible solution; cf. Section 3.2. Otherwise, go to Step 5. 
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Step 5: Maximize the acquisition function for each RDO problem using the optimization strategy as 

described in Section 3.2 to obtain the sampling point 𝐱n for the next iteration of the BO. 

Step 6: Add 𝐱n  obtained from Step 5 to the training dataset, determine the associated structural 

responses, update the GP models for LSFs of the uncertain objective and probabilistic constraint 

functions, and reiterate from Step 3. 

Start

Stopping criterion met?

End

Construct GP models for uncertain 

objective and probabilistic 

constraint functions

Generate initial training dataset   

no

Output Pareto-optimal solutions

yes

Sort Pareto-optimal solutions 

among available candidates using 

the constructed GP models

Update GP models for uncertain 

objective and probabilistic 

constraint functions

Maximize the acquisition function 

to obtain the next sampling point 

 

Fig. 2. Proposed BO procedure. 

4. Test problem 

To demonstrate the feasibility of the proposed BO in solving a simple multi-objective RDO problem 

with probabilistic constraints, this section investigates a two-bar truss, as shown in Fig. 3, which is 

taken from Ref. [15]. The truss is subjected to an external load 𝑃 whose projections onto the horizontal 

and vertical axes, namely, 𝑃𝑥  and 𝑃𝑦 , satisfy 𝑃𝑦 = 8𝑃𝑥 . As stated in the original problem [15], two 

design variables of the truss are the cross-sectional area 𝑠1 of its members and the horizontal span 𝑠2, 

i.e., 𝐬 = [𝑠1, 𝑠2]
𝑇. The uncertain parameters include the magnitude of the external load 𝑃, and the mass 
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density 𝜌 and yield stress 𝜎y of the truss material, i.e., 𝐫 = [𝜌, 𝑃, 𝜎y]
𝑇

. Probabilistic characteristics of 

these parameters are taken from Ref. [15] as given in Table 1, where COV is the coefficient of variation 

computed by dividing the standard deviation by the mean value. 

  

s2 s2 

s1 (cm2) s1 

P

Px

Py = 8Px

1
.0

 

Fig. 3. Two-bar truss. 

Table 1 Uncertain parameters for the two-bar truss [15]. 

Parameter Description Mean COV Distribution 

𝜌 Mass density [kg/m3] 104 0.20 Lognormal 

𝑃 External load [kN] 800 0.25 Lognormal* 

𝜎y Yield stress [MPa] 1050 0.24 Normal 

* assumed 

As it is desirable to formulate a multi-objective RDO problem with conflicting objective functions 

as problems (1) and (2) for assessing the performance of the proposed BO, the truss is designed to 

minimize both the mean and standard deviation of its total mass under individual probabilistic 

constraints on the axial stress in its members. Let 𝑓∗(𝐬, 𝐫) denote the total mass of the truss, and 

𝑔1(𝐬, 𝐫)  and 𝑔2(𝐬, 𝐫)  indicate the LSFs of the axial stress in its members. The axial stress due to the 

self-weight of the truss elements is not considered to keep the problem as simple as the original problem 

[15]. Let 𝑓1(𝐬) = [𝑓∗(𝐬, 𝐫)] and 𝑓2(𝐬) = √var[𝑓
∗(𝐬, 𝐫)] represent the mean and standard deviation of 

𝑓∗(𝐬, 𝐫), respectively. The RDO problem of the truss, therefore, is formulated as follows: 
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min.
𝐬
[𝑓1(𝐬), 𝑓2(𝐬)]  

subject to 

 [𝑔1(𝐬, 𝐫) ≤ 0 ] ≥ 1 − 𝜀1 

 [𝑔2(𝐬, 𝐫) ≤ 0 ] ≥ 1 − 𝜀2 

 𝑠1 ∈ 1 = {1.0, 1.5,… , 20.0} cm
2 

 𝑠2 ∈ 2 = {0.1, 0.2,… , 2.0} m (13) 

where 1 and 2 are respectively the list of possible values of 𝑠1 and 𝑠2, and 

𝑓∗(𝐬, 𝐫) = 10−4𝜌𝑠1√1+ 𝑠2
2 (14) 

𝑔1(𝐬, 𝐫) =
5𝑃

√65𝑠1𝜎y
√1 + 𝑠2

2 (8 +
1

𝑠2
) − 1 

(15) 

𝑔2(𝐬, 𝐫) =
5𝑃

√65𝑠1𝜎y
√1 + 𝑠2

2 (8 −
1

𝑠2
) − 1 

(16) 

Before applying the proposed BO to solving problem (13), it should be noted that the mean 𝑓1(𝐬) 

can be derived as a linear function of the standard deviation 𝑓2(𝐬) , i.e., 𝑓1(𝐬) = ([𝜌]/

√var[𝜌])𝑓2(𝐬) = 5𝑓2(𝐬). This derivation relies on the fact that 𝑓∗(𝐬, 𝐫) in Eq. (14) is a linear function 

of the uncertain parameter 𝜌. The set of Pareto-optimal solutions to problem (13), therefore, includes 

only one solution. 

As the first step in solving problem (13), a total of 200 samples are generated for the initial training 

dataset. Only 140 feasible samples are kept for the training purpose as the other 60 samples associated 

with either positive 𝑔1(𝐬, 𝐫) or positive 𝑔2(𝐬, 𝐫) are discarded. Then, the DACE toolbox [43] are used 

together with a second-degree polynomial mean function (cf. Appendix A) for constructing three GP 

surrogates for 𝑓∗(𝐬, 𝐫), 𝑔1(𝐬, 𝐫), and 𝑔2(𝐬, 𝐫) in Eqs. (14), (15), and (16), respectively. Based on these 

surrogates, the proposed BO is employed to solve problem (13) with two risk levels, namely, 𝜀𝑖 = 0.1 

and 𝜀𝑖 = 0.05  (𝑖 = 1,2) . The simulated annealing incorporated in the BO is carried out using 

MATLAB R2018a Global Optimization Toolbox. Default settings for the acceptance probability 

function, annealing schedule, initial annealing temperature, and maximum number of evaluations of the 



 

17 

 

objective function are 'acceptancesa', 'annealingfast', 100, 3000 times the dimension of 𝐫, respectively. 

The maximum number of iterations and the objective function tolerance of the simulated annealing are 

assigned as 500 and 10-6, respectively. In each iteration of the BO, a total of 200 new candidate solutions 

are generated for the set Ωs. Furthermore, the reference point and the maximum iteration of the BO are 

assigned as 𝐟R = [50, 10]
𝑇 and 20, respectively. Here, 𝐟R is chosen based on (1) the maximum value of 

the truss total mass, computed from possible combinations of 1 and 2 elements, and (2) the relation 

𝑓1(𝐬) = 5𝑓2(𝐬). 

Fig. 4 shows the maximum acquisition function 𝛼2 , the corresponding HVI, and the objective 

functions 𝑓1(𝐬) and 𝑓2(𝐬) at each iteration of the BO for the two risk levels 𝜀𝑖 = 0.1 and 𝜀𝑖 = 0.05. The 

respective robust designs of the truss found at the 20th iteration of the BO are 𝐬 = [8.5, 0.4]𝑇 and 𝐬 =

[10, 0.4]𝑇. The computational times required for 𝜀𝑖 = 0.1 and 𝜀𝑖 = 0.05 are 905 and 973 s using a PC 

with an Intel i7-7700HQ 2.80 GHz CPU and 8.0 GB memory. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Histories of the BO for the two-bar truss with two risk levels: (a) and (b) εi = 0.1; 

 (c) and (d) εi = 0.05. 
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 To verify the obtained robust designs, the exact robust solution to problem (13) is found for each 

risk level. As the sets 1 and 2 have 39 and 20 elements, respectively, a total of 39×20 = 780 possible 

designs can be generated for the truss using a full factorial sampling. Then, 105 samples of the uncertain 

parameters 𝐫  are generated by the MCS, and used to calculate 𝑓1(𝐬), 𝑓2(𝐬), [𝑔1(𝐬, 𝐫) ≤ 0 ], and 

[𝑔2(𝐬, 𝐫) ≤ 0 ] for each possible design. This process is performed three times for each risk level with 

different sets of the MCS samples, which may lead to different solutions. As a result, the solutions by 

the three trials are identical for each risk level, and therefore they can be regarded as the exact solution. 

Fig. 5 shows that the robust design by the BO for each risk level is identical to the exact design even 

though the number of function evaluations used by the BO (1.30122×105 evaluations) is much less than 

that by the combination of the full factorial sampling and MCS (3×780×105 evaluations). 

 
(a) 

 
(b) 

Fig. 5. Verification of the obtained robust designs for the two-bar truss with two risk levels: (a) εi = 

0.1; (b) εi = 0.05. 

5. Design examples 

5.1. LSFs of serviceability and strength requirements for steel frame designs 

The design of two planar steel frames in this section complies with certain serviceability and strength 

requirements in ANSI/AISC 360-16 [44]. The serviceability requirements are concerned with the inter-

story drifts, total drift of the frame, and long-term vertical displacements of the beam members, while 

the strength requirements are associated with the strength of the column and beam members.  
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Let 𝛿𝑠, Δt, and Δ𝑘 denote the inter-story drift of the 𝑠th story of a frame having a total of 𝑛s stories, 

the total drift of the frame, and the maximum long-term vertical displacement among beams in the 𝑘th 

beam group, respectively. Note that the long-term vertical displacement of each beam member is 

evaluated as 1.5 times the associated elastic displacement [33]. Also, let  ℎs, 𝐻, and 𝐿𝑘 denote the height 

of the 𝑠th story, the overall height of the frame, and the span of the beams in the 𝑘th beam group, 

respectively. As specified in ANSI/AISC 360-16 [44], the inter-story drift of the story, the total drift of 

the frame, and the long-term vertical displacement of the 𝑘th beam should not exceed ℎs/300, 𝐻/400, 

and 𝐿𝑘/360, respectively. Therefore, the LSFs corresponding to the maximum inter-story drift of the 

frame, i.e., 𝑓(𝐬, 𝐫), the total drift of the frame, i.e.,  𝑔1(𝐬, 𝐫), and the maximum long-term vertical 

displacement among beams in the same group, i.e.,  𝑔1+𝑘(𝐬, 𝐫), can be formulated as follows: 

𝑓(𝐬, 𝐫) = max{
|𝛿1|

ℎ1/300
,… ,

|𝛿𝑛s|

ℎ𝑛s/300
} − 1 

(17) 

 𝑔1(𝐬, 𝐫) =
|Δt|

𝐻/400
−1 

(18) 

𝑔1+𝑘(𝐬, 𝐫) =
Δ𝑘

𝐿𝑘/360
− 1,    𝑘 = 1,… , 𝑛b 

(19) 

where 𝑛b is the number of beam groups. 

In the same manner, the strength LSF for a column or a beam can be normalized using the following 

AISC-LRFD interaction formula [44]: 

𝑞(𝐬, 𝐫) =

{
 
 

 
 
𝑃r
𝑃c
+
8

9
(
𝑀r𝑥
𝑀c𝑥

+
𝑀r𝑦

𝑀c𝑦
) ,  if 

𝑃r
𝑃c
≥ 0.2 

𝑃r
2𝑃c

+ (
𝑀r𝑥
𝑀c𝑥

+
𝑀r𝑦

𝑀c𝑦
) ,  if 

𝑃r
𝑃c
< 0.2

 (20) 

where 𝑃r and 𝑃c are the required and available axial strengths of the member, respectively; 𝑀r𝑥 and 𝑀r𝑦 

are respectively the required flexural strengths about the major axis 𝑥, and the minor axis 𝑦; and 𝑀c𝑥 

and 𝑀c𝑦  denote the available flexural strengths about the major axis 𝑥 , and the minor axis 𝑦 , 

respectively. 𝑃r, 𝑀r𝑥, and 𝑀r𝑦 are obtained from a linear elastic frame analysis under static loads. 𝑃c, 

𝑀c𝑥, and 𝑀c𝑦 can be evaluated based on specifications in chapters E, F, and H of ANSI/AISC 360-16 
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[44], which are described as functions of the cross-sectional properties of the steel section, Young’s 

modulus 𝐸, the yield stress 𝜎y and the ultimate tensile strength 𝜎u of the steel material, and the effective 

length of the structural members. 

Let 𝑞max(𝐬, 𝐫) denote the maximum of 𝑞(𝐬, 𝐫) among the values for the columns or beams in the 

same group. Thus, the LSFs corresponding to the combined axial-flexural strength of column and beam 

members of the frame can be defined as 

𝑔1+𝑛b+𝑗(𝐬, 𝐫) = 𝑞max,𝑗 − 1,   𝑗 = 1,… , 𝑛m (21) 

where 𝑛m is the number of column and beam groups. 

5.2. Three-story two-bay steel frame 
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Fig. 6. Three-story two-bay steel frame. 

Consider a three-story two-bay steel frame subjected to static loads 𝑞, 𝑊1, and 𝑊2, as shown in Fig. 6. 

The frame consists of 15 members classified into column (1) and beam (2) groups. Steel section for the 

members in each group is selected from the list of American wide-flange steel sections in Table 2. The 

independent uncertain parameters 𝐫 include the vertical load 𝑞 (i.e., dead and live loads from the floor), 

lateral loads 𝑊1 and 𝑊2, and material properties, i.e., Young’s modulus 𝐸, yield stress 𝜎y, and ultimate 

tensile strength 𝜎u. Their probabilistic properties, as described in Table 3, are taken from ASCE/SEI 7-

16 [45] and a previous survey on uncertainty in the material strength [46]. Note that the mass density 

of steel is not considered as an uncertain parameter because the nominal mass of the standard column 
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or beam sections is well controlled by the manufacturers and is provided as a deterministic value as 

shown in Table 2. 

To formulate problems (1) and (2) for the frame, the total mass 𝑓1(𝐬), and the mean 𝑓2(𝐬) and 

variance 𝑓3(𝐬) of the LSF regarding the maximum inter-story drift 𝑓(𝐬, 𝐫) are considered as three 

objective functions, in which 𝑓1(𝐬) is explicitly given as 

𝑓1(𝐬) = 27.45𝜌1 + 65.88𝜌2 (22) 

where 𝜌1 and 𝜌2, as provided in Table 2, are the nominal mass [kg/m] of the column and beam sections, 

respectively. 

Table 2 List of sections of columns and beams for the three-story two-bay steel frame. 

ID Column 1 𝜌1 [kg/m] Beam 2 𝜌2 [kg/m] 

1 W18×86 128.0  W24×68 101.0  

2 W18×76 113.0  W24×62 92.0  

3 W16×77 114.0  W24×55 82.0  

4 W16×67 100.0  W21×57 85.0  

5 W14×82 122.0  W21×55 82.0  

6 W14×74 110.0  W21×50 74.0  

7 W14×68 101.0  W18×65 97.0  

8 W14×61 91.0  W18×60 89.0  

9 W14×53 79.0  W18×40 60.0  

10 W14×48 72.0  W18×35 52.0  

11 W12×58 86.0  W16×57 85.0  

12 W12×53 79.0  W16×50 75.0  

13 W12×50 74.0  W16×45 67.0  

14 W12×45 67.0  W16×40 60.0  

15 W10×54 80.0  W14×61 91.0  

16 W10×49 73.0  W14×53 79.0  

17 W10×45 67.0  W14×48 72.0  

18 W8×40 59.0  W14×38 57.8  

19 W8×35 52.0  W14×34 51.0  

20 W8×31 46.1  W14×30 44.0  
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Table 3 Uncertain parameters for the three-story two-bay steel frame. 

Parameter Description Nominal  Mean/ Nominal COV Distribution 

𝑞 Vertical load [kN/m]  40.9 1.00 0.20 Normal 

𝑊1  Lateral load [kN]  22.2 1.00 0.37 Lognormal 

𝑊2  Lateral load [kN]  11.1 1.00 0.37 Lognormal 

𝐸  Young's Modulus [GPa]  200 1.00 0.04 Normal 

𝜎y Yield stress [MPa] 250 1.05 0.06 Normal 

𝜎u Tensile strength [MPa] 400 1.05  0.08 Normal 

Four probabilistic constraint functions include the total drift of the frame 𝑔1(𝐬, 𝐫), maximum long-

term vertical displacement of the beams 𝑔2(𝐬, 𝐫), combined axial-flexural strength of the columns 

𝑔3(𝐬, 𝐫), and combined axial-flexural strength of the beams 𝑔4(𝐬, 𝐫). Also, one deterministic geometric 

constraint ℎ(𝐬) ≤ 0 is applied to beam-column connections to guarantee that the flange width of the 

beam connected to a column should not exceed the flange width of the column. 

A total of 150 feasible samples are generated to construct five GP models for 𝑓(𝐬, 𝐫) and four 

probabilistic constraint functions. The number of new candidate solutions generated in each iteration of 

the BO is assigned as 200. A PC with an Intel Xeon E5-2643V4 3.40 GHz CPU and 63.9 GB memory 

are used to implement the proposed BO that solves problems (1) and (2) with two risk levels 0.1 and 

0.05. For convenient description, let problems (1-1) and (1-2) refer to problem (1) formulated for 𝜀 =

0.1 and 𝜀 = 0.05, respectively, and problems (2-1) and (2-2) denote problem (2) formulated with 𝜀𝑖 =

0.1  and 𝜀𝑖 = 0.05  (𝑖 = 1,… ,4) , respectively. The reference point and the maximum number of 

iterations of the BO are set as 𝐟R = [14000, 0.5, 0.5]
𝑇and 20, respectively. As a note to facilitate the 

selection of 𝐟R, its first element can be selected based on the maximum value of the frame total mass, 

which is derived from the list of sections in Table 2; the second element of 𝐟R associated with the mean 

of 𝑓(𝐬, 𝐫) in Eq. (17) can be assigned as any positive value so that it bounds above the expected value 

of 𝑓(𝐬, 𝐫), which should be non-positive to ensure the structural performance; and the last element of 

𝐟R associated with the variance of 𝑓(𝐬, 𝐫) should be positive and small enough to ensure the robustness 

of the frame. 
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 Fig. 7 shows histories of the BO for solving the aforementioned four RDO problems of the frame. 

As depicted in Fig. 7(c), the graphs associated with the maximum acquisition function and the HVI are 

similar with respect to an appropriate scale because they are proportional to each other at each iteration 

of the BO; cf. Eq. (10). Since problems (2-1) and (2-2) involve the probability of simultaneously 

meeting all probabilistic constraints, 𝛼2 is much less than 𝛼1 at the same risk level. The BO terminates 

at the 16th iteration when solving problems (1-1) and (2-1), and at the 10th iteration when solving 

problems (1-2) and (2-2), even though its maximum number of iterations is assigned as 20. These early 

terminations arise from the fact that the set Ωs  used to maximize the acquisition function in each 

problem has no feasible solution; cf. Step 4 in Section 3.3. Furthermore, the computational times for 

the BO to complete 16 and 10 iterations are 2.68 and 1.81 hours, respectively. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Fig. 7. Histories of the BO for different RDO problems of the three-story two-bay steel frame: (a) 

problem (1-1); (b) problem (2-1); (c) problem (1-2); (d) problem (2-2). 
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(a)  

 

(b)  

 

(c)  

 

(d)  

Fig. 8. Pareto-optimal solutions to different RDO problems of the three-story two-bay steel frame: (a) 

problem (1-1); (b) problem (2-1); (c) problem (1-2); (d) problem (2-2). 

Fig. 8 provides four sets of Pareto-optimal solutions corresponding to the mentioned four RDO 

problems. The solutions to the joint and individual probability constrained RDO problems are identical 

for each risk level. More interestingly, four Pareto-optimal solutions associated with the risk level 0.05 

can be obtained by removing the solution with minimum total mass 𝑓1(𝐬) from the set of five Pareto-

solutions for the risk level 0.1. Moreover, as the objective function 𝑓2(𝐬) for all obtained solutions is 

negative, the mean value of the maximum inter-story drift of each robust design, as expected, is less 

than the allowable value. 

Exact robust solutions to each RDO problem of the frame are found for verifying the obtained 

solutions. Because the RDO problems of the frame have only two design variables and each variable 

has 20 possible values as provided in Table 2, it is able to generate a total of 20×20 = 400 possible 

solutions to each problem. Then, the objective functions 𝑓2(𝐬), 𝑓3(𝐬), and the probabilistic constraints 

are calculated for all possible solutions to each RDO problem using a total of 105 samples of the 
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uncertain parameters 𝐫 generated by the MCS. These values enable the sorting of the exact Pareto-

optimal solutions to each RDO problem. Note that the process for finding the exact solutions takes 

10.02 hours to complete, which is much more than that required for the BO. For further comparison, a 

multi-objective RDO problem for the frame is formulated with considering 𝑓1(𝐬), 𝑓2(𝐬), and 𝑓3(𝐬) as 

three objective functions, and [𝑔𝑖(𝐬, 𝐫)] + √var[𝑔𝑖(𝐬, 𝐫)] ≤ 0 , (𝑖 = 1,… ,4)  as four deterministic 

constraints. This problem is solved using a Gaussian mixture model (GMM) method [15] with an 

expectation that the resulting Pareto-optimal solutions can capture all solutions by the BO. As a result, 

Fig. 9 shows that the solutions to each RDO problem by the BO agree with the exact solutions even 

though there exists a slight difference in the objective functions 𝑓2(𝐬)  and 𝑓3(𝐬) . The GMM, as 

expected, provides a total of six solutions that include all solutions by the BO. Moreover, Tables 4 and 

5 provide detailed values of the objective functions and the probabilistic constraints associated with the 

solutions to each RDO problem. As each solution offers a safety margin in all probabilistic constraints, 

the obtained Pareto-optimal solutions are feasible. 

(a) 
 

(b) 

 

(c) 

 

(d) 

Fig. 9. Verification of the obtained Pareto-optimal solutions to different RDO problems of the three-

story two-bay steel frame: (a) problem (1-1); (b) problem (2-1); (c) problem (1-2); (d) problem (2-2). 
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Table 4 Pareto-optimal solutions to problems (1-1) and (2-1) of the three-story two-bay steel frame and 

corresponding values of the objective and probabilistic constraint functions. 

Variable, objective and 

constraint functions 
Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

Column (1) W12×58 W14×61 W16×67 W18×76 W18×86 

Beam (2) W24×68 W24×68 W24×68 W24×68 W24×68 

𝑓1 [kg] 9015 9152 9399 9756 10167 

𝑓2 (BO- problem (1-1)) -0.332 -0.445 -0.563 -0.636 -0.670 

𝑓3 (BO - problem (1-1)) 0.031 0.025 0.014 0.008 0.005 

𝑓2 (BO- problem (2-1)) -0.333 -0.449 -0.564 -0.637 -0.660 

𝑓3 (BO - problem (2-1)) 0.034 0.025 0.013 0.008 0.005 

𝑓2 (GMM) -0.320 -0.413 -0.573 -0.619 -0.648 

𝑓3 (GMM) 0.031 0.022 0.012 0.010 0.004 

𝑓2 (MCS) -0.325 -0.444 -0.563 -0.634 -0.659 

𝑓3 (MCS) 0.039 0.025 0.015 0.010 0.007 

[𝑔1,..,4(𝐬, 𝐫) ≤ 0 ] (MCS) 0.903 0.951 0.967 0.976 0.979 

[𝑔1(𝐬, 𝐫) ≤ 0 ] (MCS) 0.999 1.000 1.000 1.000 1.000 

[𝑔2(𝐬, 𝐫) ≤ 0 ] (MCS) 0.999 1.000 1.000 1.000 1.000 

[𝑔3(𝐬, 𝐫) ≤ 0 ] (MCS) 0.908 0.974 0.998 1.000 1.000 

[𝑔4(𝐬, 𝐫) ≤ 0 ] (MCS) 0.935 0.953 0.967 0.976 0.979 
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Table 5 Pareto-optimal solutions to problems (1-2) and (2-2) of the three-story two-bay steel frame and 

corresponding values of the objective and probabilistic constraint functions. 

Variable, objective and 

constraint functions 
Solution 1 Solution 2 Solution 3 Solution 4 

Column (1) W14×61 W16×67 W18×76 W18×86 

Beam (2) W24×68 W24×68 W24×68 W24×68 

𝑓1 [kg] 9152 9399 9756 10167 

𝑓2 (BO- problem (1-2)) -0.445 -0.564 -0.637 -0.666 

𝑓3 (BO - problem (1-2)) 0.025 0.014 0.008 0.006 

𝑓2 (BO- problem (2-2)) -0.446 -0.564 -0.637 -0.666 

𝑓3 (BO - problem (2-2)) 0.026 0.014 0.008 0.006 

𝑓2 (GMM) -0.413 -0.573 -0.619 -0.648 

𝑓3 (GMM) 0.022 0.012 0.010 0.004 

𝑓2 (MCS) -0.444 -0.482 -0.634 -0.659 

𝑓3 (MCS) 0.025 0.022 0.010 0.007 

[𝑔1,..,4(𝐬, 𝐫) ≤ 0 ] (MCS) 0.951 0.967 0.976 0.979 

[𝑔1(𝐬, 𝐫) ≤ 0 ] (MCS) 1.000 1.000 1.000 1.000 

[𝑔2(𝐬, 𝐫) ≤ 0 ] (MCS) 1.000 1.000 1.000 1.000 

[𝑔3(𝐬, 𝐫) ≤ 0 ] (MCS) 0.974 0.998 1.000 1.000 

[𝑔4(𝐬, 𝐫) ≤ 0 ] (MCS) 0.953 0.967 0.976 0.979 
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5.3. Six-story two-bay steel frame 
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Fig. 10. Six-story two-bay steel frame. 

In this design example, problems (1) and (2) are formulated for a six-story two-bay steel frame, as 

shown Fig. 10, which is taken from Do and Ohsaki [15]. The frame has 30 members classified into six 

column groups, i.e., groups (1) to (6), and three beam groups, i.e., groups (7), (8), and (9). Steel section 

for members in each group is also selected from Table 2. The independent uncertain parameters 𝐫 for 

the frame and their probabilistic characteristics are described in Table 6, where the vertical load 𝑞 

consists of dead and live loads from the floor.  
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Table 6 Uncertain parameters for the six-story two-bay steel frame. 

Parameter Description Nominal  Mean/ Nominal COV Distribution 

𝑞 Vertical load [kN/m]  50 1.00 0.20 Normal 

𝑊L  Wind load [kN]  25 1.00 0.37 Lognormal 

𝐸  Young's Modulus [GPa]  200 1.00 0.04 Normal 

𝜎y Yield stress [MPa] 250 1.05 0.06 Normal 

𝜎u Tensile strength [MPa] 400 1.05  0.08 Normal 

Let 𝑔1(𝐬, 𝐫), 𝑔2(𝐬, 𝐫), 𝑔3(𝐬, 𝐫), and 𝑔4(𝐬, 𝐫) denote the LSFs of the total drift of the frame, and the 

maximum long-term vertical displacements of beams (7), (8), and (9), respectively. Let 𝑔5(𝐬, 𝐫) , 

𝑔6(𝐬, 𝐫) , 𝑔7(𝐬, 𝐫),  𝑔8(𝐬, 𝐫), 𝑔9(𝐬, 𝐫), and 𝑔10(𝐬, 𝐫) indicate the LSFs of the combined axial-flexural 

strength of columns (1), (2), (3), (4), (5), and (6), respectively. 𝑔11(𝐬, 𝐫), 𝑔12(𝐬, 𝐫), and 𝑔13(𝐬, 𝐫) 

represent the LSFs of the combined axial-flexural strength of beams (7), (8), and (9), respectively. In 

addition to the constraints on the structural responses, 10 deterministic constraints, i.e., ℎ𝑗(𝐬) ≤ 0 (𝑗 =

1,… ,10), are imposed at beam-column connections and column-column joints of the frame to ensure 

that (1) the flange width of a beam connected to a column should not exceed the flange width of the 

column and (2) the depth of the column section in the upper story should be less than or equal to the 

depth of the column section in the lower story. Thus, problems (1) and (2) of the frame are formulated 

using 13 probabilistic constraint functions and 10 deterministic constraint functions. The total mass 

𝑓1(𝐬) of the frame is also given as 

𝑓1(𝐬) = 15𝜌1 + 14(𝜌2 + 𝜌3) + 7.5𝜌4 + 7(𝜌5 + 𝜌6) + 18(𝜌7 + 𝜌8 + 𝜌9) (23) 

where 𝜌𝑖 (𝑙 = 1,… ,9) is the nominal mass [kg/m] of the steel section for the 𝑖th group. 

To construct a total of 14 GP models for the structural responses of the frame, one for the uncertain 

objective function, i.e., the LSF of the maximum inter-story drift 𝑓(𝐬, 𝐫), and 13 others for 𝑔1(𝐬, 𝐫) to 

𝑔13(𝐬, 𝐫), a set of 1000 feasible samples (cf. Section 2.1) of 𝐬 and 𝐫  is randomly generated. The 

generation of these samples is detailed in Section 2.1. The proposed BO is then carried out for solving 

problems (1) and (2) with two risk levels 0.1 and 0.05. Similarly as the frame in the first design 

example, problems (1-1), (1-2), and (2-1), (2-2) are used to refer to problem (1) formulated with 𝜀 =
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0.1  and 𝜀 = 0.05 , and problem (2) formulated with 𝜀𝑖 = 0.1  and 𝜀𝑖 = 0.05  (𝑖 = 1, . . . ,13) , 

respectively. The reference point and the maximum number of BO iterations are 𝐟R =

[15000, 0.5, 0.5]𝑇 and 20, respectively. 

 Fig. 11 shows the history of the BO for each RDO problem of the frame. The BO completes 20 

iterations to offer the solutions to problems (1-1), (1-2), and (2-2) while a total of 17 iterations are 

required for solving problem (2-1). For the same risk level, the maximum value of the acquisition 

function 𝛼2  is considerably less than that of 𝛼1  because problems (2-1) and (2-2) consider 13 

probabilistic constraints independently. The computational times for solving problems (1-1), (1-2), (2-

1), and (2-2) are 11.75, 11.68, 10.19 and 10.56 hours, respectively. 

 

(a)  
 

(b)  

 

(c)  
 

(d)  

Fig. 11. Histories of the BO for different RDO problems of the six-story two-bay steel frame: (a) 

problem (1-1); (b) problem (2-1); (c) problem (1-2); (d) problem (2-2). 

Fig. 12 shows the Pareto-optimal solutions to the RDO problems of the frame. The number of 

solutions to problems (1-1), (2-1), (1-2), and (2-2) respectively are 54, 66, 60, and 56 even though they 
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are 1, 7, 1, and 4 after the BO completes its first iteration. The shapes of Pareto fronts to the same RDO 

problem are similar, regardless of the difference in the solution distributions due to different risk levels. 

It is worth noting that the number of solutions, as well as the solutions themselves, may vary when the 

proposed BO is carried out using different stopping criteria or even when using unique stopping criteria, 

but it is performed from different random seeds. This can be explained by the following two facts. First, 

the list of steel sections in Table 2 consists of many feasible solutions to each RDO problem of the 

frame, which are referred to as the dominated solutions in Fig. 12. Second, the proposed BO is random 

in nature because it performs a random search method to solve the MINLP problem of the acquisition 

functions. From the obtained solutions, however, designers are still able to specify a robust design for 

the frame by handling the trade-off between the three objective functions. Once a robust design has 

been specified, the remaining task is simply to verify that it satisfies all probabilistic constraints as 

expected using the MCS. 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Fig. 12. Pareto-optimal solutions to different RDO problems of the six-story two-bay steel frame: (a) 

problem (1-1); (b) problem (2-1); (c) problem (1-2); (d) problem (2-2). 
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For example, among the three conflicting objectives, the designer may assume that the total mass 

of the frame is the most important objective. Thus, from the set of obtained Pareto-optimal solutions to 

each RDO problem, the solution with minimum total mass may be selected as the robust design for the 

frame. With the selected design, the MCS can be performed to generate a total of 105 samples of the 

uncertain parameters 𝐫  that are further used to compute the objective and probabilistic constraint 

functions for the selected design. Figs. 13 and 14 show the PDF of the uncertain objective function 

𝑓(𝐬, 𝐫) and the CDFs of 13 probabilistic constraint functions calculated at the minimum-mass solution 

to each RDO problem of the frame, respectively. Since the design associated with the larger risk level 

is less robust than that corresponding to the smaller risk level, the PDFs in Figs. 13(a) and (b) are 

broader than those in Figs. 13(c) and (d), respectively. Furthermore, all probabilistic constraints 

associated with a safety margin, as shown in Fig. 14, demonstrate that the minimum-mass solution is a 

reasonable choice for each RDO problem. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  
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Fig. 13. PDF and CDF of the uncertain objective function f (s,r) at the minimum-mass solutions to 

different RDO problems of the six-story two-bay steel frame: (a) problem (1-1); (b) problem (2-1); (c) 

problem (1-2); (d) problem (2-2). 

 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Fig. 14. CDFs of 13 probabilistic constraint functions at the minimum-mass solutions to different 

RDO problems of the six-story two-bay steel frame: (a) problem (1-1); (b) problem (2-1); (c) problem 

(1-2); (d) problem (2-2). 

6. Conclusion 

Although the robust design of a steel frame under the effects of uncertain design parameters has been 

investigated extensively, solving the joint and individual probabilistic constrained RDO problems is 

still a challenging task. The proposed BO in this work is able to handle this task by addressing 

challenges arising from solving these RDO problems such as the implicit objective and constraint 
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functions, discrete nature of the problems formulated for frame structures, and difficulty in evaluation 

of the probabilistic constraints with a reasonable computational cost. Two new acquisition functions 

have been developed for the two RDO problems to guide the BO toward better solutions once it 

completes an iteration. A new optimization strategy is then devised for solving the maximization 

problem of the acquisition functions that decides where the GP surrogates for the structural responses 

should be refined. Finally, an optimization procedure integrating the proposed BO is introduced for 

solving probabilistic constrained multi-objective RDO problems of structures. 

Effectiveness of the proposed BO has been demonstrated through a test problem of a two-bar truss 

and two design examples of two planar steel frames. The optimization results show that the BO can 

offer exact or good approximate Pareto-optimal solutions to the RDO problems after 20 iterations. 

Although the shapes of Pareto fronts to the same RDO problem are similar, different BO trials may lead 

to different Pareto-optimal solutions because the proposed method is random in nature. The effect of 

this randomness is pronounced when the feasible region of the RDO problems is large. Thus, it is 

prudent to select a decision list of both column and beam members using design rules of thumb to 

reduce the discrepancy in the obtained solutions. 

The proposed method may be computationally expensive if it is developed based on a large training 

set to increase the accuracy of the optimization results because the GP surrogates for the structural 

responses are extremely sensitive to the number of training samples [47]. To scale up the application of 

the method to a complex problem having a larger training set, the training set may be divided into 

different independent subsets using a clustering method [42], construct GP models for each subset, and 

then combine these GP models to form a new mixture probabilistic model for the structural responses. 

The proposed method may be also extended by first replacing the GP models with deterministic 

regression models, e.g., polynomial, radial basis function, or support vector regression models, and then 

developing the acquisition functions using additive Gaussian errors. 

This study is limited to the strength requirements for individual structural members and does not 

consider the local and global collapse mechanisms of the frames. However, the proposed method can 
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be extended to the same RDO problems with additional probabilistic constraints on these collapse 

mechanisms in future works. In case the optimization includes both correlated and uncorrelated LSFs 

of different collapse mechanisms, it is desirable to develop a new optimization method addressing both 

the joint and individual probabilistic constrained RDO problems in this study. 
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Appendix A: Gaussian process 

Based on the training dataset  = {𝐗, 𝐲} = {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑁 , the relationship between the input and output 

variables can be established using the mapping 𝑦 = 𝑔(𝐱) :  𝑑 →  , where 𝑔(𝐱)  is a probabilistic 

regression model conditioned on . 

A GP is an infinite set of the output random variables, any finite subset of which has a joint Gaussian 

distribution [47]. Thus, for the set of the input variables {𝐱1, … , 𝐱𝑁}, the associated output variables 

{𝑦1, … , 𝑦𝑁} are distributed according to 

[

𝑦1
⋮
𝑦𝑁
]~𝑁 ([

𝑚(𝐱1)
⋮

𝑚(𝐱𝑁)
] , [

𝑘(𝐱1, 𝐱1) … 𝑘(𝐱1, 𝐱𝑁)
⋮ ⋱ ⋮

𝑘(𝐱𝑁 , 𝐱1) … 𝑘(𝐱𝑁, 𝐱𝑁)
]) (A.1) 

where 𝑁  denotes an 𝑁 -variate Gaussian, and 𝑚(𝐱) = [𝑔(𝐱)]  and 𝑘(𝐱, 𝐱′)  are the mean and 

covariance kernel functions, respectively. Here, the covariance kernel function defined for any pair of 

input variable vectors 𝐱 and 𝐱′ measures the similarity between two corresponding random output 

values 𝑔(𝐱) and 𝑔(𝐱′), such that 

𝑘(𝐱, 𝐱′) = [(𝑔(𝐱) − 𝑚(𝐱))(𝑔(𝐱′) − 𝑚(𝐱′))] (A.2) 

The following Gaussian kernel is used in this study. 

𝑘(𝐱, 𝐱′ ) = exp [−
(𝐱 − 𝐱′)𝑇(𝐱 − 𝐱′)

2𝑙2
] 

(A.3) 
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where 𝑙  is the characteristic length-scale parameter determined using the maximum likelihood 

estimation of  [47]. 

One now wishes to use the information from  for predicting the output value 𝑦∗ at a new input 

vector 𝐱∗. Let 𝐦(𝐗) = [𝑚(𝐱1), … ,𝑚(𝐱𝑁)]
𝑇, the joint PDF of 𝑦∗ and 𝐲 is also a Gaussian because the 

PDF of any finite subset of the output random variables is a Gaussian, such that 

[
𝑦∗

𝐲
]~𝑁+1 ([

𝑚(𝐱∗)

𝐦(𝐗)
] , [

𝑘(𝐱∗, 𝐱∗) 𝐊(𝐱∗, 𝐗)

𝐊(𝐱∗, 𝐗)𝑇 𝐊(𝐗, 𝐗)
]) 

(A.4) 

where  

𝐊(𝐱∗, 𝐗) = [𝑘(𝐱∗, 𝐱1), … , 𝑘(𝐱
∗, 𝐱𝑁)] (A.5) 

𝐊(𝐗, 𝐗) = [
𝑘(𝐱1, 𝐱1) … 𝑘(𝐱1, 𝐱𝑁)

⋮ ⋱ ⋮
𝑘(𝐱𝑁 , 𝐱1) … 𝑘(𝐱𝑁, 𝐱𝑁)

] 
(A.6) 

Using the standard conditioning rule for the conditional Gaussian random variable 𝑦∗|𝐲 = 𝑔(𝐱∗), the 

associated PDF can be directly derived from Eq. (A.4) as 

𝑦∗|𝐲 = 𝑔(𝐱∗)~ (𝜇𝑔̂(𝐱
∗), 𝜎𝑔̂

2(𝐱∗)) (A.7) 

where 

𝜇𝑔̂(𝐱
∗) = 𝑚(𝐱∗) + 𝐊(𝐱∗, 𝐗)𝐊(𝐗, 𝐗)−𝟏(𝐲 −𝐦(𝐗)) (A.8) 

𝜎𝑔̂
2(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐊(𝐱∗, 𝐗)𝐊(𝐗, 𝐗)−𝟏𝐊(𝐱∗, 𝐗)𝑇 (A.9) 

Appendix B: Saddlepoint approximation 

Let 𝛍𝐱 = [𝜇𝑥1 , … , 𝜇𝑥𝑑]
𝑇

 be the mean vector of the random input variables 𝐱 = [𝐬𝑇 , 𝐫𝑇]𝑇 =

[𝑥1, … , 𝑥𝑑]
𝑇. Let 𝜇𝑦, 𝜇2,𝑦, and 𝜇3,𝑦 denote the first three cumulants of the random variable 𝑦 = 𝜇𝑔̂(𝐱) 

in Eq. (A.8). These values are estimated based on the second-order Taylor series expansion with respect 

to 𝐱 at the mean 𝛍𝐱, as follows [19]:  
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𝜇𝑦 ≈ 𝜇𝑔̂(𝛍𝐱) +
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𝜕2𝜇𝑔̂

𝜕𝑥𝑖
2 |

𝛍𝐱

)

3𝑑

𝑖=1

(
1

4
𝜇2,𝑥𝑖
3 −

3

8
𝜇2,𝑥𝑖𝜇4,𝑥𝑖 +

1

8
𝜇6,𝑥𝑖) 

(B.3) 

where 𝜇𝑘,𝑥𝑖 (𝑘 = 2,… ,6) is the 𝑘th central moment of 𝑥𝑖, determined based on a total 2 × 106 sampled 

values of 𝑥𝑖. 

Let 𝐾𝑦, 𝐾𝑦
(1)

, 𝐾𝑦
(2)

, and 𝐾𝑦
(3)

denote the cumulant generating function of 𝑦, and its first, second, and 

third derivatives, respectively. 𝐾𝑦 is taken from Ref. [33], as 

𝐾𝑦(𝜉) = (𝜇𝑦 − 2𝑎𝑏)𝜉 +
1

2
(𝜇2,𝑦 − 2𝑎𝑏

2)𝜉2 − 𝑎log[(1 − 𝑏𝜉)2]  (B.4) 

where 𝜉 represents a real value, and 𝑎 and 𝑏 are unknowns. 

The unknowns 𝑎 and 𝑏 are determined based on the relationship between 𝐾𝑦 and the first three 

cumulants of 𝑦, i.e., 𝐾𝑦
(1)(0) = 𝜇𝑦, 𝐾𝑦

(2)(0) = 𝜇2,𝑦, and 𝐾𝑦
(3)(0) = 𝜇3,𝑦, and the unique root condition 

for the saddlepoint equation in Eq. (B.7), such that 

𝑎 =
2𝜇2,𝑦

3

𝜇3,𝑦
2 ,    𝑏 =

𝜇3,𝑦

2𝜇2,𝑦
 (B.5) 

If 𝜇3,𝑦 = 0, then 𝑎 = 0 and 𝑏 = 0. The second cumulant 𝜇2,𝑦 is always positive. 
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In the saddlepoint approximation context, the PDF of the random variable 𝑦 = 𝜇𝑔̂(𝐱) , denoted as 

𝑝𝑦(𝑦), can be estimated by [48] 

𝑝𝑦(𝑦) ≈
exp[𝐾𝑦(𝜉s) − 𝜉s𝑦]

√2𝜋𝐾𝑦
(2)(𝜉s)

 
(B.6) 

where 𝜉s is called the saddlepoint that is the unique root to the following saddlepoint equation 

𝐾𝑦
(1)(𝜉) = 𝑦 (B.7) 

Also, the probability that 𝜇𝑔̂(𝐱) ≤ 𝑦 is evaluated by [48] 

 [𝜇𝑔̂(𝐱) ≤ 𝑦] ≈ Φ(𝑟) + 𝜙(𝑟) (
1

𝑟
−
1

𝑣
) (B.8) 

where Φ and 𝜙 are the standard normal CDF and PDF, respectively; 𝑟 and 𝑣 are given as 

𝑟 = sign(𝜉s)√2[𝜉s𝑦 − 𝐾𝑦(𝜉s)] (B.9) 

𝑣 = 𝜉s√𝐾𝑦
(2)(𝜉s) (B.10) 

where sign(𝜉s)= 1,−1, or 0 corresponding to 𝜉s > 0, 𝜉s < 0, or 𝜉s = 0, respectively. 

When either 𝑟 or 𝑣 does not exist, [𝜇𝑔̂(𝐱) ≤ 𝑦] = 0 if 𝑦 ≤ 𝜇𝑦 and [𝜇𝑔̂(𝐱) ≤ 𝑦] = 1 if 𝑦 > 𝜇𝑦. 
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