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Abstract: This paper presents a worst-case approach to robust optimization of plane frame 

structures under variation in uncertain parameters. The optimization procedure is first 

implemented without considering uncertainty, resulting in an optimal structure that may be 

unstable without bending stiffness. Based on such optimal solution we then take variation in 

uncertain parameters into consideration and estimate the quantile response or trimmed mean of 

order statistics, where the quantile response is used as a relaxation of worst value of structural 

response. In order to obtain robust optimal solutions at various robustness levels, a multiobjective 

optimization problem is formulated and solved to simultaneously minimize the several order 

statistics or trimmed means with different orders. It is demonstrated in the numerical examples 

that the optimal distribution of cross-sectional areas of elements vary with the change of robustness 

level, and the convergence by using trimmed mean as estimation of quantile response is better than 

that of the simple order statistics. 

Keywords: Plane frame structure; Multiobjective robust optimization; Order statistics; Genetic 

algorithm;   

 

1. Introduction 

Traditional optimization of truss-like structure has been constantly receiving attention since the 

pioneering work by Maxwell (1870) and Michell (1904) with deterministic structural and loading 

parameters. However, the resulting optimal solution may be vulnerable to the uncertainty which is 

inevitable for real-world structures. Therefore, it is more reasonable to consider the uncertain 

characteristics of parameters during the optimization process and explore the effect of randomness 

on structural design. There have been extensive researches and studies that take the uncertain 

parameters into account during the recent 30 years (Choi et al. 2007; Ben-Tal et al. 2009; 

Elishakoff and Ohsaki 2010), in which the methods are based on, roughly speaking, probabilistic 

model or non-probabilistic model for describing the uncertain characteristics. 
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When based on probabilistic model, the uncertain parameters are considered as random 

variables with known or partially known distribution, and the structural optimization problem is 

usually formulated as minimizing the structural volume under failure probability constraint, which 

is sometimes referred to as reliability-based structural optimization (RBSO) (Frangopol 1985), or 

under the weighted sum of statistical moments of structural response, which is often called robust 

structural optimization (RSO) (Ben-Tal and Nemirovski 2002). For RBSO (Enevoldsen and 

Sorensen 1994; Kharmanda et al. 2004; Mogami et al. 2006), many strategies such as the 

decoupled single-loop algorithms (Du and Chen 2004; Kogiso et al. 2012) and approximation of 

the limit state function (Qu and Haftka 2004; Cheng et al. 2006) are proposed to improve efficiency 

of the double-loop algorithms, where the loop of reliability index calculation is nested in the outer 

loop of structural optimization. However, the computation cost will significantly increase when 

the system reliability or multiple failure modes are taken into consideration (Lee et al. 2010). On 

the other hand, RSO aims at finding the designs that are less sensitive to the uncertain parameters. 

Variability of the structural response under uncertainty is often represented by its second-order 

statistical moment, and is simultaneously minimized or assigned as constraints with its first-order 

statistical moment (i.e., mean value) (Lee and Park 2001; Dunning and Kim 2013). However, 

substantial efforts are needed for the calculation of statistical moments and their derivatives if 

more than one type of random variables are involved, or uncertainty is assumed in the structural 

stiffness because the displacements is a function of the inverse of stochastic stiffness matrix (Guest 

and Igusa 2008; Asadpoure et al. 2011). Recently, stochastic method has been introduced in both 

RBSO and RSO problems to describe the characteristics of the uncertain parameters, and it attracts 

more attention from the researchers due to its explicit form of uncertainty propagation (Doltsinis 

and Kang 2004; Tootkaboni et al. 2012; Jalalpour et al. 2013). However, balancing the accuracy 

and efficiency is still a challenge and such kind of method has not been fully explored yet. In 

addition, both RBSO and RSO require accurate distribution types of the uncertain parameters to 

ensure the accuracy of the solution, and a large estimation error will occur when the information 

about uncertainty is insufficient (Du and Choi 2008; Picheny et al. 2010). Wang et al (2018, 2019) 

developed sequential and concurrent multiscale reliability-based optimization methods for 

continuum structures with unknown-but-bounded uncertainties, and a novel nonprobabilistic 

reliability measure is derived by using interval mathematics. The scale-span uncertainty 

qualification is exploited between macro topology optimization and micro sizing optimization. 

However, since the interval paramedic vertex theorem is adopted, the scale-span uncertainty 

qualification is available when monotonicity hypothesis and requirements of finite uncertainty 

dimensions is satisfied, and the efficiency and accuracy may be influenced by the nonlinearity and 

convexity of uncertainty.   

By contrast, the non-probabilistic model provides an alternative if the distribution types of 

uncertain parameters are not known in advance, and the structural optimization under such 

uncertainty framework, called worst-case optimization (WCO) (Ben-Tal et al. 2009), generally 

minimizes the structural response with the worst combination of uncertain parameters in the 

predefined set. Traditionally, the procedure of WCO consists of a two-level problem: the upper- 

and lower-level problems are solved for structural optimization and worst-case evaluation, 

respectively (Du and Chen 2000; Au et al. 2003; Takezawa et al. 2011). However, the computation 

cost for searching the exact worst value is very large even for a simple interval model or a well-
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defined ellipsoid model (Lombardi and Haftka 1998; Ohsaki and Katsura 2012). To save 

computation cost without loss of generality, Kanno and Takewaki (2006a,b) constructed the 

minimum confidence ellipsoid of the structural response to solve the WCO problem in a 

confidence way; Guo et al. (2009) extended this method to a single level formulation under 

stiffness uncertainty. Note that they mainly concern single-objective optimization problems. 

However, it will be useful for designers if the structures which minimize the response at different 

levels of robustness can be obtained. Thus, the problem becomes a multiobjective optimization 

problem. 

Though there exist large number of researches about multiobjective structural optimization, 

most of them have only two objective functions (Venter and Haftka 2010; Zavala et al. 2014; Izui 

et al. 2015). Richardson et al. (2015) formulated a multiobjective RSO by selecting different linear 

combinations of the mean and the standard deviation of compliance as separate objective functions. 

Ohsaki et al. (2019) recently developed an order statistic approach to consider the worst-case value 

with certain confidence level, in which the worst-case value is approximated by the kth order 

statistics and the parameter k is regarded as the robustness level according to the theory of 

distribution free tolerance interval (Prescott et al. 1993). Based on this idea, we present a new 

multiobjective formulation for robust topology optimization of frame structures under uncertainty 

in stiffness and geometry to minimize the structural stress under volume constraint. The order 

statistics corresponding to various robustness levels related to the worst, quartile and median 

responses under interval uncertainty as well as the nominal response without uncertainty are 

considered as objective functions in the multiobjective optimization problem, and the trimmed 

means are also introduced to enhance the convergence of optimization process. The properties of 

robust optimal topologies are investigated in comparison to those of trusses. The design variables 

are the cross-sectional areas and the nodal locations to simultaneously optimize the stiffness, shape 

and topology of the plane frame. Pareto optimal solutions are found using a multiobjective genetic 

algorithm. 

The rest of this paper is organized as follows. In Section 2 the worst-case value of structural 

response and its relaxed approximation by order statistics are discussed, while the formulation of 

multiobjective optimization problem is given in Section 3. Section 4 presents the implementation 

details about shape and topology optimization of frame structures, which is based on the 

formulation of multiobjective optimization in Section 3, and three numerical examples are 

presented in Section 5 to demonstrate the effectiveness of the proposed method. Finally, some 

conclusions are drawn in Section 6. 

 

2. Worst-case approximation using order statistics 

There are various types of formulations of RSO, and the most general way is to minimize the 

structural cost represented by material volume under the constraint on structural response 

considering uncertainty in parameters. If the worst value is used for the structural response, the 

problem is also called WCO or worst-case design, for which accurate evaluation of the worst 

response is necessary. For simplicity, we formulate a problem of minimizing the worst response 
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under volume constraint. Hence, we consider an RSO problem of plane frames and assume that 

uncertainty exists only in the objective function.  

Let  1 2, , s   θ  denote the vector of s uncertain parameters in the space   and 

 1 2, , , s  θ  denote the vector of their nominal values. The vector  1 2, , nX X X X

represents the n design variables in the design variable space  . Suppose both   and   are 

continuous and bounded, i.e., they are closed sets.  

The structural optimization problem without considering uncertainty can be formulated as 

 
  g

Minimize  ;

subject to  0,   1,2, , ;   i

f

g i n  

X θ

X X
 (1) 

where the variables are only X, and  ;f X θ  represents the structural response at nominal value 

of uncertain parameters.  ;ig X θ  is the ith constraint function and 
gn  is the number of 

constraints. After solving problem (1), the topology of the structure is modified by removing the 

elements which have small cross-sectional areas and are considered to have little contribution to 

the reduction of structural response. However, such unnecessary elements may become useful for 

a solution to an RSO problem to minimize the worst structural response for specified variation in 

uncertain parameters, which can be written as   

   

 

max

g

Minimize  max ;

subject to 0,   1,2, , ;   i

f f

g i n




  

θ
X X θ

X X
 (2) 

where  maxf X   represents the maximum structural response within the parameter space  . 

However, directly solving problem (2) is computationally expensive due to the search of  maxf X  

at each iteration of the optimization procedure. To reduce the computation effort for finding the 

worst value, the 100βth (0<β<1) quantile response is used as a relaxation representation of the 

worst structural response. For this purpose, order statistics is introduced as a quantile estimator. 

Let ,1 2, , mθ θ θ  denote m independent and identically distributed (i.i.d.) vectors of uncertain 

parameters sampled from  . The corresponding structural responses with a specified design 

variable  1 2, , nX X XX  are denoted by  1 1,Y f X θ ,  2 2,Y f X θ , ,  ,m mY f X θ . 

Because 
1 2,  , ,  mY Y Y  are i.i.d. uncertain parameters and derived from the same response function, 

it is rational to assume that these responses are samples from the same distribution that has the 

cumulative distribution function (cdf) denoted by    PrF y Y y   . We further define the values 

1: 2: :,  , ,  m m m mY Y Y  to be a permutation of 
1 2,  , ,  mY Y Y  such that 

1: 2: :m m m mY Y Y   , and the kth  

 1 k m   response 
:k mY  is called the kth order statistics. Note that the descending order statistics 

herein is used for convenience to approximate the maximum structural response, which is different 

from the conventional definition of order statistics that is arranged in an ascending order. 
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Based on the statistical inference theory in order statistics (Prescott et al. 1993), the 

probability
k of 100 % of the structural response  ;f X θ  less than the kth order statistics 

:k mY can be calculated as  

        : :

0

Pr Pr 1 1 1,
m k

m rr

k k m k m

r

m
F Y U I m k k

r
    






 
          

 
  (3) 

where 
:k mU is the kth order statistics from m i.i.d. uniform random variables in the range [0,1], and 

 1,I m k k    is the incomplete beta function (Prescott et al. 1993; Ohsaki et al. 2019). Equation 

(3) is also called distribution-free one-side tolerance interval because the probability of the 

structural response falling into the one-side interval  :, k mY  is independent of the distribution 

of 
:k mY , and 

:k mY can be seen as the 100 %  quantile response in probabilistic sense.  

In order to enable 
:k mY to be accurate as a quantile estimator of the structural response, the 

value of the probability 
k  in Eq. (3) should be close to 1; e.g., 0.9 or 0.95. Furthermore, 

according to Prescott et al. (1993), 
k  will monotonically increase to 1 as the sample size m is 

increased. Therefore, if the values of k, 
k  and   are specified, one can obtain the threshold 

(minimum) value of m such that 
k  is not less than its preassigned value; on the other hand, if m 

is specified as the threshold value satisfying Eq. (3) and the value of k is also given, the relation 

between 
k  and   can also be derived by solving Eq. (3). As demonstrated by Ohsaki et al. 

(2019), the relation between 
k  and   can be obtained for some fixed values of m and various 

specified values of   1, 2, 20k  , which is shown in Fig. 1 for completeness of the paper. Note 

that the curves in top-right and bottom-left in each figure in Fig. 1 correspond to k=1 and 20, 

respectively. The relations between k and   with 
k = 0.9 are also given in Tables 1 and 2 for m 

= 100 and 200, respectively. It can be seen from these tables that   is a decreasing function of k, 

in other words, the portion of the structural response less than :k mY  will decrease as the value of k 

increases with the same probability
k . Therefore, for given

k and m, a higher order k 

corresponds to a less structural response under uncertainty exceeding 100 th quantile response, 

and the order k and its corresponding order statistics 
:k mY  approximating the quantile response can 

be regarded as representing the robustness level of the structure. 

Table 1 Relation between k and   (
k = 0.9, m = 100) 

k 1 2 3 4 5 6 7 8 9 10 

β 0.977 0.962 0.948 0.934 0.922 0.909 0.897 0.885 0.873 0.862 

k 11 12 13 14 15 16 17 18 19 20 

β 0.850 0.839 0.827 0.816 0.805 0.794 0.783 0.772 0.761 0.750 
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Table 2 Relation between k and   (
k = 0.9, m = 200) 

k 1 2 3 4 5 6 7 8 9 10 

β 0.989 0.981 0.974 0.967 0.960 0.954 0.948 0.942 0.936 0.930 

k 11 12 13 14 15 16 17 18 19 20 

β 0.924 0.918 0.912 0.907 0.901 0.895 0.890 0.884 0.878 0.873 
  

 

      (a)            (b)            (c) 

Fig. 1 Relation between k  and   for some fixed values of m and various values of k:  

(a) m = 50; (b) m = 100; (c) m = 150 

 

3. Multiobjective optimization problem 

As discussed in Section 2, the worst structural response under uncertainty can be relaxed to a 

quantile response, and the robustness level can be represented by the order statistics. Hence, 

suppose the worst structural response    max max ;f f



θ

X X θ  is approximated by the kth order 

statistics  : ;k mY X θ  among m samples, and rewrite problem (2) as 

 

 

:

g

Minimize  ;

subject to 0,   1,2, , ;   

k m

i

Y

g i n  

X θ

X X
 (4) 

The estimated worst response approaches the exact extreme value if the value of k is close to 1. 

However, the selection of k is not evident, and one may decide the value of k to meet the practical 

robustness, because the exact extreme value corresponds to extreme rare event. For some cases it 

may be important to minimize the median and/or percentile values of the response. Therefore, it is 

of interest to consider the structural response with different values of k in the objective function of 

problem (4). The response without considering uncertainty denoted by  ;Y f X θ  , which is 

the objective function of problem (1), is also included. Hence, a multiobjective optimization 

problem is formulated as 
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       

 

1 2: : :

g

Minimize  ; ,  ; , ; , , ;

subject to 0,   1,2, ,   

fk m k m k m

i

Y Y Y Y

g i n  

X θ X θ X θ X θ

X X；
 (5) 

where  1 2 1 2, , ,  1f fk k k k k k m      are the selected f values of order k.  

According to the dependence properties of order statistics (Boland et al. 1996; Avérous et al. 

2005), two order statistics are non-negatively correlated if they are i.i.d. random variables. Since 

the distribution of structural response is unknown, only distribution-free measurements of 

dependence, like Spearman’s correlation and Kendall’s tau can be applied, and their explicit 

calculation has been exploited by Navarro and Balakrishnan (2010). However, it is known that the 

value of  : ;k mY X θ  strongly depends on the choice of random numbers, especially when k is close 

to 1. Therefore, in some cases the L-statistics, which is a linear combination of order statistics, is 

also used as an estimator due to its simplicity and stability (Prescott et al. 1993). We use the simple 

trimmed mean  :
;

k m
S X θ , defined as follows, for smoothing the quantile response: 

 
   

 
2

1

[ ]

::
[ ] 12 1

1
; ;

mp

k mk m
k mp

S Y
mp mp  




X θ X θ  (6) 

where 1p  and 
21 p   1 20 1p p    are the preassigned portions of the samples trimmed at 

lower and upper ends, and  1mp  and  2mp  stand for the greatest integer less than mp1 and mp2, 

respectively. The subscript k  represents the arithmetic mean of all orders k in the set

    1 21, ,mp mp .  

It is obvious that if 1p  and 
2p  in Eq. (6) are properly selected such that 

        1: : 1::

1
; ; ; ;

3
k m k m k mk m

S Y Y Y   X θ X θ X θ X θ  (7) 

then the trimmed mean  :
;

k m
S X θ is a function of order k, and can also be used as an 

approximation of quantile response  : ;k mY X θ  to meet the various robustness levels. We denote 

the trimmed mean defined as Eq. (7) by :k mS for the implication of function of order k hereafter. 

Then, the multiobjective optimization problem to minimize :k mS  can be formulated as 

       

 
1 2: : :

g

Minimize  ; , ; ,  ; , , ;

subject to 0,   1,2, ,   

sk m k m k m

i

Y S S S

g i n



  

X θ X θ X θ X θ

X X；
 (8) 

where  1 2 1 2, ,  2 1s sk k k k k k m       are the selected values of order k in  : ;k mS X θ  .  
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4. Robust Shape and Topology Optimization of Plane Frame Structure 

Generally, in shape and topology optimization of plane frame structure, the design variables are 

the vectors of nodal coordinates  1 2 1 2, , , , , , ,
x yn nx x x y y yx  including x- and y-coordinates, 

and cross-sectional areas  
e1 2, , , nA A AA , where xn  and 

yn  are the numbers of variables in x- 

and y-coordinates, respectively, and en  is the number of elements. The uncertain parameters θ  

are assumed to be vectors of Young’s modulus of the elements
pE  and nodal locations

px . Note 

that the elements of x  and 
px  do not exactly correspond with each other; x  may have more 

elements than 
px  and vice versa. The nominal values of Young’s modulus are denoted by the 

vector 
pE . Then problem (1) can be specifically written as  

 
 

1

2

p

g L U 1

L U 2 L U e

Minimize  , ;

subject to , 0,   1,2, , ; ,   1,2, ,

                ,   1,2, , ; ,   1,2, ,

i j x

j y l

f

g i n x x x j n

y y y j n A A A l n

    

     

A x E

A x  (9) 

where the subscripts L and U represent the lower and upper bounds for the variables, respectively. 

As discussed in Section 2, some of the elements that have small cross-sectional areas in the optimal 

solution of problem (9) may contribute to the reduction of structural response when uncertainty is 

considered. Therefore, based on the optimal shape obtained by solving problem (9), we choose the 

cross-sectional areas as the design variables for multiobjective optimization problems (5) and (8) 

which are written, respectively, as follows:  

       

 

1 2

1

2

p p : p p : p p : p p

g L U 1

L U 2 L U e

Minimize  ; , ,  ; , , ; , , , ; ,

subject to , 0,   1,2, , ; ,   1,2, ,

                ,   1,2, , ; ,   1,2, ,

fk m k m k m

i j x

j y l

Y Y Y Y

g i n x x x j n

y y y j n A A A l n

    

     

A E x A E x A E x A E x

A x   (10) 

       
 

1 2

1

2

p p : p p : p p : p p

g L U 1

L U 2 L U e

Minimize  ; , , ; , ,  ; , , , ; ,

subject to , 0,   1,2, , ; ,   1,2, ,

                ,   1,2, , ; ,   1,2, ,

sk m k m k m

i j x

j y l

Y S S S

g i n x x x j n

y y y j n A A A l n



    

     

A E x A E x A E x A E x

A x    (11) 

where 
px  is the nominal values of 

px .  

After obtaining the Pareto optimal solutions of problems (10) and (11), we remove those elements 

with small cross-sectional areas to obtain the final topology of the frame.  

In the following numerical examples, problems (9), (10) and (11) are solved using genetic 

algorithms (GAs). It is well known for GAs that the diversity of the initial population has great 

influence on the final solution and convergence property. Therefore, we use Latin hypercube 

sampling (LHS) method to generate the initial population for all of the three problems to maintain 



9 
 

diversity, and add the optimal solution of problem (9) into the initial population of multiobjective 

optimization problems (10) and (11) for better convergence. 

In summary, the robust optimization procedure of plane frame is illustrated in Fig. 2, which 

consists of the following steps: 

Step 1: Select the design variables from the sets of nodal coordinates and cross-sectional areas, 

and specify the nominal values of uncertain parameters for problem (9). Generate the initial 

population using LHS method. Solve problem (9) using GA and obtain the optimal solution. 

Step 2: Based on the shape of optimal solution of Step 1, select the cross-sectional areas as 

design variables for multiobjective optimization problems (10) and (11). Generate the 

initial population using LHS method and add the optimal solution of problem (9) into it.  

Step 3: Select the multiple values of order   k k m  to determine the objective functions of 

problems (10) and (11) according to various robustness levels. Generate m vectors of 

random values from the specified probability distribution for computing uncertain 

parameters 
pE  and 

px  in Step 4 to obtain the sample set for order statistics. 

Step 4: Solve problems (10) and (11) using a multiobjective GA. For each individual, compute 

m response values corresponding to the m vectors of 
pE  and 

px , and rearrange the 

responses in a descending order to compute the objective function values based on the 

selected orders k.  

Step 5: Obtain the Pareto optimal solutions, and remove the elements whose cross-sectional 

areas are small enough.  
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Fig. 2 Flowchart of robust optimization of plane frame structure 

 

5. Numerical Examples 

In this section, several examples are presented and discussed in order to illustrate the effectiveness 

of the proposed method. GAs for solving single and multiobjective optimization problems are 

implemented by using a computer with Core i7 processor and the Global Optimization Toolbox of 

MATLAB 2018a (Mathworks 2018) with crossover rate 0.7, and the fraction of individuals to keep 

on the Pareto front is 0.35 by default. The algorithm stops if the average relative change in spread 

over a consecutive sequence of generations is less than the function tolerance and the final spread 

is less than the mean spread over the past consecutive sequence of generations. The default values 

of the length of consecutive sequence and the function tolerance are 100 and 1×10-4, respectively. 

Note that the average relative change in spread is calculated by means of geometric average in 

which the relative change of the kth generation in the consecutive sequence, where k is the number 

of generations prior to the current generation, has a weighting coefficient (1/2)k. See MATLAB 

2018a (Mathworks 2018) for details. 

5.1. Parameter setting 

We assume that each member has solid circular cross-section, and thereby the element diameter 

and second moment of inertia can be expressed by its cross-sectional area. In each of the following 

examples, the uncertain parameters are characterized by the uniformly distributed interval 
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variables, i.e., p p,L p,U,   E E E  and p p,L p,U,   x x x , where 
p,LE , 

p,UE and 
p,Lx , 

p,Ux represent 

the lower and upper bounds of 
pE  and 

px , respectively. To illustrate effectiveness of the 

proposed method, the range of uncertain interval parameters are given as approximately 10% from 

the nominal value in the similar manner as the examples by Guest and Igusa (2008). Furthermore, 

since our purpose is to minimize the structural response at different robustness levels, we hereafter 

select the maximum and median structural responses as the desired percentiles to be minimized 

(Jekel and Haftka 2020), and the upper quartile, which is defined as the middle between the 

maximum and median, is also included to investigate the variation trend of objective function 

values and their statistical values. A small positive lower bound is given for a non-existing member 

to prevent numerical difficulty. The values of parameters in the following numerical examples are 

listed in Table 3, if not specified explicitly, where I is a vector with all entries equal to 1: 

 

Table 3 Parameter setting of each example 

Parameters Example 1 Example 2 Example 3 

Upper bound volume 
UV  1m3 0.2m3 0.2m3 

Nominal value of each entry in 
px  Values in Fig. 

5(b) 

Values in Fig. 

12(b) 
Values in Fig. 18 

Upper bound of 
px  

p 0.6x I  
p 0.1x I  

p 0.1x I  

Lower bound of 
px  

p 0.6x I  
p 0.1x I  

p 0.1x I  

Upper bound cross-sectional area AU 0.1 m2 0.05m2 0.05m2 

Lower bound cross-sectional area AL 1.0×10-7 m2 

Nominal value of each entry in 
pE  2.1×1011 Pa 

Upper bound of 
pE  

p1.1E  

Lower bound of 
pE  

p0.9E  

Values of order k in problem (10) 1, 50, 100 

Values of order k in problem (11) 2, 50, 100 

Confidence level αk 0.9 

Sample size m 200 

 

5.2. Example 1  

The first example is a 14-node bridge frame with 6×1 grid and 31 beam elements, which is pin-

supported at nodes 1 and 13. The initial ground structure is shown in Fig. 3. There are five 

downward loads with magnitude of P = 3×106 N applied at nodes 3, 5, 7, 9 and 11. 
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Fig. 3 Initial ground structure of Example 1 

 

For verification of analysis and optimization programs, and investigating the differences between 

optimal design of truss and frame, we first minimize the structural volume under stress constraints 

on each element and y-directional displacement at each node except nodes 1 and 13. This problem 

has been studied by Rajan (1995) using truss elements. Note that uncertainty is not considered 

here, and Young’s modulus for each beam element is 2.1×1011 Pa. 

The design variables are the cross-sectional area of each element and the y-coordinates of the 

upper nodes 2, 4, 6, 8, 10, 12 and 14. Because the structural shape, loading conditions and boundary 

conditions are symmetric with respect to a y-directional line, the number of design variables is 

reduced from 38 to 20, with 16 design variables  1 2 16, , ,A A AA representing the cross-

sectional areas of elements 1 to 16, and four design variables  2 4 6 8, , ,y y y yx  representing the 

y-coordinates of nodes 2, 4, 6 and 8. Since both bending moment and axial force exist in the frame 

structure, we have to ensure that both of the tensile and compressive stresses at the edge of element 

ends should not exceed the allowable stress. Therefore, we increase the upper bound of cross-

sectional area from 0.1 m2, which is used in Rajan (1995), to 0.2 m2 so that the cross-sectional area 

does not reach the upper bound.. The optimization problem to minimize the total structural volume 

 ,V A x  is formulated as follows: 

 

 

 

 

U

max-t

t,U

L Umax-c

c,U

L U

Minimize  ,

subject to  , ,   2,3 ,12,14

,
                 ,   1, 2, ,16

,

                  ,    2, 4,6,8

i

l

l

l

j

V

i

A A A l

y y y j

 

 

 

 

 
  



  

A x

A x

A x

A x
，

  (12) 

where  ,i A x  is the downward displacement of node i, and U 0.1   m is its upper bound; 

 max-t ,l A x  and  max-c ,l A x  represent the maximum tension and compressive edge stresses  

 0  of lth element, and 8

t,U 1.30 10    Pa and 8

c,U 1.04 10    Pa are the upper bounds of 



13 
 

edge stress in tension and compression, respectively. Bounds for the variables are L 2y   m, 

U 8y   m, U 0.2A   m2, and 7

L 1.0 10A    m2. 

Problem (12) is solved by GA, and the optimal solution is shown in Fig. 5(a). The structural 

volume is 5.42 m3, which is about 6.4% larger than the result in Rajan (1995). The main reason is 

that the truss structure has only axial force and the element is either under uniaxial tension or 

compression. On the other hand, the edge stress of frame element consists of bending stress and 

uniaxial tensile or compressive stress, which is illustrated in Fig. 4, and the cross-sectional area 

need to be larger than that of the truss element in order not to violate the stress constraints, leading 

to a little increase of the total structural volume. 

 

 
Fig. 4 Illustration of internal force and maximum edge stress of beam element 

 

    
      (a)                 (b) 

Fig. 5 Optimal solutions of Example 1: (a) problem (12); (b) problem (13) 

 

Next, we select Young’s modulus of each element and x- and y-coordinates of nodes 2, 4, 6, 8, 10, 

12 and 14 as uncertain parameters, and minimize the maximum stress under volume constraint. 

The initial structure is the same as shown in Fig. 3 and design variables are  1 2 16, , ,A A AA  

and  2 4 6 8, , ,y y y yx . Using the parameter values listed in Table 3, the optimization problem is 

formulated as follows:  
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 

 

max max

p
1,2, ,16

U

L U L U

Minimize  max , ;

subject to  ,

                 ,   1,2, ,16;   ,   2,4,6,8

i
i

l j

V V

A A A l y y y j

 






     

A x E

A x   (13) 

Problem (13) is solved using GA and the optimal solution is shown in Fig. 5(b). Then, based on 

the optimal shape in Fig. 5(b) we choose the cross-sectional areas as design variables and consider 

the variation in uncertain parameters, and the multiobjective optimization problem reads  

       
 

max max max max

p p 1:200 p p 50:200 p p 100:200 p p

U L U

Minimize  ; , ,   ; , ,   ; , ,   ; ,

subject to  ;  ,   1,2, ,16lV V A A A l

   

   

A E x A E x A E x A E x

A
 (14) 

As a result of optimization, the 200 solutions converged to a set of 70 different Pareto optimal 

solutions, and the total computational efforts for solving problems (13) and (14), including the 

iteration steps, number of function analyses and computation time, are listed in Table 4. Since 

finite element analysis can be avoided if the individuals in the current population have appeared 

in the previous iteration and thus computational efforts can be saved, the following criteria is 

adopted to determine whether the analysis for the current individual is needed or not: 

1

a0.001,  1,2, ,
i

i

i n


 
p p

p
  (15) 

where p1 is the current individual to be evaluated, pi is the individual that has appeared before and 

na is number of individuals that have appeared before without duplication. By using Eq. (15) the 

number of analyses for solving problems (13) and (14) without duplication can be obtained as 

listed in Table 4. Note that the computation time is calculated for the total number of analyses. 

 

Table 4 Computational efforts of Examples 1, 2 and 3 

Example 
Iteration 

steps 
Number of analyses  

Number of analyses 

without duplication  

Computation 

time 

1 621 
400,200 (problem 13) 

7,880,000 (problem 14) 

45,533 (problem 13)  

4,345,000 (problem 14) 
4243.78 sec 

2 951 
115,600 (problem 17) 

15,320,000 (problem 18) 

37,605 (problem 17) 

11,302,600 (problem 18) 
5782.27 sec 

3 593 
88,200 (problem 22)  

6,120,000 (problem 23) 

40,420 (problem 22)   

4,311,400 (problem 23) 
3156.42 sec 

 

The Pareto optimal solutions at different steps are plotted in Figs. 6, 7 and 8, respectively, in 

the planes of 
max  and one of max

1:200 , max

50:200  and max

100:200 , where the solutions on the Pareto front are 

denoted by PF followed by the step number in the parentheses. It can be observed from Fig. 6(a) 

that the Pareto front is generated with good accuracy after step 30, and the optimal value of 
max  

remains the same due to the addition of optimal solution of problem (13) into the initial population 

of problem (14). Fig. 6(b) plots the detailed view of the values of Pareto optimal solutions and 
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their corresponding trade-off relationships. We can see that variation of max

1:200  at the Pareto front is 

greater than that of 
max . The same conclusions can be drawn from Figs. 7 and 8.  

 

 
      (a)               (b) 

Fig. 6 Stepwise Pareto front of objectives 
max and max

1:200 : (a) Overall review; (b) Detailed view 

 
      (a)               (b) 

Fig. 7 Stepwise Pareto front of objectives 
max and max

50:200 : (a) Overall review; (b) Detailed view 

 
 

      (a)               (b) 

Fig. 8 Stepwise Pareto front of objectives 
max and max

100:200 : (a) Overall review; (b) Detailed view 
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The Pareto optimal solutions that have the smallest values of 
max , max

1:200 , max

50:200  and max

100:200 , 

respectively, are denoted by solutions A, B, C and D, and shown in Fig. 9. The maximum edge 

stresses of each element along its length, which is calculated without considering uncertainty, are 

also depicted. Note that the thin elements whose cross-sectional areas less than 0.0001 m2 are 

removed from the optimal solutions in Fig. 9, and their objective values before and after removing 

the thin elements are listed in Tables 5 and 6, respectively, together with their structural volume. 

The distribution of cross-sectional areas are plotted in Fig. 10. 

  

    
                  (a)             (b) 

    
                  (c)             (d) 

Fig. 9 Pareto optimal solutions of problem (14): (a) Solution A; (b) Solution B; (c) Solution C; 

(d) Solution D 
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Fig. 10 Distribution of cross-sectional areas of solutions A, B, C and D of problem (14) in 

Example 1 
 

Table 5. Objective values and structural volume of solutions A, B, C and D of problem (14) in 

Example 1 before removing thin elements 

Solution max  (Pa) 
max

1:200  (Pa) max

50:200  (Pa) max

100:200 (Pa) Volume (m3) 

A 4.7001×108 5.9733×109 2.8549×109 2.0861×109 1.0 

B 6.0353×108 7.7531×108 6.9560×108 6.5546×108 1.0 

C 5.8417×108 8.2934×108 6.8127×108 6.4418×108 1.0 

D 5.7499×108 8.7466×108 6.9079×108 6.3814×108 1.0 

 

Table 6. Objective values and structural volume of solutions A, B, C and D of problem (14) in 

Example 1 after removing thin elements 

Solution max  (Pa) 
max

1:200  (Pa) max

50:200  (Pa) max

100:200 (Pa) Volume (m3) 

A 4.7080×108 1.7213×1010 7.3785×109 4.1258×109 1.0 

B 6.0929×108 7.7872×108 6.9805×108 6.6848×108 1.0 

C 5.8482×108 8.3908×108 6.8469×108 6.4775×108 1.0 

D 5.8070×108 8.8895×108 6.9200×108 6.4595×108 1.0 

 

We can see from Fig. 9 and Tables 5 and 6 that solution A has obviously large values of 

objectives max

1:200 , max

50:200  and max

100:200 . Solution B has the minimum value of max

1:200  and some of the 

elements, which do not exist in solution A, have moderately large cross-sectional areas to reduce 
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the effect of uncertainties in Young’s modulus and nodal locations, resulting in the large stiffness 

of the frame. 

As seen from Tables 5 and 6, the objective values of solutions B, C, and D as well as the 

objective value of 
max  in solution A before and after removing thin elements are very close. 

However, the objective values of max

1:200 , max

50:200  and max

100:200  in solution A after removing thin 

elements are greater than those before removal. This is mainly because although solution A has 

the minimum value of 
max  among 70 Pareto optimal solutions, it is unstable if bending stiffness 

is very small and become worse when the thin elements are removed,  making it more sensitive to 

the uncertainties, and thus its maximum stress increase rapidly as deformation becomes 

asymmetric.  

It is confirmed that solutions C and D have the smallest values of max

50:200  and max

100:200 , 

respectively, and elements 8 and 24 are removed in solution D. We can also observe from Tables 

5 and 6 that the nominal objective value 
max  decrease as k is increased. However, the solutions 

A and D that minimize the nominal and median values are very different, indicating that a small 

asymmetric property leads to a large increase of the maximum stress, and accordingly leads to a 

significant difference in the optimal solutions. By contrast, the extreme value max

1:200  increases as k 

is increased. However, the increase is not very significant. The cross-sectional areas of solutions 

B, C and D have similar distribution as shown in Fig. 10.  

Solutions A, B, C and D have the same structural volume of 1.0 m3, however; they have 

different distribution of cross-sectional areas after solving problem (14), leading to different 

performances on minimizing the maximum stress. Furthermore, it can be seen that none of these 

four solutions has minimum values for any of the two objectives, indicating that the optimal 

solution may vary with robustness level, and the designers can appropriately choose the optimal 

solution according to the various robustness levels. 

Moreover, in order to further investigate the effect of relaxing worst-case value of the 

maximum value on the optimal solutions, the worst-case value is approximated by order statistics 

with a larger confidence level αk=0.99 and β=0.99, and the minimum sample size that the worst 

sample (i.e., k=1) satisfies αk=0.99 and β=0.99 is 459 (Yamakawa and Ohsaki 2016). The 

following optimization problem is formulated and solved by GA with the same parameter values 

as in problem (13): 

 
 

max

1:459 p p

U L U

Minimize  ; ,

subject to  ;  ,   1,2, ,16lV V A A A l



   

A E x

A
  (16) 

The optimal solution of problem (16) is shown in Fig. 11, where the maximum stresses for 

each element are calculated without considering uncertainty. The optimal value of max

1:459  is 7.9923 

×108 Pa, which is a little larger than the objective value of max

1:200  of Solution B due to the trade-off 

relationship between robustness level and minimizing the maximum stress. Note that the value of 

β for max

1:200  at confidence level αk=0.99 is 0.977. Compared to solution B in Fig. 9(b), it can be seen 
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that the cross-sectional areas of elements 1, 4, 5, 28, 30 and 31, which do not exist in solution B, 

have moderately large values in Fig. 11 to reduce the extreme worst-case value, resulting in 

different performance on minimizing the maximum stress in the structure. Since the extreme 

worst-case is a rare event and it may cost more to build a structure which satisfies the requirement 

of large worst-case value of maximum stress, in the present study we relax the worst-case value to 

some extent and assign the sample size m=200, and the computational effort will also be saved.  

 

 

Fig. 11 Optimal solution of problem (16) 

 

5.3. Example 2 

Example 2 involves a 4×1 grid with 10 nodes and 21 elements, and a downward vertical load P 

with magnitude of 100 N is applied at node 5. The structure is pin-supported at nodes 1 and 9, and 

the geometry of the structure is shown in Fig. 12(a). The design variables are the cross-sectional 

areas of elements 1 to 11  1 2 11= , ,A A AA  incorporating symmetry, and the uncertain 

parameters are Young’s modulus of each element and x- and y-coordinates of nodes 2, 3, 4, 6, 7, 

8 and 10.  

 

Fig. 12 (a) Initial ground structure of Example 2; (b) Optimal solution of problem (17) 

 

First, in accordance with Eq. (9), the following single objective optimization problem to 

minimize the maximum stress is solved  
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 

 

max max

p
1,2, ,11

U L U

Minimize  max ,

subject to  ;   ,   1,2, ,11

i
i

lV V A A A l

 




   

A E

A
  (17) 

In a similar manner as Example 1, based on the optimal solution of problem (17) we formulate the 

following multiobjective optimization problem:  

       
 

max max max max

p p 1:200 p p 50:200 p p 100:200 p p

U L U

Minimize  , , ,  , , ,  , , ,  , ,

subject to  ;  ,   1,2, 11lV V A A A l

   

   

A E x A E x A E x A E x

A
  (18) 

The optimal solution of problem (17) using the parameter values in Table 3 is shown in Fig. 12(b), 

and the four solutions A, B, C and D from the 70 Pareto optimal solutions of problem (18), which 

have the minimum objective values of 
max , max

1:200 , max

50:200  and max

100:200 , respectively, are presented 

in Fig. 13, together with the corresponding maximum edge stress obtained without considering 

uncertainty. The computational efforts for solving problems (17) and (18) are listed in Table 4. 

The elements with cross-sectional areas less than 0.0001 m2 have been removed from Fig, 13, and 

the distribution of cross-sectional areas are plotted in Fig. 14. As seen from Figs. 13 and 14, 

although solutions B, C and D have the same structural topology, the distribution of cross-sectional 

areas are not exactly the same. 

 

    
        (a)              (b) 

    
            (c)             (d) 

Fig. 13 Pareto optimal solutions of problem (18): (a) Solution A; (b) Solution B; (c) Solution C; 

(d) Solution D 
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Fig. 14 Distribution of cross-sectional areas of solutions A, B, C and D of problem (18) in 

Example 2 

 

Table 7. Objective value and structural volume of solutions A, B, C and D of problem (18) in 

Example 2 before removing thin elements 

Solution max  (Pa)  
max

1:200  (Pa) max

50:200  (Pa) max

100:200 (Pa) Volume (m3) 

A 3949.13  15475.38 9526.87 7193.64 0.2 

B 5268.16 6618.92 5984.07 5615.98 0.2  

C 4780.90 6998.41 5742.66 5268.61 0.2 

D 4609.75 7091.41 5842.31 5178.45 0.2 
 

Table 7 lists the objective values and structural volume of solutions A, B, C and D before 

removing thin elements. It can be observed from the table that for solution A the objective values 

of three order statistics are far greater than its nominal objective value. This is mainly because 

without considering variation in uncertain parameters the final optimal structure, as shown in Fig. 

13(a), is unstable, if bending stiffness is neglected, and more sensitive to the uncertainty. On the 

other hand, with the re-distribution procedure of cross-sectional areas, solutions B, C and D have 

reduced the maximum stress under uncertainty at the cost of increasing the maximum stress for 

nominal uncertain parameters. Moreover, among these four solutions the decrease from max

1:200  to 

max

50:200  is larger than the decrease from max

50:200  to max

100:200 , indicating that the decrease of order 

statistics with respect to k for large order k may be small. 
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Based on Eq. (11), we further formulate the following optimization problem by using trimmed 

means as objective functions: 

       
 

max max max max

p p 2:200 p p 50:200 p p 100:200 p p

U L U

ˆ ˆ ˆMinimize  ; , ,  ; , ,  ; , ,  ; ,

subject to  ;   ,   1,2, ,11lV V A A A l

   

   

A E x A E x A E x A E x

A
 (19) 

where 

   max max max max

:200 p p 1:200 :200 1:200

1
ˆ ; , ,   2,50,100

3
k k k k k       A E x   (20) 

 

    

           (a)        (b) 

    

           (c)        (d) 

Fig. 15 Pareto optimal solutions of problem (19): (a) Solution A*; (b) Solution B*; (c) Solution 

C*; (d) Solution D* 

 

Note that the arguments A , 
pE and 

px of order statistics in the right-hand side of Eq. (20) have 

been omitted for brevity. After solving problem (19), we select four solutions A*, B*, C* and D* 

among the Pareto optimal solutions which have the smallest objective values of 
max , max

2:200̂ , 

max

50:200̂  and max

100:200̂ , respectively. These solutions and the corresponding distribution of cross-

sectional areas are plotted in Figs. 15 and 16, respectively. Compared to the results obtained by 

solving problem (18), we can see that although solutions A*, B*, C* and D* are not exactly the 

same as solutions A, B, C and D, respectively, they have similar shape and topology after removing 
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thin elements with cross-sectional areas less than 0.0001m2. Their distributions of cross-sectional 

areas are also close, demonstrating that multiobjective optimization problems (18) and (19) would 

lead to similar structures. We list the objective values and structural volume of solutions A*, B*, 

C* and D* before removing thin elements in Table 8, and the conclusion drawn from Table 7 can 

also apply for Table 8. 

 

Fig. 16 Distribution of cross-sectional areas of solution A*, B*, C* and D* of problem (19) in 

Example 2 

 

Table 8 Objective values and structural volume of solutions A*, B*, C* and D* of problem (19) in 

Example 2 before thin elements 

Solution max  (Pa) 
max

2:200̂  (Pa) max

50:200̂  (Pa) max

100:200̂  (Pa) Volume (m3) 

A* 3962.36 14762.3 9432.21 7155.88 0.2 

B* 5150.72 6572.23 5925.88 5504.99 0.2 

C* 4790.73 6820.37 5700.54 5255.23 0.2 

D* 4580.95 6981.48 5842.58 5180.97 0.2 

 

Based on the solutions of problems (18) and (19), we further investigate the variations of 

solutions A, B, C, D and A*, B*, C*, D*, respectively. 2000 random seeds are used to generate 

2000 groups of 200 samples for 
pE  and 

px , and the mean values and standard deviations of the 

objective functions 
max , max

1:200 , max

50:200 , max

100:200  and 
max , max

2:200̂ , max

50:200̂ , max

100:200̂  are listed in 

Tables 9 and 10, respectively. It can be observed from Table 9 that the standard deviation of 
max  
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for each solution is 0, and the corresponding mean values are the same as those listed in Table 7. 

Besides, solutions A, B, C and D have the smallest mean value of objective functions 
max , max

1:200 , 

max

50:200  and max

100:200 , respectively, which confirms the accuracy of optimization process. It is worth 

noting that solution B has the largest standard deviation of max

1:200  among all the objective functions 

and at the same time has the smallest standard deviation of max

1:200  among all the four solutions, and 

the standard deviation of max

1:200  for solution B is larger than the standard deviations of max

50:200  and 

max

100:200  for solutions C and D, respectively. This verifies that the extreme value corresponding to 

k = 1 has more variation than the order statistics with larger values of k.  

The same conclusion can be drawn from Table 10 for solutions A*, B*, C* and D* and 

objective functions 
max , max

2:200̂ , max

50:200̂  and max

100:200̂ . Comparison between Tables 9 and 10 shows 

that the standard deviations of max

2:200̂  for solution B*, max

50:200̂  for solution C* and max

100:200̂  for 

solution D* are smaller than those of max

1:200  for solution B, max

50:200  for solution C and max

100:200̂  for 

solution D, respectively, indicating that the robust optimization using trimmed mean as objective 

functions will lead to solutions which are less sensitive to the uncertain parameters. 

 

Table 9 Mean value (Pa) and standard deviation (Pa) of objective values of solutions A, B, C and 

D of problem (18) in Example 2 

Solution A B C D 

Variation Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
max  3949.13 0 5268.16 0 4780.91 0 4609.75 0 

max

1:200  15585.87 878.94 7018.64 206.94 7447.45 248.3 7495.61 251.74 
max

50:200  9344.63 288.23 5923.11 44.57 5757.67 86.42 5817.05 87.49 
max

100:200  7457.03 226.38 5646.81 32.03 5251.68 63.66 5218.24 58.97 

 

Table 10 Mean value (Pa) and standard deviation (Pa) of objective values of solutions A*, B*, 

C* and D* of problem (19) in Example 2 

Solution A* B* C* D* 

Variation Mean 
Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
Mean 

Std. 

Dev 
max  3962.36 0 5150.72 0 4790.73 0 4580.94 0 
max

2:200̂  14842.48 674.77 6877.83 150.88 7094.47 168.92 7320.2 184.88 
max

50:200̂  9274.31 291.96 5841.14 50.08 5701.11 79.4 5812.24 88.97 
max

100:200̂  7368.72 226.08 5532.99 34.3 5229.55 65.68 5206.35 53.4 
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In order to compare the convergence properties of the optimization process, we solve problems 

(18) and (19), respectively, 10 times with different random seeds. From each trial we can obtain 

the sets of solutions A, B, C, D and A*, B*, C* and D* which have the smallest values of the 

corresponding four objective functions, respectively, among the Pareto optimal solutions. Then we 

calculate the mean value, standard deviation, maximum and minimum values of these solution sets 

as listed in Table 11. It can be observed that for 
max  the difference of the statistical information 

between the two solution sets is very small. This is because the optimal solution of problem (17) 

is added into the initial population of both problems (18) and (19). By contrast, the standard 

deviations of max

1:200 , max

50:200  and max

100:200  are larger than those of max

2:200̂ , max

50:200̂  and max

100:200̂ , 

respectively. This is mainly because the trimmed mean is less sensitive to the outliers in the 

samples and can be referred as a robust estimator of quantile structural response. Therefore, the 

multiobjective optimization problem (19) is more stable than those of problem (18) due to the 

smoothness of the objective functions during the optimization process.  

 

Table 11. Statistical information of problems (18) and (19) in Example 2 

Solution set Problem (18) Problem (19) 

Objective max  
max

1:200  max

50:200  max

100:200  max  
max

2:200̂  max

50:200̂  max

100:200̂  

Max. (Pa) 3971.81  7255.42 5813.48 5219.33 3969.66 7056.81 5815.25 5203.84 

Min. (Pa) 3949.13 6618.92 5555.50 5039.94 3948.07 6565.64 5611.88 5067.77 

Mean (Pa) 3965.95 6904.60 5696.22 5144.06 3965.49 6742.10 5699.17 5138.22 

Std. Dev. (Pa) 5.86 227.70 70.56 50.37 5.67 162.50 60.67 46.38 

 

5.4. Example 3 

The last example investigates a cantilever beam with a 3×2 grid, and its geometry information is 

shown in Fig. 17(a). The structure is pin-supported at nodes 1, 2 and 3, and a downward vertical 

load P = 100 N is applied at node 11. Based on symmetry of the structure, we select the design 

variables as  4 5 7 8 10 4 7 10, , , , , , ,x x x x x y y yx and  1 2 15= , ,A A AA , which represent the x-

coordinates of nodes 4, 5, 7, 8 and 10 and y-coordinates of nodes 4, 7 and 10, and the cross-

sectional areas of elements 1 to 15. The parameter values are listed in Table 3. Because in shape 

optimization of frame structure the stiffness matrix may become singular due to the melting nodes 

(Achtziger 2007; Ohsaki and Hayashi 2017; Shen and Ohsaki 2020), we add box constraints to 

nodes 4, 5, 7, 8 and 10 as  

4 5 7 8

10 4 7 10

0.1 , 1.45;   1.55 2.45;   1.55 3

2.55 3;   0 , , 0.9

x x x x

x y y y

     

   
  (21)  

and indicate them using the dotted red lines in Fig. 17(b). 
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    (a)                        (b) 

Fig. 17 (a) Initial ground structure of Example 3; (b) Limitation on the moving range of nodes 

 

Assuming that the uncertain parameters are the Young’s modulus of each element and the x- 

and y-coordinates of all the nodes except 1, 2, 3 and 11, we formulate the single objective 

optimization problem to minimize the maximum as 

 

 

max max

p
1,2, ,15

U L U

4 5 7 8

10 4 7 10

Minimize  max , ,

subject to  , ;  ,   1, 2, 15

                  0.1 , 1.45;   1.55 2.45;   1.55 3

                  2.55 3;   0 , , 0.9

i
i

lV V A A A l

x x x x

x y y y

 




   

     

   

A x E

A x
     (22) 

The optimal solution of problem (22) is presented in Fig. 18, which is added to the initial 

population of the following multiobjective optimization problem:  

       
 

max max max max

p p 1:200 p p 50:200 p p 100:200 p p

U L U

Minimize  , , ,  , , ,  , , ,  , ,

subject to  ;  ,   1,2, ,15lV V A A A l

   

   

A E x A E x A E x A E x

A
  (23) 
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Fig. 18 Optimal solution of problem (22) 

 

    
 (a)                 (b) 

    

(c)                     (d) 

Fig. 19 Pareto optimal solutions of problem (23): (a) Solution A; (b) Solution B; (c) Solution C; 

(d) Solution D 

We obtain four solutions A, B, C and D from the 70 Pareto solutions of problem (23) which 

have the smallest objective values of 
max , max

1:200 , max

50:200  and max

100:200 , respectively, and the total 

computational costs for solving problems (22) and (23) are listed in Table 4. The four solutions 

are shown in Fig. 19 after removal of thin elements whose cross-sectional areas are less than 0.0001 

m2, and their distributions of maximum edge stress are also displayed in Fig. 19. 
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As seen from Fig. 19, structures with different robustness levels can be obtained by solving 

problem (23) and the number of existing elements in the final topoloy decreases from solution B 

to solution D. This is mainly because solution B has the minimum objective value of max

1:200  among 

the Pareto solutions, resulting in more necessary elements to reduce the maximum structural stress 

under uncertainty, and for the objective functions max

50:200  and max

100:200  with lower robustness, fewer 

elements are retained in solutions C and D. It is interesting to note that solution D has the similar 

structural topology as solution A except for the existence of element 5, indicating that the optimal 

solution for median response is close to the solution without uncertainty.  

 

Table 12 Objective values and structural volume of solutions A, B, C and D of problem (23) in 

Example 3 before removing thin elements 

Solution max  (Pa) 
max

1:200  (Pa) max

50:200  (Pa) max

100:200  (Pa) Volume (m3) 

A 5065.19 28101.49 19310.89 16307.84 0.2 

B 9108.34 18531.84 11578.97 10660.53 0.2 

C 8008.69 19210.26 11245.16 9720.72 0.2 

D 7043.87 19779.94 11633.44 9333.17 0.2 

 

 

Fig. 20 Distribution of cross-sectional areas of solutions A, B, C and D of problem (23) in 

Example 3 
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Table 12 lists the objective values and the structural volume of solutions A, B, C and D. 

Distribution of cross-sectional areas is plotted in Fig. 20. It can be observed that different 

robustness levels lead to different distributions of cross-sectional areas. Moreover, although the 

decrease from max

50:200  to max

100:200  is smaller than the decrease from max

1:200  to max

50:200  for solutions B, C 

and D, the minimum values of the three objective functions max

1:200 , max

50:200  and max

100:200  increase with 

the decrease of order k, which shows a trade-off relationship between the robustness level and the 

maximum stress in the solutions with same structural volume. Hence, the designers can choose the 

structure from Pareto optimal solutions that meets the desired value of maximum structural stress 

and robustness level. 

 

6. Conclusion 

A worst-case design approach is proposed for robust optimization of plane frame structure. To 

avoid large computational cost, the worst value of structural response is represented by the quantile 

response. Order statistics and trimmed mean are used for approximation of the quantile response 

and defining the robustness level based on the theory of distribution free one-side tolerance interval. 

It has been shown by Ohsaki et al. (2019) that the order k can be used as robustness indicator if 

the sample size and confidence level are specified. We formulate a new multiobjective robust 

shape and topology optimization for plane frame structure using order statistics and trimmed 

means of the structural response with various orders to simultaneously obtain solutions with 

different robustness level.  

The optimization procedure mainly contains two stages, the first stage is to solve a single 

objective shape and topology optimization problem and the second stage is to solve a 

multiobjective optimization problem where the order statistics or trimmed means of the structural 

response are served as multiple objectives, together with the one without considering uncertainty. 

In the first stage, the design variables are selected as nodal locations and cross-sectional areas, and 

the single objective optimization problem is solved with the nominal value of uncertain parameters. 

Based on the optimal solution of the first stage, we select only cross-sectional areas as design 

variables, and generate variations in uncertain parameters with required sample size for 

multiobjective optimization problem. After optimization in the second stage, the elements with 

small cross-sectional areas are removed to obtain the final topologies of the Pareto optimal 

solutions. Problems in both stages are solved by GAs, and LHS method is introduced to generate 

the initial population with diverse solutions.  

Three numerical examples are presented to investigate and illustrate the effectiveness of the 

proposed method, and the values of order k of order statistics and trimmed mean are selected in 

accordance with the maximum, quartile and median structural response. The uncertainty is 

considered in Young’s modulus and nodal locations with approximately 10% variation from their 

nominal values. It has been shown that some elements, which have little contribution to the reduce 

of structural stress and can be removed from the optimal solution without uncertainty, have 

increased their cross-sectional areas after robust optimization and are helpful of reducing the 
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structural response under uncertainty. Thus, existence of uncertainty leads to a different topology 

of optimal solution.  

Two multiobjective optimization problems are solved minimizing order statistics and trimmed 

means, respectively, and the variability of the optimal solutions with different robustness level is 

also discussed with 2000 random sets of uncertain parameters. Results show that the solutions 

obtained by using trimmed means have smaller standard deviations than those obtained by using 

simple order statics. In addition, comparison of results obtained from 10 different random seeds 

shows that multiobjective optimization procedure with trimmed means is more stable than the one 

with order statistics, indicating that trimmed means is less sensitive to the outliers in the samples 

and referred to a better indicator of the structure robustness. 

However, as discussed by Sigmund (2011), when the sensitivity analysis is available for both 

objective and constraint functions, one should solve the optimization problem by a gradient-based 

method rather than a non-gradient method due to its computational efficiency. Further 

investigation and research are needed on how to derive the gradients for multiple objectives under 

uncertainty and how they influence the accuracy and efficiency of the proposed method. Moreover, 

with regard to the application to real engineering problem, surrogate model and other truncated 

approximation could be used to replace the real finite element analysis when it is time-consuming.   

 

7. Replication of results 

All the results in this research are obtained using homemade MATLAB codes. The source code 

and the research data can be available from the corresponding author with reasonable request. 
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