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Abstract: 

This paper presents a worst case approach for robust geometry and topology optimization of plane 

frames with global stability constraint. Uncertainty is assumed to exist in the nodal locations and 

cross-sectional areas, and the worst values of the objective and stability constraint functions are 

relaxed to the quantile structural responses represented by the order statistics with given robustness 

and confidence levels. In order to alleviate the difficulty caused by melting nodes to some extent, 

the force density method is applied to an auxiliary truss model for geometry optimization of the 

frame, and the closely spaced nodes are merged. A method is presented for generating correlated 

imperfections for the nodal locations along each member, and a penalization approach is proposed 

for geometrical stiffness matrix to exclude superficial local buckling. It is demonstrated in the 

numerical examples that the result of robust optimization obtained by the proposed method is less 

sensitive to the uncertainty, and the stability constraint is also satisfied under uncertainty with the 

specified robustness and confidence levels. 
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1 Introduction 

Geometry and topology optimization of skeletal structures has been extensively studied since the 

pioneering work by Maxwell and Michell, and significant effort has been made in the past few 

decades to the corresponding development of mathematical formulations, numerical methods and 

optimization algorithms. Readers interested in this field may refer to the comprehensive review 

articles [1][2] and text books [3][4] to obtain a general understanding.  

Instead of the well-established ground structure method where the optimization result is 

obtained by removing the unnecessary members from the set of potential connections of nodes and 

members with fixed locations [5], geometry and topology optimization may start from a sparse 

initial structure because the adjustment of nodal locations can usually lead to an effective 
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improvement of the objective value [6]. However, one of the main difficulties in geometry 

optimization is the existence of melting (coalescent) nodes if the nodes are allowed to move in a 

wide range, resulting in a singular stiffness matrix [7]. Ohsaki [8] modeled a regular grid truss as a 

frame with beam elements and adjusted the stiffness of a short member using a Sigmoid function. 

Wang et al. [9][10] proposed a node shift method for truss shape optimization where the intervals of 

node shift are controlled not to cause a large variation in stiffness matrix, restricting the moving 

ranges of the nodes. To alleviate the difficulty caused by melting nodes, Ohsaki and Hayashi [11] 

and Hayashi and Ohsaki [12] reformulated the objective and constraint functions in truss 

optimization problem using force density method (FDM). Shen and Ohsaki [13] extended this 

method to frame structures by introducing an auxiliary pin-jointed truss or cable-net structure.  

Since it is well known that such optimization process often converges toward a structure which 

lacks sufficient stability, considerable efforts are also dedicated to including stability constraint in 

the problem formulation [14–16]. Among all the different phenomena covered by stability theory, 

global instability (also called global buckling or linear buckling) is widely used to consider 

instability problem into structural optimization because it does not require detailed nonlinear 

stability information about the structure which is usually not available at the early stage of design 
[17]. Indeed, the nonlinear buckling load factor can be obtained by scaling the linear buckling load 

factor, which works well for many real-world structures and is acceptable to account for structural 

stability [18]. Ohsaki et al. [19] recast the optimization problem with global stability constraint as a 

sequential semidefinite programming for truss structures; Guo et al. [20,21] extended the relaxation 

method to handle the unstable phenomenon which happens when the cross-sectional area 

approaches the small lower bound. Descamps and Coelho [22] used force density as an intermediate 

variable in the formulation of compliance minimization problem, and avoided the nodal instability 

by applying the nominal force method to simulate the geometric imperfection. Furthermore, Torii 

et al. [23] employed frame model to optimize a skeletal structure under global stability constraint 

in which the Euler formula is not needed. Madah et al. [24] simulated each truss member by the 

geometrically nonlinear beam element and obtained the optimal solution in a similar way. Note 

that the aforementioned works can be regarded as deterministic optimization which does not 

consider uncertainty in structural properties or loading conditions. However, it is more reasonable 

to incorporate uncertainty during structural optimization process since it is unavoidable in the real 

world structure.  

Recently, a large number of studies have been carried out for design and optimization of 

structures taking uncertainty into account [25–27]. The optimization methods considering uncertainty 

can be generally divided into two categories according to the models for characterizing the 

uncertainty. When the probabilistic model is used, the uncertainty is assumed to obey some 

predefined distribution, and the objective and constraint functions are usually formulated as the 

functions of statistical moments or probability of failure of the structural response, which are 

regarded as robust design optimization (RDO) [28] or reliability-based design optimization (RBDO) 
[29][30]. In addition, some researchers also utilize stochastic methods to explicitly propagate the 

structural uncertainty to structural response [31,32]. Since the exact distribution information of 

uncertainty may be unknown in advance, a large estimation error would occur in both RDO and 

RBDO when the assumed distribution of uncertainty is far away from the real one [33]. On the other 
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hand, the worst case optimization (WCO) provides an alternative if the uncertainty is described by 

a non-probabilistic model, which aims at minimizing the maximum (worst) objective value among 

all the possible realizations of uncertainty which would result in a structure less sensitive to the 

uncertainty [34]; hence, WCO can be also categorized into RDO. In order to save computational 

efforts in searching the worst value, Kanno and Takewaki [35,36] constructed a minimum confidence 

ellipsoid of the structural response to solve the WCO problem in a confidence way, and the 

uncertainty is considered in the cross-sectional areas and the applied load; Guo et al. [37] extended 

this method to a single-level problem formulation with stiffness uncertainty and fixed nodes 

configuration; Kanno and Guo [38] reduced the discrete WCO of truss structure to a mix-integer 

problem where the uncertain load is predefined in an ellipsoid. Although these WCO with 

confidence robustness model can be successfully solved, incorporating with geometry 

optimization and the nodal uncertainty, which is another common source of uncertainty, should 

also be considered. Fu et al.[39] solved the truss topology optimization problem with uncertain 

nodal locations using proportional topology optimization method, where the inverse of stiffness 

matrix is expressed based on Neumann series expansion. However, since the objective is the 

expected value of structural response, this method might be insufficient to characterize the 

uncertain properties of the structure if the deviation of response is moderately large. Recently 

Yamakawa and Ohsaki [40–42] developed an order statistic approach to consider the worst case value 

with certain confidence level, in which the worst value is approximated by the kth order statistics 

and the parameter k is regarded as the robustness level according to the theory of distribution-free 

tolerance interval. This method can be regarded as a special case of scenario optimization where 

the scenario theory is used to provide a certain robustness for the optimal solution, that is the 

probability of the solution not to violate the requirements in the unseen future, with given sample 

set and confidence level [43]. However, the uncertainty is only assumed in the objective function in 

order to limit the difficulty. 

In the present study, we propose a worst case method for robust geometry and topology 

optimization of plane frames to minimize the maximum stress under volume and global stability 

constraints, where the uncertainty is assumed to exist in nodal locations and cross-sectional areas. 

The order statistics corresponding to the specific robustness level are used for the objective 

function and the global stability constraint. Geometry of the frame structure is determined by the 

FDM which is applied to the auxiliary truss structure that is irrelevant to the true loading and 

boundary conditions of the frame structure to be optimized; thus the design variables are the force 

densities of the members of the auxiliary pin-jointed structure and the cross-sectional areas of the 

frame. The performance and properties of robust geometry and topology are investigated in 

comparison to those without considering uncertainty. Note that in this paper we solve the RDO 

problem using a randomized approach. We do not make any prior assumption on the distribution 

information of uncertainties in nodal locations and cross-sectional areas, but only assume that they 

are independent and identically distributed (i.i.d) to provide randomization in the structural 

response.  

The rest of the paper is organized as follows. In Section 2 the basic idea of FDM is briefly 

introduced. The formulation of robust optimization problem, as well as the definitions of stiffness 

uncertainty and the relaxed approximation of worst value using order statistics, are given in Section 
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3. In Section 4, two numerical alternatives to handle stress and global instability phenomena are 

given and illustrated, and three numerical examples are explored in Section 5 to verify the 

effectiveness of the proposed method. Finally, some conclusions are drawn in Section 6. 

2 Force density method for auxiliary truss structure 

FDM is originally used in the form-finding process of cable nets and tensegrity structures, in which 

the force density is defined as the axial force divided by the member length. Because axial force, 

shear force and bending moment exists in the frame structure, in this study the FDM is applied to 

an auxiliary pin-jointed structure to define the nodal locations of the frame that is to be optimized. 

Therefore, it is worth noting again that the structure considered in this section is a pin-jointed truss 

structure. 

Let m and n represent the numbers of members and nodes of the auxiliary pin-jointed truss 

structure, respectively. If member i connects nodes j and k, then the m-by-n connectivity matrix C 

is given by defining each entry as [11,13,44]   

   ,

1

1  1,2, , ; , 1,2,...,

0 other case

i p

p j

p k i m j k n




    



C   (1) 

where the subscript (i, p) indicates the entry of C at the ith row and pth column. The force density 

qi of the ith member is defined as 

 
i

i

i

N
q

L
   (2) 

where Ni is the axial force and Li is the length of the ith member. Accordingly, the m-by-1 force 

density vector is denoted by  1 2, ,...,
T

mq q qq . Let xfree, xfix, yfree and yfix represent the x- and y- 

coordinates of the free nodes and the fixed nodes, respectively, and arrange the columns of 

connectivity matrix C such that the columns corresponding to the free nodes precede those 

corresponding to the fixed nodes, i.e.,  free fix,C C C . Then the equilibrium equations at the free 

nodes and the fixed nodes of the auxiliary pin-jointed truss structure are written as [11,44]  

 

   

   

   

   

free free free free fix fix ,free

free free free free fix fix ,free

fix free free fix fix fix ,fix

fix free free fix fix fix ,fix

diag diag

diag diag

diag diag

diag diag

T T

x

T T

y

T T

x

T T

y

 

 

 

 

C q C x C q C x P

C q C y C q C y P

C q C x C q C x P

C q C y C q C y P

  (3) 

where diag(q) is the square diagonal matrix with the elements of vector q on the main diagonal, 

and Px,free, Px,fix, Py,free and Py,fix are the external forces applied at the free nodes and fixed nodes in 

x- and y-directions, respectively. See Refs. [11,44] for details and illustrative examples for Eq. (3). 

Unlike the traditional FDM, the fixed nodes here consist of the support nodes and loaded nodes, 



5 

 

and therefore Px,free and Py,free are zero vectors. If the force densities are given for all members in 

the structure and the locations of fixed nodes are assigned, then the locations of free nodes can be 

obtained from Eq. (3), that is 

 
    

    

1

free free free free fix fix

1

free free free free fix fix

diag diag

diag diag

T T

T T





 

 

x C q C C q C x

y C q C C q C y

  (4) 

 It has been proved in Ref. [45] that the matrix  free freediagT
C q C  is nonsingular if at least one 

node is fixed and q is a non-zero vector, resulting in the existence of a solution for xfree and yfree in 

Eq. (4). Also, it is pointed out in Ref. [13] that if the axial force Ni in Eq. (3) is non-zero and the 

upper and lower bounds for qi have the same absolute value, then a lower bound for the member 

length Li can be indirectly assigned to prevent generating extremely short members.  

   

3 Robust geometry and topology optimization of plane frame 

One of the formulations for robust optimization is to minimize structural cost under constraint on 

worst value of structural response, which is also called WCO or worst case design. Accordingly, 

we present an optimization problem of minimizing the maximum stress of plane frame under 

volume and global stability constraints, and the worst values are used for evaluations of the 

objective function and the linear buckling load factor. The cross-section is assumed to be circular 

solid and the second moment of inertia can be expressed in terms of the cross-sectional area. 

 

3.1 Uncertainty in member stiffness 

In this study, the uncertainty is considered in the nodal locations and the cross-sectional areas. 

Details of modeling uncertainty are illustrated below. 

Fig. 1(a) illustrates the ith frame member in the global coordinates (x,y), connecting nodes i1 

and i2 and has the length Li. We first add randomness to the x- and y- coordinates of the end nodes 

i1 and i2 and express the uncertain locations of these nodes as  

     ' ', , ,   for   1,  2j j j j j jx y x y x y j i i      (5) 

where  ' ',j jx y  is the uncertain location of node j and  ,j jx y  is the corresponding value without 

uncertainty, and they are indicated by the blue and red dots in Fig. 1(a), respectively; (Δxj, Δyj) 

represents the random variable of uncertainty in nodal locations.   

The ith member with length Li’ is evenly divided into four Euler-Bernoulli beam elements by 

the intermediate nodes i3, i4 and i5, as shown by the red dots in Fig. 1(b), and their locations are 

obtained by the interpolation between  ' '

1 1,i ix y  and  ' '

2 2,i ix y  as follows: 
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   
   ' ' ' '

1 2 1 1' ' ' '

1 1

, ,
, , ,  =1,2,3

4

i i i i

j j i i

x y x y
x y x y k k

 
  
  

 (6) 

where  ' '

1 1,i ix y  and  ' '

2 2,i ix y  are the uncertain locations of end nodes i1 and i2 obtained from Eq. 

(5), and k=1, 2 and 3 correspond to the locations of i3, i4 and i5, respectively. Given the upper-

bound eccentricity e, the uncertain locations of intermediate nodes i3, i4 and i5 are also defined by 

respectively adding randomness to their x- and y- coordinates perpendicular to the ith member 

within the range of e×Li’ as 

     

   

'' '' ' '

2 2 ' ' ' '

2 1 2 1

, , ,  for  3,  4,  5 

;   , ,

j j j j j j

j j i j j i i i i

x y x y x y j i i i

x y e L x y x x y y

    

         
 (7) 

where  '' '',j jx y  ( 3,  4,  5)j i i i  are the uncertain locations of nodes i3, i4 and i5 indicated by the 

blue dots in Fig. 1(b). Accordingly, the uncertainties in the locations of nodes i3, i4 and i5 consist 

of two parts: one is the uncertainty in locations of nodes i1 and i2, and the other is the randomness 

directly imposed on the nodes as shown in Fig. 1(b).  

   

      (a)              (b)  

Fig. 1 Uncertainty in nodal locations of the ith member on (a) end nodes; (b) intermediate nodes 

 

Finally, the imperfect geometry of the ith member is obtained through the uncertain locations 

of nodes i1 to i5 in Fig. 1(b). Besides, correlation among uncertainties in both end nodes and 

intermediate nodes should be appropriately considered. Since we use a randomization approach 

for finding the worst values of responses, the correlation coefficient is described by the following 

exponential decay function [46]. 

   1 1 2 2

1 2

exp

, ,
exp ,   1,  2 1,  2,...,  5

j j j j

j j

x y x y
c j j i i i

L

 
   
 
 

       (8) 

where 1 2j jc is the correlation coefficient of uncertainty between nodes j1 and j2, and Lexp is the 

correlation length. Clearly, a larger Lexp indicates a stronger correlation, and because the 
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correlation among uncertainties in skeletal structures is relatively weaker than in continua [46], a 

small value is used in the numerical examples.  

As for uncertainty in cross-sectional area of the ith member, the randomness is added in a 

similar manner as Eq. (5), that is 

'

i i iA A A     (9) 

where '

iA  is the uncertain cross-sectional area of the ith member and Ai is the corresponding value 

without uncertainty; ΔAi is the random variable that represents uncertainty in cross-sectional area. 

Note that the four elements of the ith member in Fig. 1(b) share the same uncertain cross-sectional 

area '

iA .  

The procedure for incorporating uncertainty in nodal locations and cross-sectional area of the 

ith member is summarized as follows: 

(i) Calculate the length of the ith frame member Li, and determine the uncertain locations of the 

end nodes i1 and i2 by using Eqs. (5) and (8).  

(ii) Calculate the length of the ith frame member Li’ after completing step (i), and evenly divide 

it into four beam elements and obtain the locations of intermediate nodes i3 to i5 using Eq. 

(6). Calculate the corresponding uncertain locations of nodes i3 to i5 by using Eqs. (7) and 

(8). 

(iii) Determine the uncertain cross-sectional area of the ith frame member by using Eq. (9), and 

assign it to the four beam elements. 

In the numerical examples, uniform distributions are assumed for the uncertain parameters in the 

feasible domain. 

 

3.2 Problem formulation 

We begin with the deterministic geometry and topology optimization problem of minimizing the 

stress of a plane frame under global stability and volume constraints, which is formulated as 

follows: 

  

 
 

e

, free free
1,2,
1,2,

free free Ucr

free free L

free free free free freefree

Minimize max , ,

1 1
subject to ;   , , ;

, ,

                 ;   ;   

V ij
i m
j p

V V

 

 






 

     

x y A

x y A
x y A

x x x y y y A A A

 (10) 

where xfree, yfree and A are the vectors of x- and y-coordinates of the free nodes and the cross-

sectional areas of the Euler-Bernoulli beam elements, respectively, and the lower and upper bars 

in the constraints represent the corresponding lower and upper bounds of the design variables; me 
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is the number of beam elements in the frame; p is the number of points for stress evaluation within 

each element and their selection will be explained in Section 4; ,V ij is the von Mises stress 

evaluated at point j of the ith element, and the detailed implementation of calculating the von Mises 

stress of beam element is referred to [47]; 
UV  and 

L  are the upper bound for the structural volume 

and the lower bound for the global linear buckling load factor 
cr , respectively. Note that 

cr  is 

defined as the smallest positive eigenvalue of the following eigenvalues problem: 

    free free free free, , , ,G  0K x y A K x y A Φ   (11) 

where K and KG are the elastic stiffness matrix and the geometrical stiffness matrix corresponding 

to the unit load factor, respectively [48]. In Eq. (10) the global stability constraint is written with 

respect to the reciprocals of cr  and 
L  to ensure that cr  is either larger than 

L  or negative [19], 

and for simplicity we hereafter denote the reciprocals as cr cr1/   and 
U L1/  , respectively. 

By incorporating the FDM in Section 2, the locations of free nodes of a plane frame can be 

derived by solving Eq. (4) of the corresponding auxiliary truss, and the optimization problem (10) 

is restated as  

     

         

e

, free free
1,2,
1,2,

cr

free free U free free U

Minimize max , ,

subject to , , ;   , ,

                 ;   

V ij
i m
j p

V V

 

 






 

   

x q y q A

x q y q A x q y q A

q q q A A A

  (12) 

where q is the force density vector. As stated in Ref.[13], problems (10) and (12) are basically the 

same and will lead to the same solution if a set of q in problem (12) can define the optimal solution 

of problem (10), which means the optimal solution of problem (10) can be found by solving 

problem (12) if it is included in the feasible domain of problem (12). Note again that in problem 

(12) the stresses are calculated for the rigidly jointed frame model with Euler-Bernoulli beam 

elements.  

When uncertainty, which is illustrated in Section 3.1, is introduced to problem (12), the 

optimization problem considering uncertainty takes the following form:  

    

     

    

max

free free

cr,max cr

free free U

free free U

Minimize max , , ;

subject to max , , ; ;   

               , , ;  ;   V V

 

  







 

    

θ

θ

x q y q A θ

x q y q A θ

x q y q A q q q A A A

 (13) 

where   and 
cr  are the same as problem (12);  , ,   θ x y A  is the vector representing the 

uncertainty in nodal locations and cross-sectional areas; Ω is the corresponding uncertain 

parameter space of θ ; 
max  and cr,max  are the values of maximum von Mises stress and 

reciprocal of global linear load factor within the space Ω, respectively. It is worth noting that 
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problem (13) can be regarded as a WCO problem with semi-infinite constraint for design variables 

and uncertain parameters, since it can be equivalently transformed into 

    

     
    

max

free free

cr cr

free free U

free free U

Minimize max , , ;

subject to , , ;  for ;

               , , ;  ;   V V

 

  




   

    

θ
x q y q A θ

x q y q A θ θ

x q y q A q q q A A A

 (14) 

By introducing the slack variable t, problem (14) can be further reformulated as follows, where 

the constraints are to be satisfied for all possible set of uncertain parameters: 

 
    

     
    

free free

cr cr

free free U

free free U

Minimize 

subject to , , ;  for ;

                , , ;  for ;

                , , ; ;   

t

t

V V



  

  

   

    

x q y q A θ θ

x q y q A θ θ

x q y q A q q q A A A

 (15) 

which is classified as an RDO problem. Therefore, we solve an RDO problem using the 

randomized or stochastic approach for estimating the worst values of the responses of the WCO 

problem. However, it is difficult to directly solve problem (15) because the exact worst values of 

structural responses are difficult to find. Therefore, in this study the exact worst responses are 

relaxed to the 100βth percentile structural responses which are approximated by order statistics, 

and it will be illustrated in the next section. 

  

3.3 Worst value approximation using order statistics 

We use a randomization approach for finding the worst values of responses. Let 
s1 2, , , mθ θ θ  be 

the ms samples of independent and identically distributed (i.i.d.) vectors of uncertainty in nodal 

locations and cross-sectional areas with unknown distributions, and  ,q A  be the design variable 

vectors of force densities and cross-sectional areas. The corresponding ms structural responses in 

Eq. (15) with respect to 
s1 2, ,..., mθ θ θ  and  ,q A  are denoted by 

   
s s1 1, ; ,..., , ;m m    q A θ q A θ  and    

s s

cr cr cr cr

1 1, ; ,..., , ;m m    q A θ q A θ , respectively. 

Furthermore, we define 
s s s s1: 2: :, ,...,m m m m    as a permutation of

s1 2, ,..., m    in a descending 

order, i.e., 
s s s s1: 2: :...m m m m     , and the kth maximum stress 

s:k m  is called the kth order 

statistic of the stress. The 
s s s s

cr cr cr

1: 2: :, ,...,m m m m    and 
s

cr

:k m  are also defined in the same manner. Note 

that the descending order statistics are used herein for convenience to approximate the worst values 

of the stress and the linear buckling load factor, which is different from the conventional definition 

of order statistics that is arranged in an ascending order.  

Since 
s s s s1: 2: :, ,...,m m m m    are derived from the same function with different vectors of 

uncertain parameter, it is reasonable to assume that 
s s s s1: 2: :, ,...,m m m m    are ms realizations of the 
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random variable Y  because the function of random variables is still a random variable, and the 

unknown cumulative distribution function (CDF) of Y is denoted by    PrF y Y y     . 

According to the statistical inference theory in order statistics [49], the probability 
k  of 100β% of 

the structural stress   less than the kth order statistic of structural stress 
s:k m  can be calculated as 

      
s

s

s

s

: s

0

Pr 1 1 1,
m k

m rr

k m k

r

m
F I m k k

r
     






 
        

 
   (16) 

where  s 1,I m k k   is the incomplete beta function [41,49]. Similarly, we assume that 

s s s s

cr cr cr

1: 2: :, ,...,m m m m    are ms realizations of the random variables Y  with unknown CDF

   PrF y Y y     , and the probability 
k  of 100β% of 

cr  less than the kth order statistics 

cr

: sk m  can be calculated as 

      
s

s

s

scr

: s

0

Pr 1 1 1,
m k

m rr

k m k

r

m
F I m k k

r
     






 
        

 
   (17) 

Equations (16) and (17) are also called distribution-free one-side tolerance interval because the 

probability of the structural response falling into the one-side interval  :,
sk m  or  

s

cr

:, k m  

is free of the definition of F  or F , respectively, and the kth order statistics 
s:k m  and 

s

cr

:k m  can 

be seen as the 100βth percentile structural response in probabilistic sense and 
k is regarded as the 

confidence level. In order words, if the structural responses are randomly generated corresponding 

to unknown ms vectors of uncertain parameters 
s1 2, ,..., mθ θ θ , one can estimated the 100βth 

percentile of the structural response with confidence level 
k  by Eqs. (16) and (17) using order 

statistics where randomness is considered in both 
s1 2, ,..., mθ θ θ  and structural response. Obviously, 

if 
k  and β are large enough, e.g., 0.9 or 0.95, the kth order statistics can provide an accurate 

quantile response as relaxation of worst values in problems (13) and (15).  

Moreover, as demonstrated by Ohsaki et al. [40,41], β is a decreasing function of k with given 

sample size ms and confidence level 
k , which indicates that a higher order k corresponds to a less 

100βth percentile structural response under uncertainty. Therefore, the order k and its 

corresponding order statistic approximating the 100βth percentile of structural response can be 

regarded as representing the robustness level of the structure. Suppose the worst values of the 

responses in the parameter space in problem (15) are approximated by the kth order statistics 
s:k m  

and 
s

cr

:k m  among ms realizations at confidence level 
k . Then problem (15) can be rewritten as 
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    

    

    

s

s

: free free

cr

: free free U

free free U

Minimize 

subject to , , ; ;

                , , ; ;   

                , , ; ;   

k m

k m

t

t

V V



 





    

x q y q A Θ

x q y q A Θ

x q y q A q q q A A A

 (18) 

where  
s1, , mΘ θ θ  denotes the set of ms sample vectors of uncertain parameters. The 

difference between the approximated worst values in problem (18) and the exact worst values in 

problem (15) will become smaller if the value of k is closer to 1, and the robustness levels of both 

maximum stress and global stability also increase as the order k decreases. Note that the constraints 

in RDO problem (15) are relaxed, i.e., the robustness for satisfying the constraints is relaxed, by 

using order statistics in problem (18) at specified confidence level αk and such robustness can be 

referred to as statistical feasibility robustness which handles the semi-infinite constraints 

stochastically[50]. Although similar formulation to incorporate uncertainty in constraint can be 

found in RBDO problem and referred to as risk or chance constraint[51–53], there is no general 

consensus that RBDO should not be considered as part of the robust optimization methodology, 

and vice versa [50], and the connection between robustness and the stochastic or probability theory 

are also exploited recently by some researchers[54]. The equivalence between the probabilistic 

optimization problem and the robust optimization with uncertain-but-bounded variables are also 

discussed by Elishakoff and Ohsaki[27]. Hence, in this study we consider problem (18) as robust 

optimization problem due to the fact that it is a relaxed version of the WCO problem (15), and 

problem (18) serves as the RDO problem to be solved in the rest of the paper. 

As pointed out in Ref. [13], closely spaced nodes may exist when the value of Ni in Eq. (2) is very 

small, although the member length is indirectly controlled by the bounds of force densities to 

prevent the existence of zero-length member. Moreover, if the cross-sectional area of the short 

member is moderately large, unexpectedly large von Mises stress may appear due to its large 

bending stiffness. However, the closely spaced nodes in the final solution will be merged into one 

node to obtain a simplified structural layout without short members. Therefore, in order to find the 

appropriate maximum stress to be minimized, the stress of the short member is set to 0 and then 

ignored in this study during the optimization process. In addition, unlike the frame member in 

Section 3.1 which is divided into four beam elements, the short member is modeled by only one 

beam element to avoid singularity caused by its large stiffness, and the nodal uncertainty is then 

applied only at the end nodes of a short member.  

 

4 Penalization of stress and geometrical stiffness 

In the preceding section we formulated an RDO problem by combing the FDM and order statistics 

to approximate the quantile responses as a relaxed worst values of the structural responses. Since 

singularity phenomena might emerge in the maximum stress and the global buckling load factor 

and influence the optimization result, the existing approach for stress singularity problem is 

incorporated and extended to alleviate singularity in global buckling factor. 
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4.1 Penalization of stress 

The stress singularity phenomenon has been extensively studied for both continuum and skeletal 

structures [20][55]. Based on the method for stress-based optimization in Ref. [55], the element stress 

is penalized as follows if the cross-sectional area of the ith element is small enough: 

   , ,
1,2,

ˆ / maxV i i i V ij
j p

A A


 


   (19) 

where i, j , p and ,V ij have the same meaning as Eqs. (10) and (12); iA  is the ith element of A  

defined in Eq. (18);   is the penalization parameter to underestimate the stress of a thin element. 

According to Ref. [55], the value of   should be greater than 0 and less than 1, and in this study we 

select 0.5  which is the same as in Ref.[55]. 

To verify the effectiveness of using Eq. (19), a simple example of stress minimization problem 

under volume constraint is to be solved where uncertainty is not taken into consideration. The 

initial structure of a simple frame is shown in Fig. 2(a), in which the node number and the member 

number are indicated by those with and without parentheses, respectively. The frame is pin-

supported at nodes 1 and 2, and a downward vertical load F with magnitude 2000 N is applied at 

node 3. The design variables are the cross-sectional areas of the five members, and each member 

is divided into four Euler-Bernoulli beam elements. Note that the crossing members 3 and 4 are 

not connected at their intersection. As a result, there are 20 beam elements in total in the structure. 

The Young’s modulus is 3×1011 Pa, and the von Mises stress is calculated at the neutral axis and 

the upper and lower edges of the cross-section at the two end nodes of each element,  which are 

illustrated in Fig. 2(b). The optimization problem is formulated based on Eq. (12) in Section 3.2 

without global buckling constraint and considering only A as design variables, where me = 20, p = 

6, and the upper and lower bounds of cross-sectional areas for all members are 0.05 m2 and 1×10-

7 m2, respectively. The stress of a thin element is penalized using Eq. (19), and the thin elements 

are defined as those whose cross-sectional areas are less than 1% of Amax, where Amax is the 

maximum cross-sectional area of the frame. The problem is solved by the generalized reduced 

gradient method (GRG) of CONOPT in the MATLAB interface of TOMLAB with default settings 
[56].  
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   (a)      (b) 

Fig. 2 A simple frame model: (a) initial structure; (b) stress evaluation points of each element 

 

 

(a)      (b) 

Fig. 3 Optimal solution of simple frame example: (a) before removing thin elements; (b) after 

removing thin elements 

 

Table 1 Cross-sectional areas of optimal solution of simple frame example 

Member number Cross-sectional area (m2) 
1 0.03478 

2 1×10-7 

3 1×10-7 

4 0.04611 

5 1×10-7 

 

The optimal solution and the corresponding cross-sectional areas are shown in Fig. 3(a) and 

Table 1, and the result after removing the thin elements is shown in Fig. 3(b). The maximum von 
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Mises stresses before and after removing thin elements are 68199.41 Pa and 68199.54 Pa, 

respectively, which are almost the same, indicating that the stress singularity phenomenon can be 

avoided by using Eq. (19).  

 

4.2 Penalized geometrical stiffness 

The penalization approach to alleviate stress singularity is extended here for singularity 

phenomenon in global instability. It has been pointed out that the emergence of slender member 

in compression will lead to a violation of global stability constraint due to their negative 

contribution in stiffness matrix [17]. Therefore, in order to obtain the accurate linear buckling load 

factor of the structure when thin elements are involved, the geometrical stiffness of the thin element, 

say the ith element, is penalized as follows: 

 , ,
ˆ /G i i i G iA A



 K K   (20) 

where ,G iK is the original geometrical stiffness matrix of the ith element and ρ is the penalization 

parameter. Equation (20) is inspired by the standard SIMP method where the elastic element 

stiffness matrix with intermediate density is penalized by the corresponding density design 

variable [3,57]. The main purpose of using Eq. (20) is to exclude the superficial buckling caused by 

the geometric stiffness matrix of thin element without removing any thin element and keeping the 

connection of nodes unchanged. 

 

 

Fig. 4 Variation of linear buckling load factor with respect to penalization parameter 
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To illustrate the singularity phenomenon of the stability constraint, we investigate the buckling 

load factor of the solution of the same optimization problem in Section 4.1 without global stability 

constraint. The linear buckling load factor cr  before removing thin elements is 0.7971, whereas 

the value after removing thin elements is 238440.64. This enormous difference demonstrates that 

global geometrical stiffness matrix of the structure is highly dependent on its thin elements; 

therefore the accurate value of cr  cannot be obtained without removing the thin elements that 

may have superficial member buckling. However, if the geometrical stiffness matrices of the thin 

elements are penalized using Eq. (20), we can eliminate such negative effect in the global stiffness 

matrix and obtain the accurate value of cr  without removing the thin elements. Figure 4 shows 

the relationship between cr  before removing thin elements and the penalization parameter ρ in 

Eq. (20). The value of cr after removing the thin elements is also plotted with red line for 

comparison. As we can see from Fig. 4, the value of cr  before removing the thin elements 

increases as ρ is increased, and becomes close to 238440.64 when ρ is greater than 1, indicating 

that the global stability of the structure can be evaluated by using Eq. (20) with a value of ρ larger 

than 1. Therefore, in this study we choose 2   in Eq. (20) to penalize the geometrical stiffness 

matrix of a thin element. 

 

5 Numerical Examples 

Three numerical examples are presented in this section to demonstrate the effectiveness of the 

proposed method. The nonlinear optimization problem (18) is solved using CONOPT in the 

MATLAB interface of TOMLAB with default settings [56]. As discussed in Section 3.3, since the 

robustness level β is a decreasing function of order k with given sample size ms, and higher values 

of β and confidence level αk lead to a better approximation of the worst structural response, we 

assume k = 1, ms = 150 and αk = 0.9995 for problem (18) in the three examples, i.e., the order 

statistics 
s:k m  and 

s

cr

:k m  in problem (18) are written as 1:150  and cr

1:150 , respectively, and the 

corresponding robustness β of both maximum stress and global buckling load factor is 0.95. The 

eccentricity e for each member in Section 3.1 is 0.01 in accordance with Ref. [58], and the vector 

 , ,   θ x y A  is characterized by uniformly distributed interval variables of the increments 

indicated by , i.e., lower upper,     x x x , lower upper,     y y y , lower upper,     A A A  and   

is then defined as lower upper lower upper lower upper, , ,                 x x y y A A , where the subscripts 

lower and upper represent the lower and upper bounds for the corresponding uncertain parameters, 

respectively. Note that the same set of uncertain parameters is used at each iteration during 

optimization process. Validity of this procedure is explained in Appendix. Because the variation 

range of uncertain locations of intermediate nodes can be derived with prescribed uncertain nodal 

locations of free nodes and the eccentricity e, only the bounds for free nodes, denoted by free,lowerx  , 

free,upperx  , free,lowery  and free,uppery , are given in each example, and we assume that the nodal 

uncertainty does not exist in the fixed nodes. The correlated nodal uncertainty values in each 
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member are generated by using copulas [59,60] in MATLAB 2018a [61] and their correlation 

coefficients calculated by Eq. (8). It should be noted that in the formulation of problem (18) no 

assumption is made on the distribution type of the uncertain parameters; however, in the numerical 

examples we choose the uniform distribution as the sample-generating mechanism for 

conveniently constructing the random sample set for order statistics[43]. 

Furthermore, since closely spaced nodes may still exist in the optimization process, we 

hereafter do not divide the frame member if its length is less than 0.1 m; otherwise the frame 

member is evenly divided into four beam elements as explained in Section 3.1. An element is 

regarded as thin if its cross-sectional area is less than 1% of the maximum cross-sectional area of 

the frame. The stress and geometrical stiffness of a thin element are penalized using Eqs. (19) and 

(20), respectively. The number of evaluation points p within each element is 6 and their positions 

are shown in Fig. 2(b).  The parameter values listed in Table 2 are used in the following numerical 

examples if not specified explicitly, where t is the vector with all entries equal to 1. Note that A  

in Table 2 is the lower bound of cross-sectional area without considering uncertainty, i.e., 

 A A A , and the number of nodes n does not include the intermediate nodes in each member. 

Flowchart of the proposed method is shown in Fig. 5. The deterministic optimization problem (12) 

is also solved in each example for comparison purpose, and the solution of robust optimization 

problem (18) and deterministic optimization problem (12) are denoted as solutions R and D, 

respectively.  Note that the crossing members are not connected at their intersection also in the 

following examples. 

 

Table 2 Parameter settings of each example 

Parameters Example 1 Example 2 Example 3 

Lower bound of free,lowerx  (m) 0.02 t   0.02 t  0.02 t  

Upper bound of free,upperx  (m) 0.02t  0.02t  0.02t  

Lower bound of free,lowery  (m) 0.02 t  0.02 t  0.02 t  

Upper bound of free,lowery  (m) 0.02t  0.02t  0.02t  

Lower bound of lowerA  (m2) 0.02 A  0.02 A  0.02 A  

Upper bound of upperA  (m2) 0.02A  0.02A  0.02A  

Young’s modulus E  (Pa) 112 10 t   112 10 t  112 10 t  

Sample size ms 150 150 150 

k in problem (18) 1 1 1 

Confidence level 
k  0.9995 0.9995 0.9995 

Robustness   0.95 0.95 0.95 

Upper bound of A  (m2) 0.05t  0.05t  0.05t  

Lower bound of A  (m2) 71 10 t  71 10 t  71 10 t  

Upper bound of q  (N/m) 1000t  1000t  1000t  
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Lower bound of q  (N/m) 1000 t  1000 t  1000 t  

Upper bound of UV  (m3) 0.02 0.1 0.1 

Lower bound of 
L  3.4 50 19 

Corresponding 
U  0.29 0.02 0.052 

Correlation length expL  (m) 0.1 0.1 0.1 

Number of members m 10 27 21 

Number of nodes n 6 12 10 

Eccentricity e  0.01 0.01 0.01 

 

 

Fig. 5 Flowchart of robust geometry and topology optimization of plane frame 
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5.1 Example 1 

The first example is a plane frame with two square units, and the initial frame is shown in Fig. 6. 

The frame is pin-supported at nodes 1 and 2, and a downward vertical load F = 200 kN is applied 

at node 5. The fixed nodes are selected as nodes 1, 2 and 5, and the others are free nodes. The 

robust and deterministic solutions R and D are obtained by solving optimization problems (18) 

and (12), respectively. 

The solutions R and D are shown in Fig. 7, where the contour represent the value of von Mises 

stress. The nodal locations, force densities, cross-sectional areas and member lengths of solutions 

R and D are listed in Tables 3 and 4. Note that the stress distributions in Fig. 7 are obtained without 

considering uncertainty in solutions R and D. In order to give a more intuitive comparison, the 

worst case of stress distributions of solutions R and D are shown in Fig. 8, and the values of  ,

1:150 , cr , cr , 
cr

1:150 , 
cr

1:150  and V are also listed in Table 5. 

 

Fig. 6 Initial frame of Example 1 

 

It can be seen from Fig. 7 and Table 5 that solution D has a smaller   than solution R and the 

linear buckling load factor of solution D is close to 
L . Moreover, for solution D the von Mises 

stress in the elements with moderate cross-sectional areas are at the similar magnitude and close 

to  , which means that the limited material is fully utilized in solution D. However, as we can see 

from Tables 3 and 4, the cross-sectional areas of members 1 and 6 in solution D are almost the 

same and nodes 1, 3 and 5 are almost located at the same horizontal line; therefore members 1 and 

6 can be considered as a long member connecting nodes 1 and 5, resulting in a much higher 1:150  

and a violation on global stability constraint when uncertainty is involved, which can be seen in 

Fig, 8(b) and Table 5.  

While the stress distribution in solution R has several different stress levels and some of these 

elements has much smaller von Mises stress than  , the long member in solution D no longer 

exists in solution R and node 3 is connected by more elements, increasing the redundancy of the 
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structure to reduce the effect of uncertainty on structural performance. In addition, compared to 

solution D, the overall height of solution R is smaller. It is observed from Fig. 8 that at the worst 

case more elements in solution R have high stress level close to 1:150 , while in solution D the high 

stress level only exists in the elements at the bottom, which demonstrates that the elements in 

solution R cooperate with each other to reduce the maximum stress. Table 5 also indicates that 

1:150  of solution R is smaller than that of solution D, and the global stability constraint is satisfied 

under uncertainty which is far from being active. Specifically, 1:150  of solution R increases about 

126.34% from   and 
cr

1:150  decreases about 5.02% from cr , whereas 1:150  of solution D 

increases about 319.52% from   and 
cr

1:150  decreases about 9.02% from cr . This result indicates 

that solution R is more robust and stable than solution D with respect to reducing the influence of 

uncertainty in nodal locations and cross-sectional areas on structural performance. Although the 

details are not shown, a similar solution as solution D is obtained if global stability constraint is 

not considered. This fact emphasizes the importance of the proposed penalization method of the 

geometric stiffness matrix to obtain the optimal solution neglecting the superficial buckling of the 

thin members. 

 

 

   (a)      (b)  

Fig. 7 Solutions of Example 1 and stress distribution without uncertainty: (a) Solution R; (b) 

Solution D 

 

 

   (a)      (b) 

Fig. 8 Solutions of Example 1 and worst stress distribition: (a) Solution R; (b) Solution D 
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Table 3 Nodal location of solutions of Example 1 

Node number 
Solution R Solution D 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0.8011 0.0631 1.3101 0.0008 

4 1.6003 0.5087 1.1747 0.7980 

5 2 0 2 0 

6 1.9439 0.2882 1.5822 0.1685 

 

Table 4 Cross-sectional area, force density and member length of solutions of Example 1 

Member 

number 

Solution R Solution D 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

1 0.004302 0.2617 0.8059 0.002678 0.4489 1.3101 

2 1×10-7 0.0933 1.6767 0.002933 -0.4132 1.4202 

3 0.001560 0.1924 1.2332 1×10-7 -0.1647 1.6476 

4 0.004069 0.1263 1.6729 0.005220 0.7074 1.1920 

5 0.002682 -0.2225 0.9096 1×10-7 0.0980 0.8085 

6 0.002719 0.5726 1.1983 0.002675 0.3539 0.6898 

7 1×10-7 -0.1260 1.1603 1×10-7 0.5198 0.3196 

8 0.003228 0.0078 0.6462 0.003710 0.2497 1.1480 

9 1×10-7 0.4978 0.4081 1×10-7 0.3099 0.7499 

10 1×10-7 0.4798 0.2921 1×10-7 0.6410 0.4504 

 

Table 5 Values of  , 1:150 , cr , cr , 
cr

1:150 , 
cr

1:150  and V of solutions of Example 1 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V  (m3) 

R 103.7015 234.7208 0.0868 11.5117 0.0914 10.9328 0.02 

D 84.5490 354.7003 0.2899 3.4490 0.3193 3.1314 0.02 
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        (a)             (b) 

Fig. 9 Iteration history of Example 1: (a) Values of 3x , 4y , 1A and 4A   in worst case 

scenario; (b) First order statistic 1:150  

 

Furthermore, the iteration histories of values of uncertainties in the x-coordinate of node 3 and 

y-coordinate of node 4, denoted by 3x  and 4y , respectively, and cross-sectional areas of 

members 1 and 4, denoted by 1A and 4A , respectively, in the worst case scenario are presented 

in Fig. 9(a), and the iteration history of 1:150  is also presented in Fig. 9(b). Note that for simplicity 

in Fig. 9(a) only the values of every 10 iterations are shown. It can be observed from Fig. 9(a) that 

the values of uncertainties in nodal coordinates and cross-sectional areas in the worst case scenario 

change during the optimization procedure, indicating that the worst case scenarios would switch 

with respect to the variations of uncertain parameters. Moreover, in Fig. 9(b) there are several 

humps in the iteration history of 1:150  which increase rapidly to a very large value. The main 

reason for this would be that since the optimization problem is nonlinear with respect to the design 

variables, solutions that are sensitive to uncertain parameters are sometimes evaluated during 

optimization, resulting in a large value of 1:150 . However, in this example the values of humps are 

gradually decreased and the worst case scenario converged as the optimization procedure 

converged to a local minimum with an appropriate shape and topology. In addition, we further 

investigate the effect of using different sampling sets for constructing the order statistics on final 

design, and the results are presented in Appendix.  

 

5.2 Example 2 

The second example is another cantilever beam plane frame structure with 3×2 units. The 

structure is pin-supported at nodes 1, 2 and 3, and a downward vertical load F = 100 kN is applied 

at node 11 as shown in Fig. 10.  
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Fig. 10 Initial frame of Example 2 

 

In a similar manner as Example 1, we solve both the robust and deterministic optimization 

problems (18) and (12) for Example 2. The nodal locations, cross-sectional areas, force densities 

and member lengths of solutions R and D are listed in Tables 6 and 7, and Table 8 lists the values 

of  , 1:150 , cr , cr , 
cr

1:150 , 
cr

1:150  and V. Solutions R and D are shown in Fig. 10 and the stress 

contours are obtained without considering uncertainty, while Fig. 11 shows the worst stress 

distributions of solutions R and D. It should be noted that since the stress of short members are 

ignored during the optimization, the stresses of short member 6 in solution R and short members 

1 and 7 in solution D are represented as 0 in Figs. 11 and 12. 

It can be seen from Fig. 11 and Tables 6 and 7 that compared to solution D, the nodal locations 

and cross-sectional areas of solution R are asymmetric with respect to the x-axis, and   of solution 

R is almost twice of solution D. However, when uncertainty is added to the nodal locations and 

cross-sectional areas, 1:150  of solution D significantly increases about 293% from 9.7051 MPa to 

38.1419 MPa, and cr

1:150  is also decreases about 7.67% from 
cr which violates the global stability 

constraint. This is mainly because the existence of long members in solution D makes the structure 

more sensitive to the asymmetric uncertainty. By contrast, 1:150  of solution R is smaller than that 

of solution D as more members have increased their cross-sectional areas and connect to the 

support node 2, avoiding the existence of long members and increasing the structural stability. In 

addition, we can see from Table 7 that cr

1:150  of solution R decreases only about 5.3% from 
cr and 

the global stability constraint is also satisfied under uncertainty, which indicates solution R is has 

more stability than solution D. 

Figs. 13 and 14 show the stress contours of solutions R and D without considering uncertainty 

and the corresponding worst stress distributions, respectively, after merging the closely spaced 

nodes and removing thin elements. The values of  , 1:150 , 
cr , cr , 

cr

1:150 , 
cr

1:150  and V of solutions 

in Figs. 13 and 14 are listed in Table 9. It can be found that the differences of Tables 8 and 9 for 
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solutions R and D are about 1.5% or less, however, as stated in Section 3.3, unexpectedly large 

stress might exist in a short member with moderate cross-sectional area due to its large bending 

stiffness, and would provide an inaccurate stress to be minimized if it is considered during 

optimization procedure. For example, the von Mises stress of members 1 and 7 without uncertainty 

in solution D are both 13.0781 MPa, which is much larger than the stress after merging the closely 

spaced nodes and removing thin elements. Therefore, the stress in short member is set to 0 during 

the optimization procedure to avoid such inaccurate stress to be minimized. 

   

 

   (a)       (b) 

Fig. 11 Solutions of Example 2 and stress distribution without uncertainty: (a) Solution R; (b) 

Solution D 

 

 

   (a)       (b) 

Fig. 12 Solutions of Example 2 and worst stress distribition: (a) Solution R; (b) Solution D 
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   (a)       (b) 

Fig. 13 Solutions of Example 2 and stress distribution without uncertainty after merging the 

closely spaced nodes and removing thin elements: (a) Solution R; (b) Solution D 

 

 

   (a)       (b)  

Fig. 14 Solutions of Example 2 and worst stress distribution after merging the closely spaced 

nodes and removing thin elements: (a) Solution R; (b) Solution D 

Table 6 Nodal location of solutions of Example 2 

Node number 
Solution R Solution D 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 0.9342 0.1628 0.0249 0.0060 

5 1.4275 1.0654 1.3000 1.0004 

6 0.6667 1.9573 0.0250 1.9939 

7 1.9891 0.3623 1.8630 0.2935 

8 2.9738 0.8939 1.4999 1.0004 

9 1.8244 1.8063 1.8622 1.7067 

10 2.7641 1.2496 2.7868 1.2748 

11 3 1 3 1 

12 2.8315 1.0208 2.2953 1.9169 
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Table 7 Cross-sectional area and force density of solutions of Example 2 

Member 

number 

Solution R Solution D 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

1 0.0077 0.8088 0.9483 0.0099 0.0114 0.0257 

2 0.0064 -0.8207 1.0735 0.0114 0.0659 1.8603 

3 5.52×10-7 0.0845 1.1781 1×10-7 -0.0595 1.3477 

4 1.87×10-7 -0.0556 1.4290 1×10-7 0.07949 1.3000 

5 1.83×10-7 0.0867 1.5557 1×10-7 -0.4249 0.1999 

6 9.49×10-7 -0.9537 0.1000 1×10-7 -0.4484 1.5000 

7 0.0077 1.3707 0.6681 0.0099 0.0383 0.0257 

8 0.0064 0.0208 1.1674 0.0113 0.2297 1.8595 

9 1.85×10-7 0.0864 1.2772 1×10-7 -0.1393 0.4814 

10 0.0056 0.5636 1.0286 1×10-7 0.1459 1.6169 

11 3.51×10-6 -0.8759 1.1191 0.0017 -0.1890 0.7946 

12 2.99×10-7 1.2386 0.3434 1×10-7 0.1458 0.3478 

13 0.0054 1.1569 1.1722 1×10-7 -0.0752 1.6164 

14 1.84×10-7 0.4991 1.4675 0.0017 -0.2745 0.7937 

15 1.84×10-7 0.0748 0.1697 1×10-7 -0.0232 1.1564 

16 0.0061 -0.1373 1.7813 0.0036 -0.2397 1.6403 

17 0.0032 -0.5928 1.2544 1×10-7 0.0424 0.9943 

18 1.86×10-7 0.3870 2.1667 0.0028 -0.2074 1.7789 

19 0.0036 0.2556 0.8998 0.0028 0.1364 0.9036 

20 0.0098 0.0740 1.1952 0.0103 0.1622 1.3385 

21 1.78×10-7 -1.0804 0.4129 1×10-7 0.0669 1.3158 

22 0.0031 -0.7756 1.1666 1×10-7 0.2256 0.9943 

23 0.0061 -0.4466 1.7062 0.0036 0.0815 1.6398 

24 0.0039 -0.0823 0.8404 0.0028 -0.0069 0.9027 

25 1.85×10-7 -0.2199 2.5403 0.0028 -0.2167 1.7783 

26 1.83×10-7 0.5229 0.1906 1×10-7 0.0552 1.2134 

27 0.0098 -0.5693 1.4255 0.0102 0.3332 1.3393 

 

Table 8 Values of  , 1:150 , 
cr , cr , 

cr

1:150 , 
cr

1:150  and V of solutions of Example 2 before merging 

the closely spaced nodes and removing thin elements 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V  (m3) 

R 16.6915 28.7047 0.0102 97.9790 0.0107 92.7861 0.1 

D 9.7051 38.1419 0.0195 51.1818 0.0216 47.2584 0.1 
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Table 9 Values of  , 1:150 , cr , cr , 
cr

1:150 , 
cr

1:150  and V of solutions of Example 2  after merging 

the closely spaced nodes and removing thin elements 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V  (m3) 

R 16.6923 29.0141 0.0102 97.9778 0.0108 92.2404 0.1 

D 9.7795 38.8318 0.0197 50.7112 0.0211 47.4364 0.1 

 

It can be seen from Tables 68 that solutions R and D have the same structural volume that 

is equal to its upper bound; however, they have different structural geometries and distributions of 

cross-sectional areas, leading to a trade-off relationship between structural robustness and 

performance. Specifically, solution D is more vulnerable to uncertainty which has a smaller 

structural stress with satisfied global stability constraint at deterministic conditions, while solution 

R is a much more stable and robust structure with larger stress for the nominal values of the 

uncertain parameters.. 

 

5.3 Example 3 

In the last example we investigate the robust optimization problem of a bridge frame with 4×1 

units. The initial ground structure is shown in Fig. 15. The frame is pin-supported at node 1 and 

roller supported at node 9, and three downward vertical loads F = 100 kN are applied at nodes 3, 

5 and 7. Accordingly, these five nodes are regarded as fixed nodes during the optimization 

procedure. In order to present the solution which degenerates into a line between the supports, the 

locations of free nodes are obtained using reaction forces at supports as suggested in [13]. 

In this example the free nodes 2, 4, 6, 8 and 10 are only allowed to move in the y-direction. 

The robust and deterministic optimization problems (18) and (12) are solved, and solutions R and 

D and their stress contours are shown in Fig. 15. The corresponding worst stress distributions are 

shown in Fig. 15. Tables 10 and 11 list the nodal locations, force densities, cross-sectional areas 

and member lengths of solutions R and D, and the corresponding values of  , 1:150 , 
cr , cr , 

cr

1:150 , 

cr

1:150 and V are listed in Table 12.  

 

Fig. 15 Initial frame of Example 3 
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It can be seen from Fig. 16 and Table 11 that because the cross-sectional areas of members 2 

and 17 are small, solution D is unstable in x-direction if the bending stiffness is small, and therefore 

the worst stress increases rapidly when uncertainty is taken into consideration. The worst 

maximum stress of solution D exists at the brace member 13 as shown in Fig. 17, while other 

members are at relatively low stress level and make little contribution to reducing the effect of 

uncertainty. The global stability constraint of solution D is also violated when uncertainty is 

considered, and 
cr

1:150  decreases about 8.6% from cr . On the other hand, solution R has a different 

geometry and topology from solution R in which the cross-sectional areas of members 2, 8, 14 and 

17 are increased, leading to a more stable structure with larger value of cr . Moreover, we can 

observe from Fig. 17 that since more members have larger cross-sectional areas, solution R is able 

to work better than solution D as a whole to resist external force under uncertainty; therefore, the 

large stress appears at several different elements, and the global stability constraint is also satisfied 

with small decrease of 
cr

1:150 . 

 

   (a)            (b) 

Fig. 16 Solutions of Example 3 and stress distribution without uncertainty: (a) Solution R; (b) 

Solution D 

 

(a)            (b) 

Fig. 17 Solutions of Example 3 and worst stress distribition: (a) Solution R; (b) Solution D 
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Table 10 Nodal location of solutions of Example 3 

Node number 
Solution R Solution D 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 0.808689 0 0.6246 

3 1 0 1 0 

4 1 1.208606 1 1.4526 

5 2 0 2 0 

6 2 1.53403 2 1.7311 

7 3 0 3 0 

8 3 1.244731 3 1.4527 

9 4 0 4 0 

10 4 0.639194 4 0.6237 

 

Table 11 Cross-sectional area and force density of solutions of Example 3 

Member 

number 

Solution R Solution D 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

1 6.93×10-7 10.2065 1.0086 0.0096 29.6315 0.8245 

2 0.00642865 4.7562 1 1×10-7 -0.2321 1 

3 0.0097405 -113.7971 1.7274 1×10-7 -105.5527 1.9315 

4 7.33×10-7 -59.1720 1.4203 0.0075 -93.2228 1.2961 

5 7.42×10-7 -41.1605 1.0770 0.0075 -0.2160 1.2983 

6 0.0058 229.7475 1.4086 0.0016 77.7386 1.6525 

7 0.0059 -49.7649 1 0.0058 0.07071 1 

8 8.53×10-4 -94.5413 2.0017 1×10-7 25.0637 2.1746 

9 0.0019 194.7562 1.7274 0.0015 123.7339 1.9315 

10 0.0068 11.9206 1.0516 0.0069 -0.0105 1.0380 

11 0.0045 1.8782 1.7340 0.0037 -114.7634 1.9310 

12 0.0058 28.6246 1 0.0058 0.2714 1 

13 0.0020 -122.9237 1.7570 0.0016 70.8772 1.9316 

14 1.77×10-4 55.6022 2.0017 1×10-7 -34.6783 2.1746 

15 0.0064 -19.8246 1.0410 0.0069 0.2533 1.0380 

16 0.0068 -286.7470 1.4447 0.0016 59.8102 1.6526 

17 0.0066 26.1264 1 1×10-7 -0.1531 1 

18 6.75×10-7 497.9256 1.3054 0.0075 82.6981 1.2955 

19 0.0101 368.3595 1.7570 1×10-7 -50.7874 1.9316 

20 6.75×10-7 -46.5193 1.1690 0.0075 0.3086 1.2989 

21 5.52×10-7 -812.8990 0.8391 0.0096 -80.2037 0.8237 
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Table 12 Values of  , 1:150 , cr , cr , 
cr

1:150 , 
cr

1:150  and V of solutions of Example 3 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V  (m3) 

R 24.9122 42.3885 0.0176 56.6598 0.0186 53.5824 0.1 

D 18.0690 70.8619 0.0514 19.4295 0.0558 17.8929 0.1 

 

Again, it can be also observed from Table 12 that both solutions R and D have the same 

structural volume, however, their structural performance depends on the consideration of 

uncertainty, indicating a trade-off relationship between the robustness and the structural 

performance represented by stress and critical linear buckling load factor. 

 

6 Conclusion 

A worst case approach has been presented for robust simultaneous geometry and topology 

optimization of plane frames to minimize the maximum von Mises stress under volume and global 

stability constraints. An auxiliary truss to which the FDM is applied is used to define the geometry 

of the frame, and the difficulty due to the existence of melting nodes is prevented by limiting the 

force density of each member to indirectly control the member length. The problem is converted 

into an RDO problem with semi-infinite constraints, and uncertainty is represented by the random 

variations in nodal locations and in cross-sectional areas without any assumption on their 

distribution information. The exact worst values of the maximum stress and the global buckling 

load factor are relaxed to the quantile responses. The order statistics is employed to approximate 

the relaxed quantile response, and the robustness is indicated by the order k with specified sample 

size and confidence level. A robust optimization problem of plane frame is formulated with respect 

to the force densities and cross-sectional areas under constraints on structural volume and the 

smallest positive linear buckling load factor under uncertainty.   

The stress of a thin element is penalized to underestimate its value with respect to the cross-

sectional area, and the penalization method is extended to underestimate the geometrical stiffness 

matrix of the thin elements. A simple example to minimize the maximum stress without 

considering uncertainty is presented to confirm the effectiveness of the proposed numerical 

penalization method. 

Three numerical examples are presented to investigate the effectiveness of the proposed 

method, and in each example a deterministic optimization problem is also solved for comparison 

purpose. Both optimization problems are solved using the GRG method available in the library 

CONOPT with MATLAB interface. It is shown that the solutions of deterministic and robust 

optimization problems have different geometries and topologies, leading to different performance 

on minimizing the maximum stress and satisfying the global stability constraint. While the solution 

of robust optimization contains some elements which are not effective to minimize the stress 

without considering uncertainty, it is helpful to reduce the worst value of stress and increase the 

global buckling load factor, resulting in a structure less sensitive to the uncertainty. 



30 

 

It is interesting to note that in the second example the closely spaced nodes appear and 

unexpectedly large stress exists in the short member due to its large bending stiffness if the cross-

sectional area is not small. Such large stress in a short member is set to 0 during the optimization 

procedure to provide an accurate stress to be minimized. The results confirm that the differences 

of structural responses of the solutions before and after merging the closely spaced nodes and 

removing the thin elements are sufficiently small. 
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Appendix 

According to Eqs. (16) and (17), the confidence level 
k  of the first order statistics (k=1) with 

sample size ms=150 to approximate the 95% quantile should be 0.9995, which means the 

probabilities of 1:150  and 
1:150  no less than the corresponding 95% quantiles should be no less 

than 0.9995. In order to verify this property, a total of 1000 random seeds are used to generate 

1000 groups of 150 samples for the uncertainties to investigate the variations of solution R in 

Example 1 due to difference in sample sets. The mean values, standard deviations, maximum and 

minimum values of 1:150  and 
1:150  are listed in Table A1. The values of 95% quantiles of   and 

 obtained by Monte Carlo Simulation (MCS) with sample size 1×104 are also listed in Table A1. 

Based on the results of 1:150  and 
1:150  from the 1000 groups of 150 samples, the number of  1:150  

less than 226.315 MPa is 2 and the number of  
1:150  less than 0.0904 is 0, indicating that the 

confidence levels of both of 1:150  and 
1:150  approximating the 95% quantile are greater than 

0.9995 for the solution R. Moreover, because the order statistics 1:150  and 
1:150  approximate the 

extreme quantiles at the tails of the unknown distributions, the mean values of  1:150  and 
1:150  

from 1000 groups of 150 samples should be greater than the corresponding 99.3% quantiles using 

the connection between the order statistics of standard uniform distribution and arbitrary 

distribution, which is written as 

      
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  (A1) 

where F  and F  are the cumulative distribution functions (CDF) as presented in Eqs. (16) and 

(17), and E  in Eq. (A1) represents the expectation operator; U1:150 represents the first order 

statistic of standard uniform distribution with sample size 150. Comparing the results listed in 

Table A1, it can be seen that the mean values of 1:150  and 
1:150  are all greater than the 

corresponding 99.3% quantiles, indicating that solution R in Example 1 is able to preserve the 
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robustness of the structure under different sampling sets in statistical sense. Besides, it should be 

noted that there might be an over-fitting phenomenon if the same uncertainty set is used during 

optimization procedure, however, the statistical property of solution R of Example 1 indicates that 

the confidence level is satisfied with difference in sample sets.  

 

Table A1 Statistical information of solution R in Example1 

Structural 

response 
Mean Std. dev Max Min 95% quantile 99.3% quantile 

1:150  (MPa) 247.2407 8.1407 275.7838 223.4451 226.3159 243.1942 

1:150  0.09268 8.424×10-4 0.09572 0.09052 0.09041 0.09219 

 

Furthermore, in order to investigate the variations of order statistics caused by difference in 

samples, the following two problems are formulated and solved 10 times for Example 1 with 

different random seeds in which the first and second order statistics are taken respectively as the 

objective and global stability constraint functions  

    

    

    

1:150 free free

cr

1:150 free free U

free free U

Minimize 
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                , , ; ;   

                , , ; ;   

t

t

V V


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



    

x q y q A Θ

x q y q A Θ

x q y q A q q q A A A

 (A2) 

    

    

    
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cr
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Minimize 

subject to , , ; ;

                , , ; ;   

                , , ; ;   

t

t

V V


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



    

x q y q A Θ

x q y q A Θ

x q y q A q q q A A A

 (A3) 

 

The mean values, standard deviations, maximum and minimum values of 1:150 , 
2:150 , 

1:150  and 

2:150 of both problems (A2) and (A3) are listed in Tables A2 and A3, respectively. It can be 

observed from Table A2 that although 1:150  and 
1:150  vary due to difference in sample sets, their 

standard deviations are not relatively large compared to the corresponding mean values. The 

standard deviations of 1:150  and 
1:150  in Table A2 are larger than the standard deviations of 

2:150  

and 2:150  in Table A3, however, the ranges between the maximum and minimum values of 1:150  

and 
1:150  in Table A2 are smaller than those of 

2:150  and 2:150  in Table A3, indicating that the 

results obtained by using first order statistics vary in a narrower range due to difference in sample 

sets, while the results obtained by using second order statistics vary mostly close to the mean 

values but in a wider range. Moreover, a trade-off relationship is observed such that the mean 
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values and standard deviations of the first order statistics 1:150  and 
1:150 in Table A3 are larger 

than those of  1:150  and 
1:150 listed in Table A2, and similar relationship can be also found by 

comparing the results of second order statistics 
2:150  and 2:150  in Tables A2 and A3. Therefore, 

the standard deviation of the extreme order statistics, such as  1:150  and 
1:150 , of the final result 

would be smaller if the extreme order statistics are selected as the objective and constraint 

functions, while the standard deviation of the non-extreme order statistics of the final result would 

be smaller than that of extreme order statistics. However, since the extreme order statistics could 

provide a higher robustness level of the structure where the probability of the structural response 

not exceeding the extreme order statistics is lower than that of non-extreme order statistics, the 

extreme order statistics could serve as objective and constraint functions to obtain a structure with 

prescribed higher robustness level.  

 

Table A2 Statistical information of problem (A1) for Example 1 

Structural response Mean Std. dev Max Min 

1:150  (MPa) 237.9236 7.6261 252.3201 229.3373 

1:150  0.0932 0.001797 0.0943 0.0906 

2:150  (MPa) 237.1836 7.1678 252.0981 229.3365 

2:150  0.0927 0.001528 0.0942 0.0899 

 

Table A3 Statistical information of problem (A2) for Example 1 

Structural response Mean Std. dev Max Min 

1:150  (MPa) 245.6271 12.7975 271.7269 234.6596 

1:150  0.0989 0.001904 0.1090 0.0948 

2:150  (MPa) 227.3847 7.1650 248.0602 220.0783 

2:150  0.0985 0.001351 0.1009 0.0943 
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