2	Enhancement of developmentally regulated daidzein secretion from
3	soybean roots in field conditions as compared with hydroponic culture
4	
5	Miwako Toyofuku ¹ , Fuki Okutani ¹ , Masaru Nakayasu ¹ , Shoichiro
6	Hamamoto ² , Hisabumi Takase ³ , Kazufumi Yazaki ¹ , Akifumi Sugiyama ¹ *
7	
8	
9	¹ Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji,
10	611-0011, Japan, ² Graduate School of Agricultural and Life Sciences, The University
11	of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8567, Japan, ³ Faculty of
12	Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto
13	621-8555, Japan
14	
15	*Corresponding authors: Akifumi Sugiyama, tel: +81-774-38-3617, fax: +81-774-38-

16 3623, e-mail: <u>akifumi_sugiyama@rish.kyoto-u.ac.jp;</u> Laboratory of Plant Gene

- 17 Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji
- 18 611-0011, Japan

21	Enhancement of developmentally regulated daidzein secretion from
22	soybean roots in field conditions as compared with hydroponic culture
23	
24	Analyses of metabolite secretions by field-grown plants remain scarce. We
25	analyzed daidzein secretion by field-grown soybean. Daidzein secretion was
26	higher during early vegetative stages than reproductive stages, a trend that was
27	also seen for hydroponically grown soybean. Daidzein secretion was up to
28	10,000-fold higher under field conditions than hydroponic conditions, leading to
29	a more accurate simulation of rhizosphere daidzein content.
30	
31	Keywords: Daidzein; Rhizosphere; Simulation; Soybean
32	
33	Plant specialized metabolites (PSMs) play important roles in the rhizosphere for

34 modulation of symbiotic interactions (e.g., repelling pests and pathogens and shaping

35	microbiota), thereby promoting plant growth and improving crop production [1–3].
36	Flavonoids are a group of PSMs and consist of more than 8,000 compounds [4]. These
37	molecules function as regulators of auxin transport and reactive oxygen species and
38	protect against damage caused by ultraviolet (UV) light exposure. In legumes,
39	flavonoids are secreted from the roots to exert functions in rhizosphere plant-microbe
40	interactions, such as those necessary for defense and symbiosis [5–7].
41	Isoflavones are a subfamily of flavonoids and are found mainly in legumes [8].
42	In the rhizosphere, isoflavones such as daidzein and genistein of soybean (Glycine max)
43	and formononetin-7-O-(6"-O-malonylglycoside) of alfalfa (Medicago sativa) induce
44	nod genes for initiation of the nodulation process [9, 10]. In particular, daidzein was
45	recently shown to be involved in the modulation of rhizosphere bacterial communities
46	in soybean, where this compound increased the relative abundance of the
47	Comamonadaceae family of bacteria [11].

48	The secretion of metabolites from roots is a crucial process influencing
49	interactions in the rhizosphere. Daidzein is the major isoflavone secreted into
50	hydroponic media, the concentration of which is higher during the soybean vegetative
51	stage than the reproductive stage [12]. Daidzein is relatively stable in soil, with a half-
52	life of about seven days, enabling the estimation of daidzein contents in the rhizosphere
53	based on the amount secreted in hydroponic cultures [13]. Whereas sorption filters or
54	glass beads have been used to collect and analyze various metabolites in the rhizosphere
55	[14, 15], the direct measurement of secreted metabolites is technically challenging,
56	especially for field-grown plants [16]. In this study, we used the cellulose acetate
57	membrane method utilized in hydroponic culturing to analyze flavonoid secretion for
58	direct measurement of the amount of daidzein secreted by field-grown soybean plants
59	during the stages of growth.
60	All chemicals used in this study were obtained from either Wako Pure

61 Chemical Industries (Osaka, Japan) or Nacalai Tesque (Kyoto, Japan) unless otherwise

62 stated.

63	The field experiments were conducted at Kyoto University of Advanced
64	Science, Kameoka, Kyoto, Japan (coordinates: 34°99'38"N, 135°55'14"E). Soybean
65	seeds ("Tambaguro") were sown on May 31, 2019. The plants were irrigated as needed,
66	and emerging weeds were manually removed weekly. No apparent symptoms of
67	pathogen infection were observed, and pesticides were not used. Root samples and root
68	exudates were collected on June 14 (V1 stage), July 3 (V5 stage), July 22 (V9 stage),
69	August 14 (R2 stage), September 4 (R4 stage), and October 2 (R6 stage) of 2019 [17].
70	The soil around the lateral roots was partially removed with a shovel. The lateral roots
71	were rinsed with tap water and pinched between a cellulose acetate filter (Advantec,
72	Tokyo, Japan) using a hairpin (Fig. 1A) and then covered with soil. Additionally,
73	cellulose acetate filters were placed in the bulk soil as a control. The cellulose acetate
74	filters were held in the soil for 2 h, and then the filters and root tissues were collected.
75	All samples were transferred to the laboratory in a cool container (0–10°C) within 2 h of

76	collection. The root samples were stored in pure water prior to fresh weight
77	measurement. The roots and fully expanded leaves were taken from 2-week-old soybean
78	seedlings (VE stage) for the quantification of isoflavones as described previously [13].
79	Rhizosphere soil was obtained from seven plants using sterile brushes and combined
80	into one sample as described previously [18]. The samples were immediately frozen in
81	dry ice and transferred to the laboratory for storage at -80° C. The bulk soil was
82	sampled at least 20 cm away from the plant.
83	The extraction of daidzein was performed as previously described [13, 19]. The
83 84	The extraction of daidzein was performed as previously described [13, 19]. The cellulose acetate filters were rinsed with tap water, and the compounds were extracted
83 84 85	The extraction of daidzein was performed as previously described [13, 19]. The cellulose acetate filters were rinsed with tap water, and the compounds were extracted twice using 1 ml methanol with shaking on a Labo shaker BC-730 (Bio craft, Tokyo,
83 84 85 86	The extraction of daidzein was performed as previously described [13, 19]. The cellulose acetate filters were rinsed with tap water, and the compounds were extracted twice using 1 ml methanol with shaking on a Labo shaker BC-730 (Bio craft, Tokyo, Japan) for 5 min each time. The combined supernatant from each sample was dried
8384858687	The extraction of daidzein was performed as previously described [13, 19]. The cellulose acetate filters were rinsed with tap water, and the compounds were extracted twice using 1 ml methanol with shaking on a Labo shaker BC-730 (Bio craft, Tokyo, Japan) for 5 min each time. The combined supernatant from each sample was dried under a nitrogen stream at 50°C, dissolved in 150 µl of methanol, and filtered through a
 83 84 85 86 87 88 	The extraction of daidzein was performed as previously described [13, 19]. The cellulose acetate filters were rinsed with tap water, and the compounds were extracted twice using 1 ml methanol with shaking on a Labo shaker BC-730 (Bio craft, Tokyo, Japan) for 5 min each time. The combined supernatant from each sample was dried under a nitrogen stream at 50°C, dissolved in 150 µl of methanol, and filtered through a Minisart RC4 syringe filter (Sartorius, Gottingen, Germany) for LC-MS (Liquid

90	MS on an ACQUITY UPLC system (Waters Corporation) coupled with Xevo TQD.
91	The LC was performed by injecting a 2 μ l sample onto an ACQUITY UPLC BEH C18
92	column (2.1 mm \times 50 mm, 1.7 $\mu m;$ Waters Corporation) at 40 °C. The LC mobile phase
93	consisted of (A) water containing 0.1% (v/v) formic acid and (B) acetonitrile. The
94	gradient program was linear over the range of 10%–35% B, 0–1 min; linear 35%–85%
95	B, 1–11 min; isocratic 85% B, 11–11.1 min; isocratic at 100% B, 11.1–15.5 min; and
96	isocratic at 10% B, 15.5–20 min. The flow rate was 0.2 ml min ⁻¹ . Isoflavones were
97	detected at 260 nm. The contents of daidzein were estimated from the peak areas in
98	comparison with calibration curves constructed using known concentrations of the
99	authentic compound.
100	The extraction of isoflavones was performed as described [13]. The frozen
101	tissues were pulverized in liquid nitrogen using a mortar and pestle and then freeze-
102	dried. The tissues were extracted in 80% methanol at 60°C for 1 h, followed by
103	centrifugation at 12,000×g for 5 min to remove debris. The supernatant was filtered

104	through a Minisart RC4 syringe filter (Sartorius). Soil samples (1 g) were extracted in
105	500 μ l of methanol at 50°C three times (10 min each) and centrifuged at 4,800 rpm for 5
106	min. The combined supernatant from each sample was dried under a nitrogen stream at
107	$50^\circ C$ and redissolved in 150 μl methanol. Isoflavones were analyzed by LC-MS/MS as
108	described [20].
109	The movement of daidzein secreted by a single cylindrical root was simulated
110	using a two-dimensional asymmetric system. The equations, model domains, and
111	relevant initial/boundary conditions were previously described [11]. The daidzein
112	secretion rate at the root surface was assumed to be constant (1.06 nmol $m^2 s^{-1}$), based
113	on the daidzein extraction for the roots sampled on June 14 (V1 stage). The simulation
114	period was set at 14 days with a 0.1-day time interval. The parameters used in this study
115	were summarized in Table S1. A cylinder of soil with a diameter of 20 cm and a depth
116	of 20 cm with a single root of diameter 2 mm and length 10 cm in the center was set as
117	a model domain for the simulation. Root length and diameter were assumed to be

119	The isoflavones secreted from field-grown soybean were analyzed at three
120	vegetative growth stages V2, V5, and V8, corresponding to 2, 5, and 8 weeks after
121	sowing, respectively. Moreover, samples from three reproductive growth stages R2, R4,
122	and R6, respectively corresponding to 12, 15, and 19 weeks after sowing, were
123	analyzed. Of all the detected isoflavones collected using cellulose acetate membranes
124	that adsorb flavonoid aglycones [13,19], only daidzein was identified at each growth
125	stage (Fig. 1B). The amount of secreted daidzein changed over the growth stages and
126	peaked at V5, whereas it was constant over the reproductive stages. The trend of
127	daidzein secretion was similar to that of hydroponically grown soybean. In contrast,
128	field-grown soybean secreted up to a 10,000-fold higher amount of daidzein than
129	hydroponically grown soybean (about 36 fmol mg FW^{-1} day ⁻¹ at V3) [12]. While the
130	secretion from whole roots was analyzed in the hydroponic culture media, the secretion
131	from the field-grown soybean was analyzed using a 3 cm root-tip section. The

132	possibility that partial soil removal induced the isoflavone biosynthesis and increased
133	the isoflavone levels within 2 h is probably small because it is suggested to take more
134	than 3 h for the roots to accumulate isoflavones after gene induction in Arabidopsis
135	thaliana and soybean [20, 21]. The difference in the magnitude of secretion is,
136	therefore, presumably attributable to environmental conditions, i.e., sterile hydroponics
137	vs. non-sterile field environments. The contents of isoflavones in the root tissue at
138	steady-state under the field-grown conditions were similar to those under hydroponic
139	conditions [12, 13], suggesting that both the isoflavone synthesis and secretions are
140	remarkably enhanced in the rhizosphere, probably due to the presence of various
141	microorganisms.
142	The spatiotemporal distribution of metabolites in the rhizosphere is of particular
143	importance for deciphering their functions in inter-organismal interactions such as
144	chemotaxis response and <i>nod</i> gene induction, which are concentration-dependent [9, 22,
145	23]; however, the distribution of PSMs remains largely unknown [24]. In our previous

146	study, we simulated the spatiotemporal distribution of daidzein in field soil based on the
147	advection-diffusion equation [11], and we showed that daidzein distribution was limited
148	to within a few millimeters from the root surface [11]. To further refine the simulation
149	of daidzein distribution in the field, we applied the secreted rate of daidzein under field
150	conditions. The distribution of daidzein was also limited to within a few millimeters
151	from the root surface, similar to findings from the previous simulation [11]. Limited
152	daidzein distribution withn a few millimeters is likely due to the adsorption of daidzein
153	by the soil. In this simulation, the average daidzein content within 1 or 3 mm soils from
154	root surface was around 0.8 and 0.5 nmol g soil ^{-1} , respectively (Fig. 2A). This
155	concentration was within the range to induce nod genes in Bradyrhizobium japonicum,
156	which is reported to be more than 0.1 μ M [9, 25]. The isoflavone contents in the
157	rhizosphere and plant tissues were measured in 2-week-old soybean seedlings to
158	validate the results of this simulation. Malonylgenistin was the most predominant
159	isoflavone in the leaves at this stage, while malonyldaidzin and daidzein were

160	accumulated in the roots (Fig. 2B). Rhizosphere soil was sampled from less than 3 mm
161	layer from the root surface. In the rhizosphere soil, daidzein was the most abundant
162	isoflavone, and the content was about 5 nmol g soil ^{-1} (Fig. 2C). Collectively,
163	rhizosphere modeling based on the amount secreted by field-grown soybean led to a
164	more accurate simulation of daidzein distribution than our previous simulation, i.e.
165	daidzein distribution at physiologically relevant concentrations is limited to within a
166	few millimeters from root surface.
167	Despite the importance of PSMs in the rhizosphere, our current knowledge of
168	the dynamics in the rhizosphere of field-grown plants is still preliminary. The dynamics
169	between proteins, metabolites, and ions in the rhizosphere have been analyzed mostly
170	using the rhizobox [23], but they should be examined in field-grown plants as well. In
171	this study, we showed that the secretion of daidzein by field-grown soybean followed
172	the same trends in terms of developmental regulation, but the amount was much higher
173	than in hydroponic condition, leading to the accurate estimation of daidzein distribution

174	in the rhizosphere. The rhizosphere microbiome affects the secretion of metabolites
175	from roots [26]; therefore, we presume that the rhizosphere microbiome enhanced
176	daidzein secretion in the field, in addition to the effects of other both biotic and abiotic
177	stresses under field conditions. It is of particular importance to analyze the secretion of
178	PSMs in the rhizosphere of field-grown plants under various conditions and to integrate
179	the distribution of PSMs and the structure and functions of the microbiota in future
180	studies.
181	
182	Acknowledgments: We thank Ms. Keiko Kanai for her technical assistance. We also
183	thank DASH/FBAS, the Research Institute for Sustainable Humanosphere, Kyoto
184	University for supporting the institutional setting.
185	
186	Author Contributions: A.S. conceived and designed the research; H.T., K.Y., and A.S.

- 187 supervised the experiments; M.T., F.O., and M.N. conducted plant sampling and LC-
- 188 MS/MS analysis; S.H. conducted the simulation; M.T. and A.S. wrote the article with

189	contributions of all authors; A.S. agrees to serve as the author responsible for contact
190	and ensuring communication.
191	
192	Disclosure Statement: No potential conflict of interest was reported by the authors.
193	
194	Funding: This study was supported in part by grants from JST-CREST (JPMJCR17O2
195	to A.S.) and JSPS KAKENHI (18H02313 to S.O. and A.S.) from the Research Institute
196	for Sustainable Humanosphere (Mission 1).
197	

198 Figure Legends

199	Fig. 1 (A) Cellulose acetate membrane used to collect root exudates. Tips of lateral
200	roots were washed with pure water and pinched in a cellulose acetate membrane, which
201	was then covered with soil. The site of analysis was marked with a piece of white paper.
202	(B) Root exudation of daidzein throughout soybean growth stages. Amount per root
203	fresh weight of daidzein in root exudates ($n \ge 9$). Significant differences ($P < 0.05$;
204	Tukey-Kramer test) are indicated with various letters. Root samples and root exudates
205	were collected at three vegetative stages (V) and three reproductive stages (R).

207	Fig. 2 Simulation of daidzein distribution in soil and isoflavone contents in the
208	rhizosphere. (A) Simulated daidzein distribution from 0 to 14 days in soil. The rate of
209	daidzein secretion from roots was assumed to be constant at each depth, and the
210	distribution at the middle of root at a depth of 5 mm was displayed in radial direction. It
211	is noted that vertical distribution of daidzein was not obtained in this simulation. (B)
212	Contents of isoflavones in leaves and roots $(n = 3)$. (C) Contents of isoflavones in bulk
213	and rhizosphere soils at VE stage $(n = 3)$.
214	
215	Suppmenentary Material
216	Supplementary Table 1. Parameters used in this study
217	
218	References
219	[1] Chen Q, Jiang T, Liu YX, et al. Recently duplicated sesterterpene (C25) gene
220	clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci

221 2019;62:L947–L958. <u>https://doi.org/10.1007/s11427-019-9521-2</u>.

- 222 [2] Huang AC, Jiang T, Liu YX, et al. A specialized metabolic network selectively
- 223 modulates *Arabidopsis* root microbiota. Science 2019;364:eaau6389.
- https://doi.org/10.1126/science.aau6389.
- [3] Massalha H, Korenblum E, Tholl D, et al. Small molecules below-ground: The role
- of specialized metabolites in the rhizosphere. Plant J 2017;90:788–807.
- 227 <u>https://doi.org/10.1111/tpj.13543</u>.
- 228 [4] Andersen OM, and Markham KR. Flavonoids: Chemistry, biochemistry and
- applications. CRC Press, Boca Raton, FL 2005.
- 230 [5] Cesco S, Neumann G, Tomasi N, et al. Release of plant-borne flavonoids into the
- rhizosphere and their role in plant nutrition. Plant Soil 2010;329:1–25.
- 232 <u>https://doi.org/10.1007/s11104-009-0266-9</u>.
- [6] Cesco S, Mimmo T, Tonon G, et al. Plant-borne flavonoids released into the
- 234 rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol
- 235 Fertil Soils 2012;48:123–149. <u>https://doi.org/10.1007/s00374-011-0653-2</u>.

236	[7]	Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere:
237		Beneficial influences of plant growth-promoting rhizobacteria on nutrient
238		acquisition process. A review. Biol Fert Soils 2015;51:403-415. Springer Verlag.
239		https://doi.org/10.1007/s00374-015-0996-1.
240	[8]	Mazur WM, Duke JA, Wähälä K, et al. Isoflavonoids and lignans in legumes:
241		Nutritional and health aspects in humans. J Nutr Biochem 1998;9(4):193–200.
242		http://sun.ars-grin.gov/ngrlsb/.
243	[9]	Kosslak RM, Bookland R, Barkei J, et al. Induction of Bradyrhizobium japonicum
244		common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci
245		U S A 1987;84:7428–7432. <u>https://doi.org/10.1073/pnas.84.21.7428</u> .
246	[10]	Dakora FD, Joseph CM, Phillips DA. Alfalfa (Medicago sativa L.) Root exudates
247		contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol
248		1993;101:819-824. https://doi.org/10.1104/pp.101.3.819.

249	[11] Okutani F, Hamamoto S, Aoki Y, et al. Rhizosphere modelling reveals
250	spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial
251	community. Plant Cell Environ 2020;43:1036–1046.
252	https://doi.org/10.1111/pce.13708.
253	[12] Sugiyama A, Yamazaki Y, Yamashita K, et al. Developmental and nutritional
254	regulation of isoflavone secretion from soybean roots. Biosci Biotechnol Biochem
255	2016;80:89–94. https://doi.org/10.1080/09168451.2015.1062714.
256	[13] Sugiyama A, Yamazaki Y, Hamamoto S, et al. Synthesis and secretion of
257	isoflavones by field-grown soybean. Plant Cell Physiol 2017;58:1594–1600.
258	https://doi.org/10.1093/pcp/pcx084.
259	[14] Phillips RP, Erlitz Y, Bier R, et al. New approach for capturing soluble root
260	exudates in forest soils. Funct Ecol 2008;22:990–999.
261	https://doi.org/10.1111/i.1365-2435.2008.01495.x.

262	[15] Neumann G, Bott S, Ohler MA, et al. Root exudation and root development of
263	lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol
264	2014;5:2. https://doi.org/10.3389/fmicb.2014.00002.
265	[16] Oburger E, Jones DL. Sampling root exudates – Mission impossible? Rhizosphere
266	2018;6:116–133. doi: 10.1016/j.rhisph.2018.06.004.
267	[17] Fehr WR, Caviness CE. Stages of soybean development. Lowa State University
268	Press Ames IA 1977. http://lib.dr.iastate.edu/specialreports/87.
269	[18] Sugiyama A, Ueda Y, Zushi T, et al. Changes in the Bacterial community of
270	soybean rhizospheres during growth in the field. PLoS One 2014;9:100709. doi:
271	<u>10.1371/journal.pone.0100709</u> .
272	[19] Bolaños–Vásquez MC, Werner D. Effects of Rhizobium tropici, R. etli, and R.
273	leguminosarum by. phaseoli on nod gene-inducing flavonoids in root exudates of
274	Phaseolus vulgaris. Mol Plant Microbe Interact 1997;10:339–346.
275	https://doi.org/10.1094/MPMI.1997.10.3.339.

276	[20] Matsuda H, Nakayasu M, Aoki Y, et al. Diurnal metabolic regulation of
277	isoflavones and soyasaponins in soybean roots. Plant Direct 2020;4. doi:
278	<u>10.1002/pld3.286</u> .
279	[21] Nakabayashi R, Mori T, Nishizawa T, et al. Temporal lag between gene expression
280	and metabolite accumulation in flavonol biosynthesis of Arabidopsis roots.
281	Phytochem Lett 2017;22:44-48. doi: 10.1016/j.phytol.2017.09.001.
282	[22] Barbour WM, Hattermann DR, Stacey G. Chemotaxis of Bradyrhizobium
283	japonicum to soybean exudates. Appl Environ Microbiol 1991;57:2635–2639. doi:
284	10.1128/aem.57.9.2635-2639.1991.
285	[23] Kuzyakov Y, Razavi BS. Rhizosphere size and shape: Temporal dynamics and
286	spatial stationarity. Soil Biol Biochem 2019;135:343–360. Elsevier Ltd.
287	https://doi.org/10.1016/j.soilbio.2019.05.011.
288	[24] Sugiyama A. The soybean rhizosphere: Metabolites, microbes, and beyond—A
289	review. J Adv Res 2019;19:67–73. hdoi: 10.1016/j.jare.2019.03.005.
289	review. J Adv Res 2019;19:67–73. hdoi: 10.1016/j.jare.2019.03.005.

290	[25] Kape R, Parniske M, Werner D. Chemotaxis and nod gene activity of
291	Bradyrhizobium japonicum in response to hydroxycinnamic acids and
292	isoflavonoids. Appl Environ Microbiol 1991;57:316–319 doi:
293	10.1128/aem.57.1.316-319.1991.
294	[26] Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates
295	systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U
296	S A. 2020;117:3874–3883. doi: 10.1073/pnas.1912130117.
297	