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 20 

Enhancement of developmentally regulated daidzein secretion from 21 

soybean roots in field conditions as compared with hydroponic culture 22 

 23 

Analyses of metabolite secretions by field-grown plants remain scarce. We 24 

analyzed daidzein secretion by field-grown soybean. Daidzein secretion was 25 

higher during early vegetative stages than reproductive stages, a trend that was 26 

also seen for hydroponically grown soybean. Daidzein secretion was up to 27 

10,000-fold higher under field conditions than hydroponic conditions, leading to 28 

a more accurate simulation of rhizosphere daidzein content. 29 

 30 
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 32 

Plant specialized metabolites (PSMs) play important roles in the rhizosphere for 33 

modulation of symbiotic interactions (e.g., repelling pests and pathogens and shaping 34 
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microbiota), thereby promoting plant growth and improving crop production [1–3]. 35 

Flavonoids are a group of PSMs and consist of more than 8,000 compounds [4]. These 36 

molecules function as regulators of auxin transport and reactive oxygen species and 37 

protect against damage caused by ultraviolet (UV) light exposure. In legumes, 38 

flavonoids are secreted from the roots to exert functions in rhizosphere plant-microbe 39 

interactions, such as those necessary for defense and symbiosis [5–7]. 40 

Isoflavones are a subfamily of flavonoids and are found mainly in legumes [8]. 41 

In the rhizosphere, isoflavones such as daidzein and genistein of soybean (Glycine max) 42 

and formononetin-7-O-(6″-O-malonylglycoside) of alfalfa (Medicago sativa) induce 43 

nod genes for initiation of the nodulation process [9, 10]. In particular, daidzein was 44 

recently shown to be involved in the modulation of rhizosphere bacterial communities 45 

in soybean, where this compound increased the relative abundance of the 46 

Comamonadaceae family of bacteria [11]. 47 
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The secretion of metabolites from roots is a crucial process influencing 48 

interactions in the rhizosphere. Daidzein is the major isoflavone secreted into 49 

hydroponic media, the concentration of which is higher during the soybean vegetative 50 

stage than the reproductive stage [12]. Daidzein is relatively stable in soil, with a half-51 

life of about seven days, enabling the estimation of daidzein contents in the rhizosphere 52 

based on the amount secreted in hydroponic cultures [13]. Whereas sorption filters or 53 

glass beads have been used to collect and analyze various metabolites in the rhizosphere 54 

[14, 15], the direct measurement of secreted metabolites is technically challenging, 55 

especially for field-grown plants [16]. In this study, we used the cellulose acetate 56 

membrane method utilized in hydroponic culturing to analyze flavonoid secretion for 57 

direct measurement of the amount of daidzein secreted by field-grown soybean plants 58 

during the stages of growth. 59 

All chemicals used in this study were obtained from either Wako Pure 60 

Chemical Industries (Osaka, Japan) or Nacalai Tesque (Kyoto, Japan) unless otherwise 61 
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stated. 62 

The field experiments were conducted at Kyoto University of Advanced 63 

Science, Kameoka, Kyoto, Japan (coordinates: 34°99′38″N, 135°55′14″E). Soybean 64 

seeds (“Tambaguro”) were sown on May 31, 2019. The plants were irrigated as needed, 65 

and emerging weeds were manually removed weekly. No apparent symptoms of 66 

pathogen infection were observed, and pesticides were not used. Root samples and root 67 

exudates were collected on June 14 (V1 stage), July 3 (V5 stage), July 22 (V9 stage), 68 

August 14 (R2 stage), September 4 (R4 stage), and October 2 (R6 stage) of 2019 [17]. 69 

The soil around the lateral roots was partially removed with a shovel. The lateral roots 70 

were rinsed with tap water and pinched between a cellulose acetate filter (Advantec, 71 

Tokyo, Japan) using a hairpin (Fig. 1A) and then covered with soil. Additionally, 72 

cellulose acetate filters were placed in the bulk soil as a control. The cellulose acetate 73 

filters were held in the soil for 2 h, and then the filters and root tissues were collected. 74 

All samples were transferred to the laboratory in a cool container (0–10°C) within 2 h of 75 
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collection. The root samples were stored in pure water prior to fresh weight 76 

measurement. The roots and fully expanded leaves were taken from 2-week-old soybean 77 

seedlings (VE stage) for the quantification of isoflavones as described previously [13]. 78 

Rhizosphere soil was obtained from seven plants using sterile brushes and combined 79 

into one sample as described previously [18]. The samples were immediately frozen in 80 

dry ice and transferred to the laboratory for storage at −80°C. The bulk soil was 81 

sampled at least 20 cm away from the plant. 82 

The extraction of daidzein was performed as previously described [13, 19]. The 83 

cellulose acetate filters were rinsed with tap water, and the compounds were extracted 84 

twice using 1 ml methanol with shaking on a Labo shaker BC-730 (Bio craft, Tokyo, 85 

Japan) for 5 min each time. The combined supernatant from each sample was dried 86 

under a nitrogen stream at 50°C, dissolved in 150 μl of methanol, and filtered through a 87 

Minisart RC4 syringe filter (Sartorius, Gottingen, Germany) for LC-MS (Liquid 88 

chromatography–mass spectrometry) analysis. The exudates were analyzed by UPLC-89 
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MS on an ACQUITY UPLC system (Waters Corporation) coupled with Xevo TQD. 90 

The LC was performed by injecting a 2 μl sample onto an ACQUITY UPLC  BEH C18 91 

column (2.1 mm × 50 mm, 1.7 μm; Waters Corporation) at 40 °C. The LC mobile phase 92 

consisted of (A) water containing 0.1% (v/v) formic acid and (B) acetonitrile. The 93 

gradient program was linear over the range of 10%–35% B, 0–1 min; linear 35%–85% 94 

B, 1–11 min; isocratic 85% B, 11–11.1 min; isocratic at 100% B, 11.1–15.5 min; and 95 

isocratic at 10% B, 15.5–20 min. The flow rate was 0.2 ml min−1. Isoflavones were 96 

detected at 260 nm. The contents of daidzein were estimated from the peak areas in 97 

comparison with calibration curves constructed using known concentrations of the 98 

authentic compound. 99 

The extraction of isoflavones was performed as described [13]. The frozen 100 

tissues were pulverized in liquid nitrogen using a mortar and pestle and then freeze-101 

dried. The tissues were extracted in 80% methanol at 60°C for 1 h, followed by 102 

centrifugation at 12,000×g for 5 min to remove debris. The supernatant was filtered 103 
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through a Minisart RC4 syringe filter (Sartorius). Soil samples (1 g) were extracted in 104 

500 µl of methanol at 50°C three times (10 min each) and centrifuged at 4,800 rpm for 5 105 

min. The combined supernatant from each sample was dried under a nitrogen stream at 106 

50°C and redissolved in 150 μl methanol. Isoflavones were analyzed by LC-MS/MS as 107 

described [20]. 108 

The movement of daidzein secreted by a single cylindrical root was simulated 109 

using a two-dimensional asymmetric system. The equations, model domains, and 110 

relevant initial/boundary conditions were previously described [11]. The daidzein 111 

secretion rate at the root surface was assumed to be constant (1.06 nmol m2 s-1), based 112 

on the daidzein extraction for the roots sampled on June 14 (V1 stage). The simulation 113 

period was set at 14 days with a 0.1-day time interval. The parameters used in this study 114 

were summarized in Table S1. A cylinder of soil with a diameter of 20 cm and a depth 115 

of 20 cm with a single root of diameter 2 mm and length 10 cm in the center was set as 116 

a model domain for the simulation. Root length and diameter were assumed to be 117 
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constant for 14 days. 118 

The isoflavones secreted from field-grown soybean were analyzed at three 119 

vegetative growth stages V2, V5, and V8, corresponding to 2, 5, and 8 weeks after 120 

sowing, respectively. Moreover, samples from three reproductive growth stages R2, R4, 121 

and R6, respectively corresponding to 12, 15, and 19 weeks after sowing, were 122 

analyzed. Of all the detected isoflavones collected using cellulose acetate membranes 123 

that adsorb flavonoid aglycones [13,19], only daidzein was identified at each growth 124 

stage (Fig. 1B). The amount of secreted daidzein changed over the growth stages and 125 

peaked at V5, whereas it was constant over the reproductive stages. The trend of 126 

daidzein secretion was similar to that of hydroponically grown soybean. In contrast, 127 

field-grown soybean secreted up to a 10,000-fold higher amount of daidzein than 128 

hydroponically grown soybean (about 36 fmol mg FW−1 day−1 at V3) [12]. While the 129 

secretion from whole roots was analyzed in the hydroponic culture media, the secretion 130 

from the field-grown soybean was analyzed using a 3 cm root-tip section. The 131 
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possibility that partial soil removal induced the isoflavone biosynthesis and increased 132 

the isoflavone levels within 2 h is probably small because it is suggested to take more 133 

than 3 h for the roots to accumulate isoflavones after gene induction in Arabidopsis 134 

thaliana and soybean [20, 21]. The difference in the magnitude of secretion is, 135 

therefore, presumably attributable to environmental conditions, i.e., sterile hydroponics 136 

vs. non-sterile field environments. The contents of isoflavones in the root tissue at 137 

steady-state under the field-grown conditions were similar to those under hydroponic 138 

conditions [12, 13], suggesting that both the isoflavone synthesis and secretions are 139 

remarkably enhanced in the rhizosphere, probably due to the presence of various 140 

microorganisms. 141 

The spatiotemporal distribution of metabolites in the rhizosphere is of particular 142 

importance for deciphering their functions in inter-organismal interactions such as 143 

chemotaxis response and nod gene induction, which are concentration-dependent [9, 22, 144 

23]; however, the distribution of PSMs remains largely unknown [24]. In our previous 145 
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study, we simulated the spatiotemporal distribution of daidzein in field soil based on the 146 

advection–diffusion equation [11], and we showed that daidzein distribution was limited 147 

to within a few millimeters from the root surface [11]. To further refine the simulation 148 

of daidzein distribution in the field, we applied the secreted rate of daidzein under field 149 

conditions. The distribution of daidzein was also limited to within a few millimeters 150 

from the root surface, similar to findings from the previous simulation [11]. Limited 151 

daidzein distribution withn a few millimeters is likely due to the adsorption of daidzein 152 

by the soil. In this simulation, the average daidzein content within 1 or 3 mm soils from 153 

root surface was around 0.8 and 0.5 nmol g soil−1, respectively (Fig. 2A). This 154 

concentration was within the range to induce nod genes in Bradyrhizobium japonicum, 155 

which is reported to be more than 0.1 μM [9, 25]. The isoflavone contents in the 156 

rhizosphere and plant tissues were measured in 2-week-old soybean seedlings to 157 

validate the results of this simulation. Malonylgenistin was the most predominant 158 

isoflavone in the leaves at this stage, while malonyldaidzin and daidzein were 159 
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accumulated in the roots (Fig. 2B). Rhizosphere soil was sampled from less than 3 mm 160 

layer from the root surface. In the rhizosphere soil, daidzein was the most abundant 161 

isoflavone, and the content was about 5 nmol g soil−1 (Fig. 2C). Collectively, 162 

rhizosphere modeling based on the amount secreted by field-grown soybean led to a 163 

more accurate simulation of daidzein distribution than our previous simulation, i.e. 164 

daidzein distribution at physiologically relevant concentrations is limited to within a 165 

few millimeters from root surface. 166 

Despite the importance of PSMs in the rhizosphere, our current knowledge of 167 

the dynamics in the rhizosphere of field-grown plants is still preliminary. The dynamics 168 

between proteins, metabolites, and ions in the rhizosphere have been analyzed mostly 169 

using the rhizobox [23], but they should be examined in field-grown plants as well. In 170 

this study, we showed that the secretion of daidzein by field-grown soybean followed 171 

the same trends in terms of developmental regulation, but the amount was much higher 172 

than in hydroponic condition, leading to the accurate estimation of daidzein distribution 173 
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in the rhizosphere. The rhizosphere microbiome affects the secretion of metabolites 174 

from roots [26]; therefore, we presume that the rhizosphere microbiome enhanced 175 

daidzein secretion in the field, in addition to the effects of other both biotic and abiotic 176 

stresses under field conditions. It is of particular importance to analyze the secretion of 177 

PSMs in the rhizosphere of field-grown plants under various conditions and to integrate 178 

the distribution of PSMs and the structure and functions of the microbiota in future 179 

studies. 180 
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Figure Legends 198 

Fig. 1 (A) Cellulose acetate membrane used to collect root exudates. Tips of lateral 199 

roots were washed with pure water and pinched in a cellulose acetate membrane, which 200 

was then covered with soil. The site of analysis was marked with a piece of white paper. 201 

(B) Root exudation of daidzein throughout soybean growth stages. Amount per root 202 

fresh weight of daidzein in root exudates (n ≥ 9). Significant differences (P < 0.05; 203 

Tukey–Kramer test) are indicated with various letters. Root samples and root exudates 204 

were collected at three vegetative stages (V) and three reproductive stages (R). 205 
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 206 

Fig. 2 Simulation of daidzein distribution in soil and isoflavone contents in the 207 

rhizosphere. (A) Simulated daidzein distribution from 0 to 14 days in soil. The rate of 208 

daidzein secretion from roots was assumed to be constant at each depth, and the 209 

distribution at the middle of root at a depth of 5 mm was displayed in radial direction. It 210 

is noted that vertical distribution of daidzein was not obtained in this simulation. (B) 211 

Contents of isoflavones in leaves and roots (n = 3). (C) Contents of isoflavones in bulk 212 

and rhizosphere soils at VE stage (n = 3). 213 

 214 

Suppmenentary Material 215 

Supplementary Table 1. Parameters used in this study 216 
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