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Abstract Recently, Kigami’s resistance form framework has been applied to provide
a general approach for deriving the scaling limits of random walks on graphs with
a fractal scaling limit [20, 21]. As an illustrative example, this article describes an
application to the random conductance model with heavy tails on nested fractal
graphs.
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1 Introduction

One of the early motivations for the study of stochastic processes on fractals came
from physics, where there was an interest in understanding the dynamical properties
of disordered media. Specifically, certain examples of the latter were modelled by
critical percolation, which is believed to exhibit large scale fractal structure. (See
[15] for background.) The initial response from the mathematics community was
to construct Brownian motion on idealised fractals, such as the Sierpiński gasket
[27, 34]. Since then, the technology has developed to the point where it can engage
with some of the original questions about critical percolation. For instance, recent
work in this direction underlines that the notion of a resistance form, as introduced
by Kigami to provide a broad framework for studying analysis on fractals [30, 31],
is useful for understanding the scaling limits of various models of random walks
on random graphs in critical regimes [20, 21]. We highlight that resistance forms
are only really applicable in low-dimensional settings, with the stochastic processes
constructed from them typically being point recurrent (note that in the case of the

David A. Croydon
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan, e-mail:
croydon@kurims.kyoto-u.ac.jp

1



2 David A. Croydon

standard Brownian motion on Rd , the latter property holds only when d = 1, and
this is indeed the only dimension in which the Brownian motion can be described
by a resistance form). A brief introductory survey of the work of [20, 21] already
appears in [19], where a number of applications to random graphs are listed (see also
[4, 5] for some further ones that have appeared more recently), and a conjecture for
critical percolation is made. Here, the aim will be to introduce the general resistance
form results of [20, 21] specifically to an audience that has some familiarity with
analysis on self-similar fractals by presenting in detail an example from [21] which
is of interest in its own right: the random conductance model with heavy tails on
nested fractal graphs.

The nested fractals were originally introduced in [35], and are a class of self-
similar fractals that are finitely-ramified, embedded into Euclidean space and admit
a high degree of symmetry. In the next section we will introduce sequences of graphs
associated with nested fractals, but to keep the presentation concise here, we focus
for the moment on a concrete example of a nested fractal, the Sierpiński gasket in
two dimensions. Let V0 := {x0, x1, x2} ⊆ R2 consist of the vertices of an equilateral
triangle of side length 1. Write ψi(x) := |x + xi |/2 for i = 0,1,2. Then there exists
a unique compact set F such that F = ∪2

i=0ψi(F); this is the Sierpiński gasket.
We define the associated Sierpiński gasket graphs (Gn)n≥0 by setting the vertex set
V(Gn) := Vn, where Vn := ∪2

i=0ψi(Vn−1) for n ≥ 1, (note that V0 was already defined,)
and defining the edge set E(Gn) to be the collection of pairs of elements of Vn at a
Euclidean distance 2−n apart. (The first three graphs in this sequence are shown in
Figure 1.) For each n, we associate a stochastic process Xn

= (Xn
t )t≥0 by supposing

Xn is the continuous time Markov chain that has exponential holding times of unit
mean, and at jump times moves to a neighbour of the current location with uniform
probability amongst the possibilities. If we moreover assume that Xn

0 = x0 for each
n, then, from the seminal early works in the area [13, 27, 34, 35] it is known that

(

Xn
5n t

)

t≥0 →
(

XSG
t

)

t≥0
(1.1)

in distribution in D([0,∞),R2) (that is, the space of cadlag processes onR2, i.e. those
that are right-continuousand have left-hand limits, equipped with the usual Skorohod
J1-topology – for elementary introductions to this framework, see [16, Chapter 3]
or [39, Chapter 3], for example), where XSG is a strong Markov diffusion – the
so-called Brownian motion on the Sierpiński gasket, started from x0. We remark
that the terminology ‘Brownian motion’ reflects the fact that XSG is apparently the
most natural stochastic process on the Sierpiński gasket – apart from being a strong
Markov diffusion that arises as a scaling limit of random walks on approximating
lattices, it has a distribution that is invariant under the symmetries of the underlying
space, and also satisfies natural scale invariance properties. Given this, as in other
settings, it is natural to ask how robust a result such as (1.1) is to perturbations in the
environment in which the process Xn is based.

One simple, canonical way in which to introduce disorder into the situation is in
terms of the random conductance model. Specifically, let G = (VG,EG) be a locally
finite, connected graph. Let ω = (ωe)e∈EG

be a collection of independent and
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Fig. 1 The Sierpiński gasket graphs G0, G1, G2.

identically distributed (i.i.d.) strictly-positive random variables built on a probability
space with probability measure P; these are the so-called random conductances.
(Actually, for our model of self-similar fractals, we will later allow some local
dependence.) Conditional on ω, we define the variable speed random walk (VSRW)

XV
= (XV

t )t≥0 to be the continuous-time VG-valued Markov chain with jump rate
from x to y given by ωxy if {x, y} ∈ EG , and jump rate 0 otherwise. We obtain the
associated constant speed random walk (CSRW) XC

= (XC
t )t≥0 by setting the jump

rate along edge x to y to be ωxy/ν({x}), where

ν ({x}) :=
∑

e∈EG : x∈e

ωe; (1.2)

note that the latter process has unit mean holding times at each vertex, and so Xn as
described in the previous paragraph is simply the CSRW when Gn is equipped with
unit conductances ωe ≡ 1.

An important observation is that the VSRW and CSRW experience different
trapping behaviour on edges of large conductance. In particular, if we have an edge
of conductance ωe ≫ 1 (surrounded by other edges of conductance close to 1),
then both the VSRW and CSRW cross the edge order ωe times before escaping.
However, each crossing only takes the VSRW a time of 1/ωe, meaning that it is
only trapped for a time of order 1, whereas each crossing for the CSRW takes a
time of order 1, and so the latter process is trapped for a total time of order ωe. In
particular, when the weights are bounded away from 0, but not bounded above, we
might expect the VSRW of the random conductance model to behave like the VSRW
on the unweighted graph. For the CSRW, however, we would expect the trapping
to be more significant, potentially leading to anomalous scaling if the weights are
suitably inhomogeneous.

The random conductance model has been studied in a range of settings, via which
the intuition of the previous paragraph has been shown to reflect the actual behaviour
of the VSRW and CSRW. In the case of Zd with d ≥ 2, for example, it has been
established that if the weights are bounded away from 0, then the VSRW always
scales diffusively to a Brownian motion [12]. On the other hand, for the CSRW this
is only true when the weights also have a finite first moment [12]. (In fact, both these
results also apply when d = 1, cf. remarks in [17, 21]. See also [2] for the case
when the weights are unbounded below, and [3] for results beyond the case of i.i.d.
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conductances.) For weights whose tail no longer has a first moment, but is in the
normal domain of attraction of an α-stable random variable, namely there exists a
constant c ∈ (0,∞) such that

uαP (ωe > u) → c (1.3)

as u → ∞, one instead sees as a scaling limit for the CSRW the fractional kinetics
process – this is a Brownian motion subordinated by an α-stable process, which is
subdiffusive [14, 38]. The subordination here reflects that in its first n jumps, the
random walk visits Cn sites, and the time spent in these grows like a sum of n i.i.d.
α-stable random variables, so is of order n1/α ≫ n (there are logarithmic corrections
needed when d = 2 [38]). In d = 1, the simple random walk revisits sites more
often, and so although it is also true that the CSRW is subdiffusive when the weights
satisfy (1.3), the nature of the process is different. Rather, the limiting process, is a
Brownian motion time-changed by the Poisson random measure

ν(dx) =
∑

i

viδxi (dx), (1.4)

where (vi, xi)i∈N is a Poisson point process with intensity αv−1−αdvdx, and δxi is the
probability measure placing all its mass at xi ; this random measure can be viewed as
the scaling limit of the random trapping environment [38]. After its introduction in
[25] as a scaling limit for a random walk with strongly inhomogeneous random jump
rates, the Brownian motion time-changed by ν is called the Fontes-Isopi-Newman
diffusion.

For fractals, the random conductance model has previously been studied in [32,
33], where homogenisation was shown for certain classes of fractal graphs when the
weights were bounded uniformly below and above. Here, we explain the progress
of [21], in which a framework was developed that allowed unbounded weights, and
particularly weights satisfying (1.3)to be considered. For the particular case of nested
fractals (the precise definition of which is recalled in the next section), one knows
that diffusions on such spaces are point recurrent, and so it is natural to conjecture
that the nature of the random conductance model is likely to be more closely related
to the one-dimensional Euclidean picture than the higher dimensional situation. The
aim of this article is to explain that this is indeed the case, with the main result
being stated as Theorem 4.5. We note that, although we restrict to nested fractals
here, in [21], the slightly more general setting of uniformly finitely ramified fractals
was considered. Moreover, we also remark that heat kernel estimates for the limiting
processes are given in [22].

The remainder of the article is organised as follows. After introducing the model
in Section 2, we go on to study the renormalisation and homogenisation of associated
resistance metrics in Section 3, and then present the main scaling result in Section 4.
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2 Random conductance model on nested fractal graphs

In this section, we introduce precisely the model that will be of interest in the
remainder of the article, starting with the notion of a nested fractal. For β > 1
and I = {1,2, · · · ,N}, let (ψi)i∈I be a family of contraction maps on Rd such that
ψi(x) = β

−1Uix + γi for x ∈ Rd, where Ui is a unitary map and γi ∈ Rd. As (ψi)i∈I
is a family of contraction maps, there exists a unique non-void compact set F such
that F = ∪i∈Iψi(F). We assume the following.

Open set condition There is a non-empty, bounded open set W such that the sets
(ψi(W))i∈I are disjoint and ∪i∈Iψi(W) ⊆ W .

The maps (ψi)i∈I have unique fixed points, and we denote the set of these by Fix.
A point x ∈ Fix is called an essential fixed point if there exist i, j ∈ I, i , j and
y ∈ Fix such that ψi(x) = ψj (y). We write V0 for the set of essential fixed points.
Denoting ψi1 ,...,in = ψi1 ◦ · · · ◦ ψin for each n ≥ 0 and i1, · · · , in ∈ I , we call a set of
the form ψi1 , · · · ,in (V0) an n-cell. The further assumptions we make are the following.

Connectivity For any 1-cells C and C′, there is a sequence C = C0,C1, . . . ,Cn =

C′ of 1-cells such that Ci−1 ∩ Ci , ∅ for i = 1, . . . ,n.
Symmetry For any x, y ∈ Rd with x , y, let Hxy denote the hyperplane per-

pendicularly bisecting x and y, and Uxy denote reflection with respect to Hxy. If
x, y ∈ V0 and x , y, then Uxy maps n-cells to n-cells, and maps any n-cell which
contains elements on both sides of Hxy to itself for each n ≥ 0.

Nesting/Finite ramification If n ≥ 1 and if (i1, · · · , in) and ( j1, · · · , jn) are distinct
elements of In, then

ψi1 ,...,in (F)
⋂

ψj1 ,..., jn (F) = ψi1 ,...,in (V0)
⋂

ψj1 ,..., jn (V0).

A nested fractal F is a set determined by (ψi)i∈I satisfying the above assumptions
with |V0 | ≥ 2. Throughout, we assume without loss of generality that ψ1(x) = β

−1x

and 0 belongs to V0. We observe that the class of nested fractals was introduced
in [35], and is included in the class of uniformly finitely ramified fractals, first
introduced in [28] (and upon which the random conductance model was studied
in [21]), and the latter collection is included in the class of post-critically finite
self-similar sets [30]. We note that the Sierpiński gasket is a nested fractal, other
examples include the Vicsek set, and Lindstrøm’s snowflake. Some discussion about
the restrictiveness of the axioms for nested fractals appears in [8, Remark 5.25].

Related to the nested fractal itself, we now introduce a sequence of nested fractal
graphs (Gn)n≥0. As in the case of the Sierpiński gasket described in the introduction,
the Gn has vertex set Vn given by ∪N

i=1ψi(Vn−1), where V0 is as defined above.
Moreover, for each n, the edge set En of Gn consists of the collection of pairs of
vertices that are contained in the same n-cell. We let µn be the counting measure on
Vn (placing mass one on each vertex).

Finally for this section, let us describe the version of the random conductance
model that is of interest here. For each n ≥ 1, let ωn

= (ωn
e )e∈En

be a collection
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of strictly-positive random variables built on a probability space with probability
measure P. We assume the following conditions on the weights.

Independence Weights within each n-cell are independent copies of ω0.
Uniform lower bound There exists a deterministic constant c > 0 such that, P-

a.s.,
ω0
e ≥ c.

α-stable tail decay There exist constants α ∈ (0,1) and c ∈ (0,∞) such that the
random conductance distribution satisfies

uαP

(

∑

e∈E0

ω0
e > u

)

→ c (2.5)

as u → ∞.

Given a realisation of weights satisfying these assumptions, we define the variable
speed random walk Xn,V and constant speed random walk Xn,C on Gn, as per the
conventions in the introduction. Specifically, both have jump chains given by the
simple random walk on the graph Gn. The process Xn,V has exponential holding
times, with the mean of the holding times at vertex x ∈ Vn being given by 1/νn({x}),
where, similarly to (1.2),

νn ({x}) :=
∑

e∈En : x∈e

ωn
e ; (2.6)

the process Xn,C has unit mean exponential holding times. The so-called quenched,
i.e. conditional on the conductances, laws of Xn,V and Xn,C started from a ver-
tex x ∈ Vn will be denoted P

n,V
x and P

n,C
x , respectively. The corresponding aver-

aged/annealed laws are then given by

P
n,V
x :=

∫

Pn,V
x (·) dP, P

n,C
x :=

∫

Pn,C
x (·) dP.

The aim of this article is to describe scaling limits for both Xn,V and Xn,C under
their annealed laws; the main result is stated as Theorem 4.5. Some discussion as
to why we consider the annealed laws, rather than the quenched laws, is given in
Remark 4.8.

3 Homogenisation of resistance

In this section, we will briefly recall the now classical construction of a resistance
metric on a nested fractal via graphical approximations. Following this, we explain
what is perhaps the main result of [21] concerning self-similar fractals, which is that
the same resistance metric arises from the random conductance model defined in the
previous section, i.e. homogenisation of the resistance occurs. Roughly speaking this
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can be interpreted as meaning that, apart from normalisation by a deterministic con-
stant, the randomness of the conductances is insignificant on large scales. Intuitively,
this might be expected since, whilst the tail decay at (2.5) leads to the occasional
exceptionally large edge conductance, or equivalently the occasional exceptionally
small edge resistance, as we rescale, neighbouring points are anyway close in terms
of resistance, and so this does not lead to large scale distortions.

Before getting to resistance metrics, however,we introduce the canonical Dirichlet
form and Brownian motion on a nested fractal. In Lindstrøm’s original work on
nested fractals [35], transition probabilities (qx,y)x,y∈V0 satisfying qx,x = 0 and
∑

y∈V0
qx,y = 1 for x ∈ V0, and also qx,y = qy,x > 0 for x , y ∈ V0 were

introduced. Importantly, it was further established that the quantities (qx,y)x,y∈V0

could be chosen to be invariant under renormalisation in the sense we now describe.
Specifically, define a quadratic form by setting

E0( f , f ) =
1

2

∑

x,y∈V0

qx,y ( f (x) − f (y))2

for f ∈ F0 := { f : V0 → R}. One obtains a further quadratic form on the same
space by defining

Ẽ0( f , f ) = inf

{

∑

i∈I

E0 (g ◦ ψi,g ◦ ψi) : g : V1 → R, g |V0 = f

}

for f ∈ F0. The invariance under renormalisation of [35, Theorem V.5] then has
the equivalent statement that there exists a constant ρ > 1 such that E0 = ρẼ0.
Moreover, it is now known that the latter condition, together with the assumption
that q are the entries of a stochastic matrix, ensure the uniqueness of (qx,y)x,y∈V0

(see [37, Theorem 6.8] and [33, Corollary 3.5]). Given (qx,y)x,y∈V0 and ρ, for n ≥ 1
we then let

En( f , f ) = ρn
∑

i1 ,...,in ∈I

E0
(

f ◦ ψi1 ,...,in , f ◦ ψi1 ,...,in
)

for f ∈ Fn := { f : Vn → R}. One then obtains a canonical quadratic form on F by
setting

E( f , f ) := lim
n→∞

En( f |Vn
, f |Vn

)

for any f ∈ F := { f ∈ C(F,R) : limn→∞ En( f |Vn
, f |Vn

) < ∞}. Importantly, the
resulting quadratic form (E,F) turns out to be a Dirichlet form on L2(F, µ), where
µ is the unique self-similar probability measure on F , that is, the only probability
measure satisfying

µ =
1

N

∑

i∈I

µ ◦ ψ−1
i .
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As a consequence, standard machinery from probability theory (see [26], for exam-
ple) yields that there exists a corresponding Markov process XF

= (XF
t )t≥0, which

is now commonly called the Brownian motion on the nested fractal F .
We next describe the parallel construction of the resistance metric on F . To start

with one possible definition, we observe that from the quadratic form (E,F), one
obtains a metric on F by defining

R(x, y)−1 := inf {E( f , f ) : f ∈ F , f (x) = 1, f (y) = 0} , x, y ∈ F, x , y;
(3.7)

this is the resistance metric on F . In fact, the above description of R yields a one-to-
one relationship between a class of quadratic forms called resistance forms (of which
(E,F) is one) and a class of metrics called resistance metrics (see [30, Theorems
2.3.4, 2.3.6], for example). An alternative definition of R is via resistance metrics
on the finite graphs. Specifically, suppose Rn is the resistance metric on Vn induced
by placing conductances according to (ρ−nqx,y)x,y∈V0 along edges of n-cells, i.e.
setting the conductance from ψi1 ,...,in (x) to ψi1 ,...,in (y) to be ρ−nqx,y ; alternatively,
Rn can be defined from (En,Fn) analogously to (3.7). From the invariance under
renormalisation of E0, one can check that

Rn = Rm |Vn
, ∀m ≥ n.

From this it readily follows that we have R = limn→∞ Rn(x, y) on V∗ = ∪n≥0Vn.
In particular, R|Vn

= Rn. With some additional work to check that (F, R) is the
completion of (V∗, R), we obtain that Vn converges to F with respect to Hausdorff
topology on compact subsets of (F, R). (See [29] for proofs of these claims.)

It transpires that one obtains the limit described in the preceding paragraph if the
deterministic conductances characterised by (qx,y)x,y∈V0 are replaced by the random
conductances of the previous section. That is, suppose Rωn is the resistance metric
on Vn induced by placing conductances according to (cρ−nωn

e )e∈En
along edges of

the graph, where c ∈ (0,∞) is a deterministic constant that depends on the law of
the conductances; this is the metric given by (3.7) for the following quadratic form

1

2c
ρn

∑

i1 ,...,in ∈I

∑

x,y∈V0

ωn
ψi1 , ... ,in (x),ψi1 , ... ,in (y)

(

f ◦ ψi1 ,...,in (x) − f ◦ ψi1 ,...,in (y)
)2
,

which is defined for f ∈ Fn. From [21, Theorem 6.11], we then have that, in
P-probability,

(

Rωn (x, y)
)

x,y∈V0
→ (R(x, y))x,y∈V0

, (3.8)

where we note that the constant c is determined by this result. The proof in [21], which
can heuristically be understood as establishing contractivity of a renormalisation
map, resembles that of the corresponding results in [32, 33]. However, the lack of a
uniform upper bound on the conductances leads to significant technical challenges,
particularly in checking that certain quantities are integrable, as is required for the
argument to work. From (3.8) and the trivial bound that Rωn ≤ CRn, (which follows
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from the fact that the conductances are bounded away from 0,) we readily obtain the
following proposition.

Proposition 3.1 ([21, Lemma 6.14]). In P-probability,

sup
x,y∈Vn

�

�Rωn (x, y) − R(x, y)
�

� → 0.

Since (Vn, R
ω
n ) can not in general be isometrically embedded into (F, R), then the

usual Hausdorff topology on (F, R) is not the right topology with which to discuss
convergence. However, one can instead conclude from the previous result (and some
small additional technical work again depending on the bound Rωn ≤ CRn) that
(Vn, R

ω
n ) converges to (F, R) with respect to the Gromov-Hausdorff topology, that

is, all the spaces in question can be isometrically embedded into a common metric
space so that the Vn converges to F with respect to the usual Hausdorff metric on
this space (see [18, Chapter 7] for background on the Gromov-Hausdorff topology).

4 Random walk scaling limits

Proposition 3.1 is the main ingredient to proving scaling limits for the variable
speed random walk Xn,V and the constant speed random walk Xn,C . Indeed, the
only additional input required is the convergence under scaling of the counting
measure µn and the measure νn defined in terms of conductances at (2.6), which is
straightforward to prove. The machinery that allows us to proceed with this program
is the main result of [20] (which gives a more general version of the result of [21]).

To introduce the abstract result we appeal to precisely, let us fix the frame-
work. In particular, we write F∗c for the collection of quintuples of the form
(K, RK, µK, ρK, φK), where: K is a non-empty set; RK is a resistance metric on
K such that (K, RK) is compact; µK is a locally finite Borel regular measure of full
support on (K, RK); ρK is a marked point in K , and φK is a continuous map from
K to some fixed metric space (M, dM). From the point of view of metric geome-
try, there is a natural notion of convergence of such spaces which gives rise to the
marked spatial Gromov-Hausdorff-Prohorov topology. Specifically, convergence of
some sequence in F∗c means that all the spaces can be isometrically embedded into a
common metric space (M, dM) in such a way that: the embedded sets converge with
respect to the Hausdorff distance, the embedded measures converge weakly, the em-
bedded marked points converge, and the image of the continuous map is close in M

for points that are close in M. We note that such Gromov-Hausdorff-type topologies
have proved useful for studying various kinds of random metric spaces; see [18] for
an introduction to the classical theory. More specifically, the marked spatial Gromov-
Hausdorff-Prohorov topology was introduced in [11], building on the notions of the
Gromov-Hausdorff-Prohorov/Gromov-Hausdorff-vague topologies of [1, 7, 24, 36]
and the topology for spatial trees of [23] (cf. the spectral Gromov-Hausdorff topology
of [21]).
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Importantly, that the elements (K, RK, µK, ρK, φK) of F∗c incorporate a resistance
metric means that there is a naturally associated stochastic process. For, it is a
result of Kigami that the corresponding resistance form, characterised via (3.7), is
a regular Dirichlet form on L2(K, µK), and so naturally associated with a Markov
process (see [31], Chapter 9, for example). The following result establishes that, if
the convergence described in the previous paragraph occurs, then we also obtain
convergence of stochastic processes.

Theorem 4.1 ([20, Theorem 7.2]). Suppose that (Kn, RKn
, µKn

, ρKn
, φKn

)n≥1 is a

sequence in F∗c satisfying

(

Kn, RKn
, µKn

, ρKn
, φKn

)

→ (K, RK, µK, ρK, φK) (4.9)

in the marked spatial Gromov-Hausdorff-Prohorov topology for some element

(K, RK, µK, ρK, φK) ∈ F
∗
c . It then holds that

Pn
ρKn

(

(

φKn
(Xn

t )
)

t≥0 ∈ ·
)

→ PρK
(

(φK (Xt ))t≥0 ∈ ·
)

weakly as probability measures on D(R+,M), where ((Xn
t )t≥0, (P

n
x )x∈Kn

) is the

Markov process corresponding to (Kn, RKn
, µKn

, ρKn
), and ((Xt )t≥0, (Px)x∈K ) is

the Markov process corresponding to (K, RK, µK, ρK).

Remark 4.2. The key to the proof of the above result in [20] is the observation that for
a process associated with a resistance metric, it is possible to explicitly express the
associated resolvent kernel in terms of the resistance metric. (This was also the basis
of the corresponding argument for trees from [6].) Specifically, if ((Xt )t≥0, (Px)x∈K )

is the Markov process associated with (K, RK, µK, ρK, φK) ∈ F
∗
c , define the resolvent

of X killed on hitting x by

Gx f (y) = Ey

∫ σx

0
f (Xs)ds,

where Ey is the expectation under Py, and σx := inf{t ≥ 0 : Xt = x} is the hitting
time of x by X . (NB. Processes associated with resistance forms hit points; the above
expression is well-defined and finite.) One can then write

Gx f (y) =

∫

K

gx(y, z) f (z)µK (dz),

where the resolvent kernel is given by

gx(y, z) =
RK (x, y) + RK(x, z) − RK (y, z)

2
.

(See [31, Theorem 4.3].) Appealing to this formula, the metric measure convergence
at (4.9) enables one to check the convergence of resolvents in a certain sense. One
can then use more standard machinery from probability theory to establish semi-
group convergence, and moreover convergence of finite dimensional distributions.
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To complete the proof, one is also required to check tightness of the processes (see
[16, Chapter 16]), but again this can be deduced from the above resolvent density
formula (or, more precisely, a slight generalisation thereof). See [20] for details.

Remark 4.3. Whilst Theorem 4.1 has an appealingly concise statement, checking the
assumption at (4.9) is by no means trivial. Indeed, beyond the case of graph trees
(or graphs that are close to trees), where the resistance metric corresponds to (or is
close to, respectively) a shortest path metric, or certain finitely ramified self-similar
fractals, where the resistance metric can be studied by using the particular structure
of the space, understanding detailed properties of the resistance metric remains a
challenge. To give just one example of an open problem from the world of self-similar
fractals, it is still not known how to compute the value of the resistance exponent for
graphs based on the two-dimensional Sierpiński carpet, see [9] for some work in this
direction, and the discussion in [10, Example 4] concerning the graphical Sierpiński
carpet in particular.

We will apply Theorem 4.1 with Kn = Vn, RKn
= Rωn , µKn

= µn or µKn
= νn,

ρKn
= 0, and φKn

:= In, where In is the identity map from Kn intoRd . The following
lemma gives us the scaling limits of the measures. To state the result, we introduce
a Poisson random measure on F by setting

ν(dx) =
∑

i

viδxi (dx),

where (vi, xi)i∈N is a Poisson point process with intensity αv−1−αdvµ(dx), and δxi
is the probability measure placing all its mass at xi . (This is the analogue of the
measure defined at (1.4) in the present setting.) Note that the exponent α is given by
the tail of the conductance distribution (2.5).

Lemma 4.4. It holds that N−nµn → µ, and also there exists a deterministic constant

c0 ∈ (0,∞) such that c−1
0 N−n/ανn → ν in distribution, in both cases with respect to

the weak topology for finite measures on Rd .

Combining Proposition 3.1 and Lemma 4.4, we readily obtain that

(

Vn, R
ω
n ,N

−nµn,0, In
)

→ (F, R, µ,0, I), (4.10)

in P-probability, and

(

Vn, R
ω
n , c

−1
0 N−n/ανn,0, In

)

→ (F, R, ν,0, I),

in distribution under P with respect to the marked spatial Gromov-Hausdorff-
Prohorov topology, where I is the identity map from F into Rd. Since Xn,V is
the process associated with (Vn, c

−1ρnRωn , µn,0, In), and Xn,C is the process nat-
urally associated with (Vn, c

−1ρnRωn , νn,0, In), we are consequently able to apply
Theorem 4.1 to deduce a scaling limit for these processes. (By considering the gen-
erators of the relevant Markov processes, it is readily checked how the resistance
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and mass scaling factors can be interpreted in terms of time scaling.) As for the
limiting processes, we note that the Brownian motion XF is the process associated
with (F, R, µ,0) – we write the law of this process started from 0 as P0. Moreover,
the process associated with (F, R, ν,0) is the time-change of XF according to ν, that
is, defining an additive functional

At :=

∫ t

0
Lt (x)ν(dx),

where (Lt (x))x∈F , t>0 are the jointly continuous local times of XF (with respect to
µ), and its right-continuous inverse τ(t) := inf{s > 0 : As > t}, we set

X
F ,ν
t := XF

τ(t);

following the definition of the corresponding one-dimensional process in [25], we
call this the FIN diffusion on F . The averaged/annealed law of the FIN diffusion on
F , started from 0, will be denoted

P
FIN
0 :=

∫

P0

(

XF ,ν ∈ ·
)

dP,

i.e. one chooses ν according to P, and then the law of XF ,ν is determined by the law
of XF under P0.

Theorem 4.5. There exists a deterministic constant c1 ∈ (0,∞) such that

P
n,V

0

((

X
n,V

c1t(ρN)n

)

t≥0
∈ ·

)

→ P0

((

XF
t

)

t≥0
∈ ·

)

weakly as probability measures on D(R+,R
d). Moreover, there exists a deterministic

constant c2 ∈ (0,∞) such that

P
n,C

0

((

X
n,C

c2t(ρN1/α )n

)

t≥0
∈ ·

)

→ PFIN
ρ

((

X
F ,ν
t

)

t≥0
∈ ·

)

weakly as probability measures on D(R+,R
d).

Remark 4.6. To state the result for the Sierpiński gasket explicitly, note that in this
case we have N = 3 and ρ = 5/3, so that

P
n,V

0

((

X
n,V

c1 t5n

)

t≥0
∈ ·

)

→ P0

((

XF
t

)

t≥0
∈ ·

)

,

and we also have

P
n,C

0

((

X
n,C

c2t5n(3
1
α
−1)n

)

t≥0

∈ ·

)

→ PFIN
0

((

X
F ,ν
t

)

t≥0
∈ ·

)

.

In particular, the scaling regime for the variable speed random walk matches that
of the simple random walks on the unweighted graphs, as stated at (1.1); and since
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α < 1, the constant speed random walk (or limiting diffusion) moves through the
relevant graph more slowly than the unweighted simple random walk (or Brownian
motion, respectively). Together with known results for simple random walks on
nested fractal graphs, Theorem 4.5 implies that these qualitative comments apply to
nested fractal graphs in general.

Remark 4.7. When Eω0
e < ∞ for each e ∈ E0, one obtains in place of the second

claim of Lemma 4.4 that there exists a constant c0 such that c−1
0 N−nνn → µ.

Consequently, if (2.5) is replaced by the assumption of finite first moments, then
one can check the annealed limit of Xn,C is Brownian motion, rather than the FIN
diffusion that appears in the second statement of Theorem 4.5.

Remark 4.8. A stronger notion of convergence than convergence with respect to the
annealed law is convergence with respect to the quenched law for P-a.e. realisation
of the conductances. Typically, one might hope to be able to prove such a quenched
convergence statement in the case where the conductances homogenise, as has been
established when the underlying graph is a Euclidean lattice (see [2, 3, 12], for ex-
ample). In particular, it would be natural to conjecture that for the example described
in this article, the quenched law of the VSRW Xn,V converges as n → ∞ for typical
realisations of the environment. To do this, it would be sufficient to replace the weak
(i.e. in probability) statement of (4.10) with a strong (i.e. P-a.s.) one. However, the
techniques of [21] are not sufficient to yield such a result. As for the CSRW Xn,C ,
the typical fluctuations of the conductance environment as n varies will be too large
to permit a quenched limit statement (cf. the law of the iterated logarithm for simple
random walk on Z, which implies that individual sample paths can not be rescaled
to a realisation of Brownian motion on R, even though the discrete paths have the
latter process as a distributional limit).
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