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ABSTRACT: The surface roughness aerodynamic parameters z0 (roughness length) and d (zero-plane displacement

height) are vital to the accuracy of the Monin–Obukhov similarity theory. Deriving improved urban canopy parameteri-

zation (UCP) schemes within the conventional framework remains mathematically challenging. The current study explores

the potential of a machine-learning (ML) algorithm, a random forest (RF), as a complement to the traditional UCP

schemes. Using large-eddy simulation and ensemble sampling, in combination with nonlinear least squares regression of the

logarithmic-layer wind profiles, a dataset of approximately 4.53 103 samples is established for the aerodynamic parameters

and the morphometric statistics, enabling the training of the ML model. While the prediction for d is not as good as the

UCP after Kanda et al., the performance for z0 is notable. The RF algorithm also categorizes z0 and d with an excep-

tional performance score: the overall bell-shaped distributions are well predicted, and the 60.5s category (i.e., the 38%

percentile) is competently captured (37.8% for z0 and 36.5% for d). Among the morphometric features, the mean and

maximum building heights (Have andHmax, respectively) are found to be of predominant influence on the prediction of z0
and d. A perhaps counterintuitive result is the considerably less striking importance of the building-height variability.

Possible reasons are discussed. The feature importance scores could be useful for identifying the contributing factors to

the surface aerodynamic characteristics. The results may shed some light on the development of ML-based UCP for

mesoscale modeling.
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1. Introduction

Turbulence-resolving large-eddy simulation (LES) within a

mesoscale model is typically run over subregions, while a

substantial portion of the domain remains more coarsely re-

solved. Urban topographies are generally considered as sur-

face roughness, which acts as drag forcing, flux sources or

sinks (Muñoz-Esparza et al. 2014; Haupt et al. 2020). The

microscale dynamics within the urban canopy layer are usu-

ally not explicitly resolved and the momentum exchanges

with the boundary layers aloft are typically parameterized in

mesoscale modeling (Brown 2000; Mirocha et al. 2014; Shen

et al. 2019; Edwards et al. 2020).

A large amount of the literature has been devoted into im-

proved parameterization of surface-layer impacts in meso-

scale models, which led to the well-known Monin–Obukhov

similarity theory (MOST; Monin and Obukhov 1954). Efforts

including experiments and observations of the surface-layer

micrometeorological processes (e.g., Haugen et al. 1971;

Kaimal et al. 1976; Olesen et al. 1984), which has enabled the

intercomparison of MOST with measurements, continue

contributing to improving its accuracy (Nazarian et al. 2020;

Maronga et al. 2020b; Bou-Zeid et al. 2020). Knowledge on

the quantitative influence of urban surface roughness in meso-

scale modeling has been greatly advanced with the emerging of

techniques, which have made direct and reliable measurements

of turbulent eddies and fluxes more conveniently achievable

(e.g., Kaimal and Businger 1963; Hanafusa et al. 1982; Kaimal

and Wyngaard 1990; Cheng et al. 2020). Following MOST, the

surface-layer turbulent fluxes are connected with the gradient of

the mean profiles (Foken 2006), namely, taking the mean wind

velocity U(z), for example:
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where u* is the friction velocity, k is the von Kármán constant,

z 5 z/L accounts for the thermal stability, and z0 and d are the

surface roughness aerodynamic parameters (i.e, the roughness

length and the zero-plane displacement, respectively). For

neutral stratification, the Obukhov length, L/ ‘, and c(z)5
0 and u(z) 5 1. The surface momentum flux,2u0w0 (Reynolds

shear stress), can be obtained via vertical integration over the

Prandtl layer (the constant-flux layer) and then specified as the

surface boundary conditions (Maronga et al. 2020a).

The roughness length z0 and the zero-plane displacement

height d represent two key components of the surface layer

scaling [Eq. (1)]. Urban boundary layer flows are strongly

perturbed by urban geometries, that is, buildings, which are

unevenly distributed and anisotropic in the 3D details. The

perturbations are typically represented using roughness ele-

ments in mesoscale models. The physical processes in the

roughness surface layer (RSL) and within the urban canopy

layer are of high complexity (Roth 2000; Britter and Hanna

2003; Bou-Zeid et al. 2020). Accurate knowledge of the

roughness parameters is important to the understanding of

the urban surface aerodynamic characteristics, and hence

vital to the accuracy in modeling the surface boundary con-

ditions (Foken 2006).
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The roughness length may be assigned in accord with land-

use categories (e.g., Wieringa 1992; Davenport et al. 2000);

however, the applicability may be limited because of the

fact that full-scale observations are not always readily

obtainable for all terrain types and meteorological condi-

tions. By contrast, the micrometeorological method and

the morphometric method are perhaps more suitable in the

urban boundary layer literature (Grimmond and Oke

1999): for the former, z0 and d are determined through

least squares regression of the logarithmic wind profile

(e.g., Cheng et al. 2007); for the latter, they are parame-

terized in terms of the surface morphometric features for

the discrete roughness elements mounted on the ground

(e.g., Macdonald et al. 1998; Ratti et al. 2002; Hagishima

et al. 2009). This includes the building-packing indices

l
f
[A

f
/A

T
and l

p
[A

p
/A

T
(2)

(the frontal-area index and the plan-area index, respectively,

where Af is the total frontal area, Ap the total plan area of the

roughness obstacles, andAT is the total lot area), the mean and

maximum building heights Have and Hmax, and associated

building height variability sH. For convenience,

Xi [ fl
p
,l

f
,H

ave
,H

max
,s

H
g. (3)

The micrometeorological approach requires knowledge of a

well-defined logarithmic wind profile a priori, which may not

be well suited to operational models. For the morphometric

method, deploying tall towers for field observations is not

required, instead z0 and d are directly computed from the

morphometric statistics. The latter approach has proven

successful generating encouraging estimations of the roughness

aerodynamic parameters for realistic urban topographies (Kanda

et al. 2013), and hence would be more promising than the first

approach, especially given the ever-growing availability of

high-resolution geophysical data and with the assistance of

building-resolving computational fluid dynamics (CFD) tech-

niques (Hanna et al. 2006; Nakayama et al. 2011; Park et al.

2015b; Chew et al. 2020). Similarly, let

Yi [ fz
0
,dg. (4)

Among those approaches, one aspect that has attracted little

attention is how important each morphometric index is on the

parameterization of the roughness aerodynamic parame-

ters. It is demanding to assign weights precisely to each of

the indices to account for the differences in the contribution

to the parameterization. Formulating new schemes for im-

proved parameterization within the conventional urban

canopy parameterization (UCP) framework remains math-

ematically challenging. By contrast, machine learning (ML)

is capable of handling a large number of entries. For an ur-

ban canopy, this could include all the morphometric indices [Eq.

(3)] that may exert influences on the surface aerodynamic

characteristics [Eq. (4)], potentially in a complex manner

(Martilli et al. 2002; Akinlade et al. 2004) and likely to be non-

linear (Duan and Takemi 2021). ML allows the important fea-

tures to be identified by ranking the feature importance scores.

Exploring the potential of ML toward predicting the surface

roughness aerodynamic parameters, briefly,

Xi /Yi , (5)

may also assist the development of improved UCP schemes.

Recent developments of ML techniques have led to suc-

cessful results in the studies of complex physical problems

across climate networks, computer science, gene regulation,

biology, and medicine (Zitnik et al. 2019; Gagne II et al. 2020;

Tang et al. 2020; Biesbroek et al. 2020). ML has demonstrated

great potential dealing with problems as complicated as tur-

bulence modeling. The feasibility of representing the unre-

solved subgrid turbulent processes in place of the traditional

subgrid-scale (SGS) parameterization has been evaluated for a

global general circulation model in Rasp et al. (2018). Cheng

et al. (2019) explored the application of ML for SGS modeling

in LES for atmospheric flows of varying stability conditions.

The SGS stresses produced from ML were shown to be more

accurate than the conventional Smagorinsky SGS models

(Smagorinsky 1963; Bardina et al. 1980). The value of ML has

also been well recognized in studies of chaotic dynamical

systems (Lellep et al. 2020) and hydrodynamic environments

(Li et al. 2020).

This work explores the applicability of ML for the pre-

diction of urban surface roughness aerodynamic parame-

ters. Following the introduction, section 2a describes the

urban topographies considered for the simulation of a

neutrally stratified turbulent boundary layer flow using LES

(section 2b, with the model validation given in appendix A).

An ensemble sampling method is introduced in section 3a.

In combination with the conventional micrometeorological

approach, the nonlinear two-parameter least squares re-

gression (section 3b), a dataset of the urban morphometric

indices and the aerodynamic parameters, z0 and d, is es-

tablished for the training of a random forest (RF) MLmodel

(section 4a). Section 4b describes the measures for identi-

fying the morphometric features that could be of predominant

influence on the prediction of the aerodynamic parameters. The

results are analyzed in section 5, wherein section 5a presents

vertical distributions of the mean wind and turbulence sta-

tistics, and section 5b analyses the z0 and d statistics from

the least squares fit against the most recently proposed

UCP scheme. Predicted z0 and d using RF are analyzed in

section 5c with both RF regression [section 5c(1)] and RF

classification [section 5c(2)] considered. Informative morphom-

etric indices are identified in section 5d. Robustness is discussed in

section 5e. Summary and discussion are given in section 6.

2. Numerical experiments

a. Urban topography

This study investigates a neutrally stratified turbulent boundary

layer flow that developed over a realistic urban topography.

Four residential regions D within Osaka, Japan, are con-

sidered (Fig. 1). As in Takemi et al. (2020), the topography

data of Osaka City are obtained from the digital surface

model (DSM) and the digital elevation model (DEM) with a
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FIG. 1. Four urban areaswithinOsaka. The topographies are color shaded by the building heights. Shown are (a)Have,g6sH,g5 136 10m,

(b)Have,g6 sH,g5 116 7m, (c)Have,g6 sH,g5 166 16m, and (d)Have6 sH5 246 19m. HereinHave,g denotes the global average of the

building height over the entire domain of each topography and sH,g is the associated building-height standard deviation. The analysis is

performed for the four areas as a whole, hereinafter D.
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horizontal resolution of 2 m from the Kokusai Kogyo Co.,

Ltd. As a common practice in urban CFD, the ground elevation

is excluded so as to be focused on the morphological charac-

teristics associated with the roughness elements mounted on the

gound surface. Each subregion possesses unique morphological

profiles differing in building-packing densities, building-height

variability and the roughness element arrangement, but we do

not attempt to distinguish the results between the different

subregions. Performing simulations for separate domains is

simply to accommodate the computer power. The raw data are

combined and analyzed as a whole.

The domain dimensions of the subregions are the same, that

is, Lx 5 1504 3 Dx 5 3008m in the streamwise direction (x),

Ly 5 864 3 Dy 5 1728m in the spanwise direction (y), and

Lz ’ 500m in the vertical direction (z). The spatial resolution

is homogeneous in the lateral directions; that is,Dx5Dy5 2m,

in accord with the DSM and DEM dataset. The grids are

equally spaced in the vertical direction for the lower boundary

layers [i.e., Dz5Dzmin5 2m for 0, 0# 80m (;4–8Have)] but

are stretched at greater heights [i.e., Dzk11 5 1.08Dzk for z .
80m (where k denotes the vertical grid index)], until Dz 5
Dzmax5 16m, which is maintained up to the upper boundary of

the domain, giving a total of 82 layers in the vertical direction.

The ratio of the coarsest and finest vertical grid spacings con-

sidered in the current study isDzmax/Dzmin5 8, which is smaller

than Cui et al. (2004) and Michioka et al. (2019) by a factor of

;2 and is smaller than Michioka and Sato (2012) by a factor of

up to 4.75, allowing a much smaller grid deformation.

To avoid building-height discontinuities (that would nor-

mally arise from periodic boundary conditions for realistic

urban surfaces), a buffer area filled with cubic roughness ele-

ments is set around each topography. Similar to Yoshida et al.

(2018), the lateral dimensions (width and length) of the cuboids

are fixed at 10m. As in Duan and Takemi (2021), the height of

the roughness elements is equal to the global averageHave,g of

the building heights for each topography.

b. Large-eddy simulations

The turbulent boundary layer flows are simulated using

the Parallelized Large-Eddy Simulation Model (PALM) 6.0

(Maronga et al. 2020a), which is based on the implicitly filtered

nonhydrostatic, incompressible Boussinesq equations and the

1.5-order Deardorff SGS scheme (Deardorff 1980). The setup

of the 3D model essentially follows Duan and Takemi (2021),

except that thermal effects are neglected. The model is ini-

tialized with the stationary solution from a Reynolds-average

based turbulence parameterization and the flow is driven

continuously by the same pressure gradient, =p5 (0.63 1023,

0) Pa m21, for tf 5 7 h (Gronemeier et al. 2021). As in many

previous LES studies of urban turbulent boundary layer (TBL)

flow (e.g., Lo and Ngan 2017; Takemi et al. 2020; Duan and

Takemi 2021), Coriolis acceleration is neglected. This yields a

moderate- to high-Reynolds-number TBL flow (Horiguchi

et al. 2010; Wang and Anderson 2019), Re [ U‘Have,g/n 5
O(107) (where U‘ is the mean freestream wind speed and

Have,g is the mean building height forD). The data for the final

analysis are recorded every 10 s for the last 1 h of the simulation

(tf 2 t0 5 3600 s), which is in a statistically steady state.

The boundary conditions at the domain edges are the same:

periodic in the lateral directions and Neumann at the top. At

solid surfaces, there is no-slip for the velocity components and

Neumann for scalars. The near-wall boundary conditions are

parameterized following MOST: a Prandtl layer is assumed

between the roughness height and the first grid level. As in

Park et al. (2015b) for a full-scale LES of a realistic urban area,

the roughness length for momentum, z0,m 5 0.1m. The oc-

currence of streak-like structures originating from the persis-

tent periodic boundary conditions, also known as the spanwise

locking of very large-scale structures (e.g., Hutchins and

Marusic 2007; Fang and Porté-Agel 2015), is alleviated by

applying shifted periodic boundary conditions in the stream-

wise direction, whereby the outlet boundary no longer align

with the original inlet boundary but the one shifted by one grid

spacing in the spanwise direction (Munters et al. 2016).

The governing equation in combination with the initial and

boundary conditions are solved with the following numerical

schemes. Third-order Runge–Kutta time-stepping scheme

(Williamson 1980) is combined with a fifth-order finite dif-

ferencing scheme for momentum and scalar advection (Wicker

and Skamarock 2002). The Poisson equation for the pressure is

solved with the multigrid method. The SGS eddy viscosity and

diffusivity are parameterized by solving a prognostic equation

for the SGS turbulent kinetic energy. The current LES model is

validated by simulating a turbulent boundary layer flow over an

array of roughness elements arranged in an identical manner as

that implemented in the wind-tunnel experiments of Brown

et al. (2000). The validation is presented in appendix A.

3. Dataset establishment

a. Sampling

A dataset for the statistical analysis and the training of the

random forest ML model in the latter sections is established

FIG. 2. Schematic illustration of the proposed sampling ap-

proach. The box outlined in red denotes the initial analysis areaDij

of dimension lx 3 ly. The updated analysis unit Di11j results from a

displacement of Dij to the east by dx. Similarly, Dij11 is a result of

displacing Dij to the north by dy. Note the overlap between

neighboring analysis units.
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using an ensemble sampling approach after Duan and Takemi

(2021). Briefly, the simulation data are analyzed for an en-

semble of small urban units, Dij, within the domain, D (see

Fig. 1), that is, Dij � D (see Fig. 2 for a schematic illustration).

The analysis units Dij are defined by traversing a sampling

square of specified lateral dimensions, lx 3 ly, across D with a

displacement of dx in the streamwise and/or a displacement of

dy in the spanwise directions. Herein, fixed unit dimensions

lx 3 ly 5 250 3 250m2 are combined with variable displace-

ment distances, dx 2 {100, 200, 300} m and dy 2 {100, 200, 300}

m. Relative to Yoshida et al. (2018), wherein dx 5 lx and dy 5
ly, the sample size in the current study is effectively increased,

for example by a factor of 22 if dx 5 (1/2)lx and dy 5 (1/2)ly,

allowing a more comprehensive characterization of the urban

morphometric features.

Adopting this ensemble sampling approach, a dataset of

various values for the surface roughness features, which in-

clude the building-packing indices (lf and lp), the mean and

maximum building heights (Have and Hmax) and associated

building-height variability (sH) [herein X, see also Eq. (3)], is

created for the entire domain D (Fig. 1). Given the displace-

ment distances (dx and dx) and the sampling-square dimensions

(lx and ly) considered in the current study, the dataset contains

approximately 4.5 3 103 analysis units. Figure 3 summarizes

the morphometric statistics.1 Except for Hmax, which exhibits a

strong positive skewness (implying the presence of skyscrapers),

all of the other morphometric metrics are roughly centered

around the mean.

The flow in the RSL is strongly perturbed by the surface

roughness elements (Kastner-Klein and Rotach 2004). The

dynamic statistics from LES, for example, flow and turbulence,

should be processed before being used for the calculation of

the roughness aerodynamic parameters (see section 3b) that

are subsequently incorporated into the dataset for ML.

Following the common practice, a statistically representative

vertical profile can be obtained via temporal and horizontal

averaging. For convenience, angle brackets denote the hor-

izontal averaging over an analysis unit, Dij, namely,

h�i[ 1

A
ij

ð
Aij

(�)dx , (6)

where Aij is the plan area of Dij. Each sampling unit contains

(lx/Dx3 ly/Dy5 1253 125) grid points in a lateral plane, which

is considered sufficient for statistically representative results

through horizontal averaging. In Cheng and Castro (2002), the

horizontal average was performed over 25 sampling profiles. It

was also shown that a 4-profile average yielded very similar

results to the 25-profile average, and a lateral average over

25 3 25 grids was confirmed sufficient in comparison with a

503 50 choice (Wang et al. 2018). The number of grid points in

the horizontal plane (each grid point corresponds to one

profile) is significantly greater than that used in Cheng and

Castro (2002) and is larger by a factor of 6 in comparison with

Wang and Ng (2018). As in Duan and Takemi (2021), an

overbar denotes time averaging over the duration of the data

collection (tf 2 t0),

� [
1

t
f
2 t

0

ðtf
t0

(�)(t) dt . (7)

The averaging time span is comparable to ;100teddy, where

teddy 5 Have,g/u* denotes the eddy turnover time scale (see

Figs. 3 and 7 for a rough estimation of the mean building height

Have,g and the friction velocity u*, respectively) and should

suffice for meaningful statistics (cf. Cheng and Liu 2011).

Ensemble averaging over all sampling units, denoted with a

caret, will also be considered. The calculation follows Duan

and Takemi (2021).

b. Roughness aerodynamic parameters, z0 and d

The conventional micrometeorological approach estimating

the surface roughness aerodynamic parameters, that is, the

roughness length z0 and the zero-plane displacement height d,

is generally performed through two-parameter regression of

the logarithmic wind profile,

hui5u*
k
ln

�
z2 d

z
0

�
, (8)

by minimizing the following cost function (Cheng et al. 2007;

Hagishima et al. 2009),

E5�
Hlog,u

zi5Hlog,l

�
khui(z

i
)

u*
2 ln

�
z
i
2 d

z
0

��2
, (9)

where k is the von Kármán constant, usually taken to be 0.4,

and [Hlog,l, Hlog,u] define the vertical (grid) range of the

logarithmic region.

The friction velocity reflects the balance between the

flow and the underlying roughness surface, and has been an

important velocity scale in urban canopy parameterization

FIG. 3. Morphometric statistics of the studied domain (Fig. 1),

applying the proposed sampling approach (Fig. 2). The red open

diamonds denote the mean, and the short horizontal lines colored

in white plot the median.

1 The data used for the random forest ML model are scaled to

ensure zero mean and unit variance (see Figs. 7b,c).
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(Britter and Hanna 2003). It can be calculated in two ways that

differ in the physical meaning. One is based on the drag force

exerted by the roughness elements (e.g., Cheng et al. 2007;

Hagishima et al. 2009; Buccolieri et al. 2019),

u*5
ffiffiffiffiffiffiffiffiffi
t
p
/r

q
. (10)

Alternatively, u* can be obtained directly from the eddy co-

variance statistics of the surface layer (e.g., Rotach 1993a,b;

Oikawa and Meng 1995; Raupach et al. 1996),

u*5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh2u0w0ij

q
. (11)

The former [Eq. (10)] requires knowledge of the pressure

distribution along individual frontal and back surfaces of the

roughness elements, which may be more suitable for idealized

building obstacles (e.g., Hagishima et al. 2009; Kanda et al.

2013); however, the calculation is not straightforward for re-

alistic urban topographies (cf. Kanda et al. 2013). The high

inhomogeneity and irregular distribution of building heights as

well as the nonuniform building facades preclude direct mea-

surements of the drag force. By contrast, in the latter approach

[Eq. (11)] u* is directly derived from the Reynolds shear

stress,2u0w0, which can be readily obtained from the resolved-

scale wind speeds. While both methods have been applied in

previous studies, it is argued that the second one reconciles

well with field campaigns, wherein the eddy covariance statis-

tics are more conveniently measurable than the drag. For

convenience, the flux, 2u0w0 that averaged throughout the

RSL, is used for the calculation of u* (cf. Cheng and Castro

2002). Therefore, u* serves as a characteristic velocity scale

for the roughness surface layers. This yields a roughness

Reynolds number, Re* [ u*z0/n 5 O(104), which is com-

parable to the LES results of Kanda et al. (2013) (for k; 0.4)

and represents an extremely rough surface condition (cf.

Inagaki and Kanda 2008).

Applying the proposed sampling approach (section 3a) in

combination with the two-parameter nonlinear least squares

fitting, a dataset of approximately 4.5 3 103 samples is estab-

lished for z0 and d [hereinY; see also Eq. (4)] and incorporated

into the dataset created in section 3a, enabling the training of

the ML model and allowing the results to be analyzed in a

statistical manner in the latter sections.

4. Machine learning

a. Random forest

A relatively less sophisticated ML model is employed,

herein a random forest, which is nonetheless one of the most

powerful supervised ML algorithms that is capable of both

regression and classification (Breiman 1996). RF is an en-

semble ML algorithm built from multiple decision trees that

are trained independently on random subsamples of the

training dataset, known as bootstrapping. It has been suc-

cessfully applied in studies of land surface phenology

(Rodriguez-Galiano et al. 2016) and atmospheric boundary

layers (Bodini et al. 2020).

RF is able to handle a very large database, which could in-

clude statistics for all the morphometric indices and the

roughness aerodynamic parameters (herein Dn) established in

section 3. Formally,

D
n
5 f(Xi,Yi)gni51, (12)

where (Xi, Yi) denotes an element pair of the feature setX [lp,

lf, sH, Have, and Hmax; see Eq. (3)] and the response set Y [z0
and d, see Eq. (4)]; that is, (Xi, Yi) 2 (X, Y). The objective is to

predict Yi for given Xi through an RF algorithm [see Eq. (5)]

that trained on bootstrap samples of Dn.

The final prediction is obtained through averaging (for re-

gression) or voting the majority (for classification) over the

ensemble trees, known as aggregating, making it more ef-

fective than any of the individual decision tree. A simplified

mathematical illustration of ML using RF is given in

appendix B.

b. Feature importance measures

Identifying the most important features (e.g., lp, lf, sH,

Have, andHmax) that affect the target variables (z0 and d) is not

straightforward in the formulation of conventional UCP. By

contrast, RF is capable of differentiating informative predic-

tors from noninformative ones. This can be done by ranking

the importance metrics associate with the features, which in-

clude the decrease of the node impurity on each feature (herein

IG) and the change of model performance scores before and

after shuffling the values (permutation) of a feature (herein IP)

(Menze et al. 2009). See appendix C for a brief description of IG
and IP.

Large values of IG and IP indicate that the associated fea-

tures are informative, while small ones imply that the features

are of less importance. The feature importance metrics will be

analyzed in section 5d for each of the morphometric indices,

wherein the ones that could be of substantial influence on the

prediction of the surface roughness aerodynamic parameters

are identified.

5. Results

a. Mean and turbulence profiles

Figure 4 plots the temporally and laterally averaged wind

profiles for the ensemble of the urban units. While the profiles

are noticeably affected by the surface roughness parameters,

Have and sH, the general pattern follows a familiar picture: the

wind speed increases away from the surface roughness, fol-

lowed by a likely exponential (within z/Have; 5–20 for high sH

and z/Have ; 10–30 for low sH), and eventually converges

toward the freestream velocity at greater heights.

A well-defined inertial sublayer (ISL) may not be always

expected for a vertical (grid) range, although the wind profiles

plotted in Fig. 4 exhibit a strong exponential. Figure 5 plots the

vertical profiles for the second-order turbulence statistics. The

general pattern of the Reynolds shear stress (Fig. 5a) shows a

common feature with previous studies (Raupach et al. 1996).

The fluxes reveal a great inhomogeneity in the vertical: there

is a rapid decay toward the urban surface and the overall
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strength is weak within the canyons (z/Have & 1); peak values

are obtained above the urban canopy layer (z/Hmax & 1) and

the profiles converge to small values as the height approaches

the freestream level. There is a similar pattern for the turbulent

kinetic energy (Fig. 5b). The results agree well with the wind-

tunnel measurements of Kastner-Klein and Rotach (2004)

for a scaled 3D realistic urban topography.

Contrary to the field campaigns of Rotach (1995) and

Oikawa and Meng (1995), wherein the turbulence statistics

peaked around 1–1.5 times the canopy height, the maxima

herein are observed at greater heights, z/Have ; 3–10. This is

perhaps because the canopy morphology was less of a concern

in the field campaigns: the former was performed for a close-to-

unity street canyon and the latter for a flat space downstream a

residential area. For a vast portion of the profiles, the turbu-

lence statistics attain the maximum around Hmax (indicated in

the inset ‘‘Hmax/Have’’ as short horizontal lines). This is con-

sistent with the previous finding of Kanda et al. (2013) for re-

alistic urban areas within Tokyo and Nagoya, Japan; however,

we note that this is less so for regions of small building-height

variability.

While a very narrow ISL is vaguely seen for z/Have ; 10 and

low sH (overlapped by the high sH profiles), the fluxes are not

even close to constant, instead exhibiting a quick convergence

to small values for z/Have * 10, and this is doubly so for areas of

high sH. Nevertheless, it will be seen in the latter sections that

the lack of a well-defined ISL does not preclude the existence

of a logarithmic layer and hence the two-parameter nonlinear

regression for the surface roughness aerodynamic parameters,

z0 and d.

b. z0 and d, conventional micrometeorological approach

This section presents z0 and d obtained through the con-

ventional micrometeorological approach, that is, least squares

regression of the logarithmic wind profile (see section 3b). We

show in Fig. 6 that all of the logarithmic profiles are well re-

gressed and the regression errors are small (&5% for both z0
and d). Note that the vertical (grid) range for the plotting is

extended beyond the logarithmic region so that the profiles

FIG. 5. As in Fig. 4, but for the second-order turbulence statistics: (a) turbulent momentum flux u0w0 and (b) turbulent kinetic energy

(TKE). Note the logarithmic scale on the ordinate axis. The inset figure legend plots the normalized maximum building heightHmax/Have

that is associated with each profile.

FIG. 4. The mean wind profiles associated with the ensemble of

the analysis urban units. The overbar denotes the temporal aver-

age, and the angle brackets indicate the horizontal average [Eq.

(6)]. The profiles are shaded by sH.
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associated with the different analysis units may be better dis-

tinguished. The profiles collapse well in the logarithmic layer

with almost the same slope, and intercept at different vertical

levels with the theoretical line (cf. Blocken et al. 2007).

Despite a few scattered ones, the profiles are considerably well

regressed and even for the sampling units of extremely high

building-height variability (e.g., sH * 15, indicated in the col-

orbar), the regression is in most cases well accommodated (see

theR squared in Fig. 7a). Samples that do not yield satisfactory

regression results (largely attributable to the narrow vertical

grid range) will be simply discarded given the sufficiently large

sample size (see section 3). Alternatively, one can always

tweak the vertical (grid) range manually and visually observe if

the logarithmic layer is well located (e.g., Kanda et al. 2013).

Figure 7 plots a summary of the statistics for the normalized

roughness aerodynamic parameters (z0/Have and d/Have) that

obtained from the two-parameter nonlinear least squares re-

gression and the quality of the fitting (R2). While R2 (Fig. 7a)

varies among the sampling units, the values are overall above

0.98. The mean is substantially lower than the median, indi-

cating thatmost values ofR2 are higher than the average, which

suggests good quality of the regression (R2 . 0.99). As com-

pared with the roughness length (z0/Have), the spread of the

displacement height (d/Have) exhibits a strong positive skew-

ness, generally implying the presence of high-rise buildings (cf.

Ratti et al. 2002). A heavier right tail is seen for both z0
(Fig. 7c) and d (Fig. 7d). The probability density functions

(pdf) follow well a skewed Gaussian distribution (RMSE ,
0.1): the skewness and kurtosis for z0 are 1.0 and 4.3, respec-

tively, and are 1.5 and 4.8 for d.

Figures 8a and 8b compare z0/Have and d/Have versus the

plan-area index lp for the least squares regression against that

from the parameterization after Kanda et al. (2013). While the

UCP scheme has proven an overall good performance (re-

ported correlation coefficients squared R2 were 0.55 for z0 and

0.78 for d), nonnegligible discrepancies are seen between

measured (LES) and predicted (UCP) values. This can be

partially attributed to the friction velocity u*, which differed

between the two studies. In principle, one could directly

compare the regressed z0 and d with the predicted values;

however, the qualitatively different methods for the calcula-

tion of u* preclude pointwise comparison (see section 3b for a

brief discussion). Nevertheless, we try to demonstrate this by

comparing the current u* (denoted as u*,RSL) in Fig. 8c with

values obtained from another method that is based on the

peak 2u0w0 (denoted as u*,peak). The latter approach is also

often used in previous studies of urban TBL flow (e.g., Rotach

1999; Kastner-Klein and Rotach 2004).

Despite some scattered points for large Hmax/Have, a vast

majority of the data are well clustered for areas ofHmax/Have;

5 and the relative discrepancies between u*,peak and u*,RSL are

roughly within 620%. Figure 8c may be interpreted in the

following manner. Large abscissa values (Hmax/Have) in com-

bination with low building-height variability (sH, indicated in

the colorbar) imply the presence of skyscrapers, which is

in contrast to a cluster of high-rise buildings. For the latter,

Hmax/Have is generally small, while sH is high. Scenarios,

wherein both Hmax/Have and sH are small, essentially

indicate a more homogeneous surface. It is noticeable that

large discrepancies of u* arise for highHmax/Have (*20) and

relatively low sH, that is, regions that include skyscrapers,

and the associated u* discrepancy is .40%. This is consis-

tent with the previous finding of Kanda et al. (2013). For

brevity, u* is used instead of the notation u*,RSL in other

places of the text.

Plotting z0/Have versus lp and so for d/Have (Figs. 8a,b, re-

spectively) helps to highlight the discrepancies that may not be

easily resolved using the conventional UCP, herein the over-

estimation of the scatter for the former and the underestima-

tion for the latter. It was indicated in Kanda et al. (2013) that

the parameterization needs to be improved for areas with high-

rise buildings centered in the domain or a vast of misalignment

of building facades with the dominant wind direction. The in-

fluence of tall bluff elements on z0 and d was also noted in

Hagishima et al. (2009) though for idealized uniform and

nonuniform building arrays. Obviously more geometric factors

affecting the surface roughness heterogeneity and the uneven

distribution of the roughness elements may need to be con-

sidered or the weights quantifying the importance of each

contributing factor be adjusted for improved performance of

the parameterization.

c. z0 and d, random forest

1) RF REGRESSION

Figure 9 compares the roughness aerodynamic parameters,

z0 (Fig. 9a) and d (Fig. 9b), obtained from the RF regression

(‘‘predicted’’) with those from the conventional least squares

regression (‘‘measured’’; see sections 3b and 5b). A typical

75%–25% training-validation ratio (e.g., Were et al. 2015) is

used for the random split of the original dataset. Despite a

few outliers in Fig. 9a, the performance of the prediction using

RF ML reaches up to R2 5 0.94 (RMSE 5 0.15m) for z0 and

R2 5 0.99 (RMSE 5 2.33m) for d as compared with the

FIG. 6. Log-law fitting. The vertical (grid) range for the plotting is

extended beyond the logarithmic region so that the profiles asso-

ciated with different analysis units may be better distinguished.
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conventional UCP algorithm: see Kanda et al. (2013), wherein

R2 5 0.55 for z0 and R2 5 0.78 for d. Once the relationship is

established, one can conveniently predict the roughness aero-

dynamic parameters for given surface topographical features.

We have confirmed that a 80%–20% random split of the

dataset for training and testing (e.g., Ghorbani et al. 2020) does

not affect the results qualitatively.

The exact performance of the model depends on various

factors, which include the number of trees (or estimators) in a

forest, the fraction of the original dataset allocated for the

training of an individual tree and the number of features to find

the best split, the minimum required number of samples in a

node to allow further splitting and the maximum depth that a

tree can be grown. The optimum combination of the hyper-

parameters is obtained through cross validation.

2) RF CLASSIFICATION

As compared with the regression, which predicts values,

classification is useful in distinguishing between urban surfaces

of differential roughness and aerodynamic characteristics in

accord with the aerodynamic parameters for given topographic

entries. To do so, values of the aerodynamic parameters need

to be separated into discrete classes that label different value

ranges, herein 10 for z0 (z012 z010) and 9 for d (d12 d9). The

bounds for neighboring ranges may be defined in a practical

manner following Grimmond and Oke (1999); however, for

FIG. 7. (a) A summary of the dynamic characteristics, (b) pdf for z0, and (c) pdf for d. TheR squared in (a) reflects

the quality of the two-parameter nonlinear least squares regression of the wind profiles (Fig. 4) toward the theo-

retical logarithmic profile (Fig. 6). For compactness, statistics of Re (see section 2b), u*, and Re* (see section 3b)

that are associated with the ensemble of the analysis units are plotted in the same panel with the roughness

aerodynamic parameters. As in Fig. 3, the red open diamonds denote the mean and the short horizontal lines

colored in white plot the median. The red curves in (b) and (c) denote the fitting to skewed Gaussian distributions.

The caret denotes the ensemble average over all sampling units (see Duan and Takemi 2021), and s is the asso-

ciated standard deviation. The data of z0 and d are normalized to ensure zero mean and unit variance.
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simplicity they are assigned in a statistical way, that is in terms

of the distance (in units of the standard deviation) to the en-

semble mean (see Table 1 for a summary of the discrete classes

and the corresponding value ranges).

The performance of the classification is quantified using

confusion matrix in Fig. 10. Except for some negligible amount

of confusion, for example, when attempting to distinguish z04

from z08 and d9 from d6 (highlighted in the dash–dotted blue

squares), the overall performance of the classification is excep-

tional. The fraction of predictions that the model correctly clas-

sified is as high as 0.97 for both z0 and d. There is a well-defined

off-diagonal pattern—the distribution of correct predictions

roughly follows a bell shape, which preserves the nature of the

original dataset (see Fig. 7), and the 60.5s, that is, the 38%

percentile (seeTable 1), is well captured: 37.8% for z0 and 36.5%

for d (see the intersectional portion of the horizontal and vertical

bands, z04 for Fig. 10a and d3 for Fig. 10b).

d. Feature importance identification

Figure 11 plots the model performance scores (definitions

see section 4b), IG (Figs. 11a,b) based on the reduction of node

impurity upon each feature and IP (Figs. 11c,d) based on

the decrease of model performance, for the RF regression.

The surface morphometric features exhibit greatly differing

FIG. 8. Normalized (a) roughness length z0 and (b) zero-plane displacement height d vs the plan-area building

packing density lp. Red open diamonds denote values obtained using the UCP scheme after Kanda et al. (2013), and

blue open circles are from the least squares regression of the current LESdata. (c)Comparison of the friction velocities

estimated through two different approaches: u*,peak, which is based on peak2u0w0 (e.g., Rotach 1999; Kastner-Klein

and Rotach 2004), and u*,RSL, which is based on averaged 2u0w0 throughout the RSL (the current study).

1008 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by KYOTO UNIVERSITY | Unauthenticated | Downloaded 02/22/22 04:13 AM UTC



influence on the roughness aerodynamic parameters. For IG
(Figs. 11a,b), the average and maximum building heights (Have

and Hmax) account for up to 60% of the influence on the pre-

diction of z0 (Fig. 11a). Although the building-height vari-

ability sH is relatively less informative in comparison with the

building packing indices (lp and lf; ;30%), the information

contribution is nonnegligible (;10%). By contrast, the dis-

placement height, d (Fig. 11b), is shown to be almost exclu-

sively determined by Hmax: the IG score is up to 90%. The IP
scores (Figs. 11c,d) exhibit a rough agreement with IG. While

the orders of the feature indices for IP and IG do not exactly

coincide—for example, that for lp and lf and also Have and

Hmax are swapped in Fig. 11c as compared with Fig. 11a and lf
and sH are swapped in Fig. 11d as compared with Fig. 11b, the

general trends of the feature importance agree within the error

bars, and the agreement is markedly better for d.

Actually, the importance of the maximum building height,

Hmax, was also emphasized in Kanda et al. (2013). A rough but

direct evidence is the inclusion of Hmax for the parameteriza-

tion of z0 and d in Kanda et al. (2013) as compared with the

original formulas ofMacdonald et al. (1998). Despite thatHmax

does not appear explicitly in the parameterization of z0, the

influence is implicitly accounted for through the building-

height variability, sH. Distinct aerodynamic characteristics

were also observed behind high-rise buildings in a densely

built-up urban area in Seoul (Park et al. 2015a).

Figure 12 plots the IG (Figs. 12a,b) and IP (Figs. 12c,d) scores

for the RF classification. It is surprising that the IG scores

imply a qualitatively different effect of the surface morphom-

etric features on the classification of the roughness aerody-

namic parameters than on the regression (cf. Fig. 11). Taking z0
(Figs. 12a,c) for example, the IG scores (Fig. 12a) suggest that

the morphometric features considered herein are almost

equally important for the classification, while the IP scores

(Fig. 12c) support the argument that the morphometric indices

are unevenly informative (also note the swapped feature

order). This is perhaps because the labeling of classes for z0 and

d (see Table 1) artificially reduces the randomness, which

consequently biases the feature importance scores for the

classification.

Discrepancies of the feature importance scores between IG and

IPmay be also attributed to the difference in the nature of the two

feature importance measures (introduced in section 4b), namely

IG is biased because of the correlation between the impurity re-

duced by one feature and that reduced by the other as the tree

being grown deeper, as opposed to IP, which does not have

the correlation issue and is unsusceptible to random noise.

Importantly, the feature importance scores of IP for the classifi-

cation (Figs. 12c,d) exhibit a qualitative agreementwith the scores

obtained for the regression (Fig. 11), implying the robustness of IP
as compared with IG as a feature importance measure.

e. Robustness

The sample size was effectively increased adopting the en-

semble sampling approach (section 3), which enables the

FIG. 9. The RF regression of (a) z0 and (b) d. The dash–dotted lines denote an exact 1:1 relationship.

TABLE 1. Labeling of the discrete value ranges of z0 and d; the

caret, or ‘‘hat,’’ denotes the ensemble average. The row with z04

and d3 indicates classes that occupy the 60.5s or the 38%

percentile.

z0 d

z01 z0 2 [ẑ0 2 2:0s, ẑ0 2 1:5s) — —

z02 z0 2 [ẑ0 2 1:5s, ẑ0 2 1:0s) d1 d 2 [d̂2 1:5s, d̂2 1:0s)

z03 z0 2 [ẑ0 2 1:0s, ẑ0 2 0:5s) d2 d 2 [d̂2 1:0s, d̂2 0:5s)

z04 z0 2 [ẑ0 2 0:5s, ẑ0 1 0:5s) d3 d 2 [d̂2 0:5s, d̂1 0:5s)

z05 z0 2 [ẑ0 1 0:5s, ẑ0 1 1:0s) d4 d 2 [d̂1 0:5s, d̂1 1:0s)

z06 z0 2 [ẑ0 1 1:0s, ẑ0 1 1:5s) d5 d 2 [d̂1 1:0s, d̂1 1:5s)

z07 z0 2 [ẑ0 1 1:5s, ẑ0 1 2:0s) d6 d 2 [d̂1 1:5s, d̂1 2:0s)

z08 z0 2 [ẑ0 1 2:0s, ẑ0 1 2:5s) d7 d 2 [d̂1 2:0s, d̂1 2:5s)

z09 z0 2 [ẑ0 1 2:5s, ẑ0 1 3:0s) d8 d 2 [d̂1 2:5s, d̂1 3:0s)

z010 z0 $ ẑ0 1 3:0s d9 d$ d̂1 3:0s
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training of the ML model; however, the overlapping of

neighboring units2 may result in correlations in the calculated

roughness aerodynamic parameters between adjacent analysis

units. While this should be less of an issue for the RF classifi-

cation since it is unlikely that values of the aerodynamics pa-

rameters of overlapped units would be separated into different

classes [see section 5c(2)], it would possibly lead to overfitting

of the RF regression. It is hard to acquire a large dataset with

completely independent samples meanwhile maintaining a

sufficient characterization of the surface topographic features;

however, the performance scores in section 5c need to be in-

terpreted with caution.

It is prudent to confirm the performance of the RF model

for a dataset that is devoid of the neighboring overlap. This is

now examined for dx 5 lx 5 250m and dy 5 ly 5 250m. As

expected, the significant issue encountered in practice is the

substantial decrease of the sample size (by more than an order

ofmagnitude) and as a consequence, the surfacemorphometric

features are also much less comprehensively represented.

Unfortunately, there seems no economical means to resolve

this other than considering more topographies. It is impractical

and expensive to increase the sample size to an equivalent

amount as before by doing so. Herein large-eddy simulations

are performed for six extra subregions taken from Tokyo (see

appendix D). The spatial dimensions and model setups remain

the same as that for the Osaka topographies plotted in Fig. 1.

Relative to the prediction in section 5c, a significant drop is

experienced (R2 5 0.65 for z0 and R2 5 0.66 for d; figures not

shown), particularly for d, which is not as well predicted as the

UCP scheme proposed in Kanda et al. (2013). The evidence to

support the argument that an ML model could perform supe-

riorly to the conventional UCP is inconclusive. Nevertheless,

the slightly improved prediction of z0 is suggestive thatML can

still be considered as a valuable complement to the conven-

tional UCP once datasets are available for a sufficient training.

6. Summary and discussion

The current study explored the potential of ML as a com-

plement to the conventional UCP schemes. Using LES and the

traditional micrometeorological method, that is two-parameter

nonlinear least squares regression of the logarithmic-layer wind

profiles, in combination with the ensemble sampling approach

(Duan and Takemi 2021), a dataset of approximately 4.5 3 103

samples was established for the roughness aerodynamic pa-

rameters (z0 and d) and the urban surface morphometric sta-

tistics. The latter included the building packing indices (lf and

lp), mean and maximum building heights (Have and Hmax) and

associated standard deviations (sH). A random forest algorithm

(Breiman 2001), one of the most powerful ML algorithms that is

capable of both regression and classification, was subsequently

trained and implemented for the prediction of z0 and d, which

are vital to the accuracy of the MOST.

TheRF algorithm predicted the categories of z0 and d, which

were separated into discrete classes in terms of the departure

(in units of the standard deviation) from the ensemble mean,

with an exceptional performance score. The overall bell-

shaped distributions were well predicted and the 60.5s (or

38%) percentile category competently captured: 38.0% for z0
and 36.5% for d. The classification is of particular relevance to

FIG. 10. Confusion matrices for the classification of (a) z0 and (b) d. The axial labels highlighted in green denote

value ranges that lie within one-half standard deviation (60.5s, or the 38% percentile) about the associated en-

semble averages (see Table 1). The numbers in the cells denote the percentage of predictions, and the off-diagonal

elements count the correctly predicted ones (%). The dash–dotted blue squares annotate the negligible amount of

confusion: 0.3% of values in class z04 are incorrectly classified into class z08; similarly for the classification of d.

2 For the samplingwith lateral displacement distances (dx and dy)

smaller than the lateral dimensions (lx and ly) of the analysis unit.
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the parameterization of surface characteristics in mesoscale

models, wherein the roughness parameters are generally as-

signed in accord with land-use categories (Wieringa 1992;

Davenport et al. 2000). While the RF regression experienced a

significant drop in estimating d relative to the most recently

proposed UCP scheme in Kanda et al. (2013), the performance

for z0 appeared to be promising.

The most practical contribution is the identification of pa-

rameters that could be of predominant influence on the pre-

diction of z0 and d. The surface morphometric features

exhibited greatly differing influence on the roughness length

than on the displacement height. For the former, all the

morphometric parameters considered herein are found to be

informative, doubly so for the building height metrics (Have

andHmax), which accounted for up to 60% of the influence. By

contrast, the latter, d, appeared to be almost exclusively de-

termined byHmax. The results coincide well with Kanda et al.

(2013), wherein the importance of the maximum building

height, Hmax, was also emphasized. Direct supporting evi-

dence is the inclusion of Hmax in the proposed aerodynamic

parameterization schemes as compared with the original

formulas in Macdonald et al. (1998).

A perhaps counterintuitive result is the considerably less

striking importance of the building-height variability that re-

flected by the feature importance scores (IG and IP). It is found

that sH was of less influence as one would normally expect,

particularly for the prediction of d (Fig. 11). While this is not

entirely surprising because the values of sH for the urban to-

pographies considered herein (sH , 25m; see Fig. 3) could be

of secondary importance, a more likely explanation would be

that sH is correlated with the other surface morphometric

features, in particular withHmax and lf (Hagishima et al. 2009).

The building-height-to-canyon-width aspect ratio (AR), which

affects the flow regimes inside urban canyons (Ngan and Lo

2016), is another morphometric feature that could be corre-

lated with sH, particularly considering the ubiquitous asym-

metric canyon geometries in realistic urban regions. The

influence of sH may be already embodied within those indices;

however, disentangling the complexity of the correlation be-

tween features is difficult using the current ML algorithm.

FIG. 11. The (a),(b) IG and (c),(d) IP scores (definitions see section 4b) for the RF regression for (left) z0 and

(right) d. Because IP is calculated as a relative change ofR
2 values before and after the permutation of a feature, it is

not necessarily upper bounded by unity. Note the order change of feature labels on the ordinate axes between

different panels, especially the top vs the bottom. For comparison, each feature is indicated in a different color.
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Nevertheless, knowledge of the feature importance scores al-

lows weights to be assigned accordingly to the different con-

tributing factors, and those scores could be of usefulness

guiding the selection of informative factors for the derivation

of new UCP schemes.

The weaknesses of the current study lie in the following

aspects. First, the urban topographies may not be representa-

tive of all urban surface types (Ratti et al. 2002), especially of

areas occupied with sparsely distributed roughness elements,

despite that the ensemble sampling approach (see section 3a)

to a certain extent already accounts for the spatial variations

of the morphometric statistics. Green canopies and vege-

tated surfaces might be another important consideration

(Raupach et al. 1996; Kanda et al. 2007; Barbano et al. 2020).

Second, the meteorological conditions were idealized, for

example, the turbulent flow was driven by a prescribed

pressure gradient with periodic boundary conditions and

thermal effects were neglected. On the one hand, the esti-

mation of the surface roughness aerodynamic parameters

using the conventional micrometeorological method may

not be straightforward for thermally stratified boundary

layers, partially due to the growing of the internal boundary

layer (Rao 1975; Duan and Ngan 2020). On the other hand,

the nonuniversal motions, for example, intermittency in

stable conditions (Sun et al. 2012; Ansorge and Mellado

2016) or enhanced vertical transport of scalar covariance in

unstable conditions (Cancelli et al. 2012), may result in

possible violation against the similarity theory (Mahrt and

Bou-Zeid 2020). Oftentimes ‘‘near neutral’’ assumption is

imposed in studies of neutrally stratified boundary layer

flows (Horiguchi et al. 2010; Klein and Galvez 2015). More-

sophisticated ML algorithms may be explored, for example,

deep learning (e.g., Rasp et al. 2018; Cheng et al. 2019), to

account for more complex perturbations that would arise in

realistic meteorological scenarios. The above aspects may

represent interesting directions for future investigation.

Establishing a universally accessible database to integrate

z0, d, associated urban morphological indices, and possibly

available meteorological conditions from discrete simulations,

experiments, or field campaigns could bring efforts of different

parties together and make well-trained ML algorithms possi-

ble. Given the proof-of-principle attempt of the current study,

testing a simplified ML algorithm within a mesoscale model

as a replacement of the internal UCP schemes could be an

FIG. 12. As in Fig. 11, but for the RF classification.
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achievable short-term goal throughout the entire phase toward

ML-based UCP.

Acknowledgments. This research was supported by the

Environment Research and Technology Development

Fund (ERTDF) JPMEERF20192005 of the Environmental

Restoration and Conservation Agency (ERCA) of Japan and

Japan Society for the Promotion of Science (JSPS) Kakenhi

18H01680. The computation was performed on the Large-Scale

Computer Systems, Laurel 2, of Kyoto University. The authors

thank the editor and the anonymous reviewers for the careful

reading and valuable comments.

APPENDIX A

Validation

Figure A1 compares the vertical profiles of the temporal and

spanwise averages of the streamwise velocity hui at different
streamwise locations x/W inside a unit-aspect-ratio canyon

(H/W 5 1, where H is the canyon height and W is the canyon

width) with the wind-tunnel measurements of Brown et al.

(2000). Statistical performance metrics (Eichhorn 2004) in-

dicate that the model simulated the wind profiles very well:

the normalized mean-square error (NMSE) ’ 0.01–0.03 and

the fractional bias (FB) ’ 0.01–0.03 are consistent with the

acceptance criteria for microscale flow models (VDI 2005);

the hit rate, q’ 68%, also satisfies the criterion (q. 66%) for

successful validation (Santiago et al. 2007). Comparable

agreements have also been obtained in previous studies using

the same LES model (e.g., Duan and Ngan 2018; Lo and

Ngan 2020).

The degree of pattern similarity between the simulated and

measured wind profiles is quantified using Taylor diagram

(Taylor 2001; Ghorbani et al. 2020) in Fig. A2. The markers on

the diagram denote the statistical measures of the comparison

for each x/W. A perfect validation would be the one that

overlaps the measurement (indicated as ‘‘REF’’ on the x axis).

It can be seen that the simulated patterns of the wind profiles

FIG. A1. Normalized mean streamwise velocity profiles, hui/hUsi, for the current LES

(solid blue curve) and the wind-tunnel experiments of Brown et al. (2000) (black circles) for

x/W 5 (a) 20.4, (b) 20.25, (c) 0, (d) 0.25, and (e) 0.4; hUsi denotes the shear-layer average,

1 # z/H # 1.5, of the streamwise velocity.

FIG. A2. Taylor diagram for the comparison of temporally and

spanwise-averaged streamwise velocity profiles obtained from the

current LES model with that from the wind-tunnel experiments of

Brown et al. (2000). REF denotes the measured values.
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match well with the measurements: the Pearson correlation

coefficients (the azimuthal angle) are close to unity; the RMS

errors (gray contours) are small, and the standard deviations

(the dashed arc) are comparable to the measured values.

Successful validations of second-order turbulence statistics can

be found in Duan and Ngan (2019) and Nazarian et al. (2020) for

idealized building arrays and in Gronemeier et al. (2021) and

Resler et al. (2021) for real-case building setups. Since the dataset

in the current study is primarily derived from least squares re-

gression of the time-averaged wind profiles (see sections 3b and

5b), validations of second-order statistics are not repeated here.

APPENDIX B

A Simplified Mathematical Illustration of RF

RF has often been presented in a schematic style in its prac-

tical applications, while the associated mathematical properties

and statistical mechanisms have been largely neglected. This is

because internally an ML algorithm can be hardly represented

using a series of formulas—it is an interdisciplinary field and

involves linear algebra, multivariate calculus, probability theory

and statistics, algorithms, and complex optimization (Mitchell

1997). For completeness and clarity, we show below a simplified

mathematical illustration of the procedures that RF uses.

Given a dataset,Dn 5 f(Xi,Yi)gni51 [Eq. (12)], where (X
i,Yi)

denotes an element pair [Eqs. (3) and (4)] of the feature set X

and the response setY, that is, (Xi,Yi) 2 (X,Y), the objective is

to predict Yi for given Xi, namely,

f̂ (Xi)5E(YijXi) , (B1)

using an RF algorithm that trained on bootstrap subsamples of

Dn, herein Dn [ (X, Y). A collection of the base trees that

trained in parallel on B subsets DB (resulting from a B times

bootstrapping),B1

FIG. D1. Urban areas within Tokyo considered for the extra LES in section 5e.

B1 The process of training the decision trees of a random forest in

parallel on random subsets of the training dataset Dn.
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D
B
5 f(X

b
,Y

b
)gB

b51
, (B2)

wherein Db [ (Xb, Yb) � DB, constitutes a random forest.

Algorithms for growing the trees generally work from the

top down. The best split of each node aims at minimizing the

impurity G, which is a measure conditioned on the feature

entries for the optimal partitioning of each node into two such

that similar values of the target variable end up in the same set.

Exact forms of the impurity function depend on the specific RF

tasks. For regression, common measures include minimizing

the L1 and L2 errors; for classification, there is Gini impurity

(MacKay 2003; D’Ambrosio and Tutore 2011). The optimum

split option u* of a sample setQ (where Q4 Db) at nodem is

determined such that G is minimized, namely,

u*5 argmin
u
G(Q, u). (B3)

Recursively doing so for subsets Qleft and Qright (where Q 5
Qleft < Qright) until specified a criterion (e.g., the maximum

depth for a tree or the minimum allowable leaf number for a

node) is reached. The final prediction of RF for input Xi

is given by averaging over the ensemble of the trees for

regression,

f̂
final

(Xi)5
1

B
�
B

b51

f̂
b
(Xi) , (B4)

or voting the majority for classification. This final process is

also referred to as aggregating, and jointly with bootstrapping

it is known as bagging.

APPENDIX C

A Brief Description of the Feature Importance Measures,
IG and IP

For IG, a typical choice would be the Gini impurity decrease

for RF classification and the variance reduction for RF re-

gression. The former is a function of the probability 1 2 pi
that a randomly chosen class is incorrectly categorized; the

latter is simply the mean-square error. Formally,

I
G
5D

8>>><
>>>:

�
J

i51

p
i
(12 p

i
) for RF classification

1

N
�
N

i51

(y
i
2 y)

2
for RF regression

, (C1)

where D indicates the deduction of associated impurity mea-

sure, J denotes the number of the classification, N denotes the

number of predicted values yi, and y denotes the associated

mean. For IP, there is

I
P
5�

B

b51

P(X
b
,Y

b
)2P[S(X

b
)
j
,Y

b
]

P(X
b
,Y

b
)

, (C2)

whereP denotes themodel performance score,S(Xb)j is the jth

feature with its element values randomly shuffled, and B is

the total number of training subsets drawn out of a random

split of the original database (see appendix B for details).

For simplicity, herein P is chosen to be the R squared for the

RF regression and the proportion of correctly classified counts

for the RF classification.

APPENDIX D

Subregions within Tokyo

Figure D1 plots the topographies of six urban areas within

Tokyo considered for the extra LES in section 5e. The spatial

dimensions and model setups remain the same as that for the

Osaka subregions plotted in Fig. 1.

REFERENCES

Akinlade, O. G., D. J. Bergstrom, M. F. Tachie, and L. Castillo,

2004: Outer flow scaling of smooth and rough wall turbulent

boundary layers. Exp. Fluids, 37, 604–612, https://doi.org/

10.1007/s00348-004-0856-5.

Ansorge, C., and J. P. Mellado, 2016: Analyses of external and

global intermittency in the logarithmic layer of Ekman

flow. J. Fluid Mech., 805, 611–635, https://doi.org/10.1017/

jfm.2016.534.

Barbano, F., S. Di Sabatino, R. Stoll, and E. R. Pardyjak,

2020: A numerical study of the impact of vegetation on

mean and turbulence fields in a European-city neigh-

bourhood. Build. Environ., 186, 107293, https://doi.org/

10.1016/j.buildenv.2020.107293.

Bardina, J., J. Ferziger, and W. Reynolds, 1980: Improved

subgrid-scale models for large-eddy simulation. 13th Fluid

and Plasma Dynamics Conf., Snowmass, CO, AIAA, https://

doi.org/10.2514/6.1980-1357.

Biesbroek, R., S. Badloe, and I. N. Athanasiadis, 2020:

Machine learning for research on climate change adap-

tation policy integration: An exploratory UK case study.

Reg. Environ. Change, 20, 85, https://doi.org/10.1007/

s10113-020-01677-8.

Blocken, B., T. Stathopoulos, and J. Carmeliet, 2007: CFD

simulation of the atmospheric boundary layer: Wall func-

tion problems. Atmos. Environ., 41, 238–252, https://doi.org/

10.1016/j.atmosenv.2006.08.019.

Bodini, N., J. K. Lundquist, and M. Optis, 2020: Can machine

learning improve the model representation of turbulent ki-

netic energy dissipation rate in the boundary layer for complex

terrain? Geosci. Model Dev., 13, 4271–4285, https://doi.org/

10.5194/gmd-13-4271-2020.

Bou-Zeid, E., W. Anderson, G. G. Katul, and L. Mahrt, 2020: The

persistent challenge of surface heterogeneity in boundary-layer

meteorology: A review. Bound.-Layer Meteor., 177, 227–245,

https://doi.org/10.1007/s10546-020-00551-8.

Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123–140,

https://doi.org/10.1007/BF00058655.

——, 2001: Random forests.Mach. Learn., 45, 5–32, https://doi.org/

10.1023/A:1010933404324.

Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban

areas. Annu. Rev. Fluid Mech., 35, 469–496, https://doi.org/

10.1146/annurev.fluid.35.101101.161147.

Brown, M. J., 2000: Urban parameterizations for mesoscale me-

teorological models.Mesoscale Atmospheric Dispersion, WIT

Press, 193–255.

——, R. Lawson, D. DeCroix, and R. Lee, 2000: Mean flow and

turbulence measurements around a 2-D array of buildings in a

JULY 2021 DUAN AND TAKEM I 1015

Brought to you by KYOTO UNIVERSITY | Unauthenticated | Downloaded 02/22/22 04:13 AM UTC

https://doi.org/10.1007/s00348-004-0856-5
https://doi.org/10.1007/s00348-004-0856-5
https://doi.org/10.1017/jfm.2016.534
https://doi.org/10.1017/jfm.2016.534
https://doi.org/10.1016/j.buildenv.2020.107293
https://doi.org/10.1016/j.buildenv.2020.107293
https://doi.org/10.2514/6.1980-1357
https://doi.org/10.2514/6.1980-1357
https://doi.org/10.1007/s10113-020-01677-8
https://doi.org/10.1007/s10113-020-01677-8
https://doi.org/10.1016/j.atmosenv.2006.08.019
https://doi.org/10.1016/j.atmosenv.2006.08.019
https://doi.org/10.5194/gmd-13-4271-2020
https://doi.org/10.5194/gmd-13-4271-2020
https://doi.org/10.1007/s10546-020-00551-8
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1146/annurev.fluid.35.101101.161147
https://doi.org/10.1146/annurev.fluid.35.101101.161147


wind tunnel. 11th Joint Conf. on the Applications of Air

Pollution Meteorology, Long Beach, CA, Amer. Meteor.

Soc., 4A.2, https://ams.confex.com/ams/annual2000/techprogram/

paper_314.htm.

Buccolieri, R., M. Sandberg, H. Wigö, and S. Di Sabatino, 2019:

The drag force distribution within regular arrays of cubes and

its relation to cross ventilation—Theoretical and experimental

analyses. J. Wind Eng. Ind. Aerodyn., 189, 91–103, https://

doi.org/10.1016/j.jweia.2019.03.022.

Cancelli, D. M., N. L. Dias, andM. Chamecki, 2012: Dimensionless

criteria for the production-dissipation equilibrium of scalar

fluctuations and their implications for scalar similarity. Water

Resour. Res., 48,W10522, https://doi.org/10.1029/2012WR012127.

Cheng, H., and I. Castro, 2002: Near wall flow over urban-like

roughness. Bound.-Layer Meteor., 104, 229–259, https://doi.org/

10.1023/A:1016060103448.

——, P. Hayden, A. Robins, and I. Castro, 2007: Flow over cube

arrays of different packing densities. J.WindEng. Ind. Aerodyn.,

95, 715–740, https://doi.org/10.1016/j.jweia.2007.01.004.

Cheng, W., and C.-H. Liu, 2011: Large-eddy simulation of turbu-

lent transports in urban street canyons in different thermal

stabilities. J. Wind Eng. Ind. Aerodyn., 99, 434–442, https://

doi.org/10.1016/j.jweia.2010.12.009.

Cheng, Y., and Coauthors, 2019: Deep learning for subgrid-scale

turbulence modeling in large-eddy simulations of the atmo-

spheric boundary layer. arXiv, 33 pp., https://arxiv.org/ftp/

arxiv/papers/1910/1910.12125.pdf.

——, Q. Li, A. Grachev, S. Argentini, H. J. S. Fernando, and

P. Gentine, 2020: Power-law scaling of turbulence cospectra

for the stably stratified atmospheric boundary layer. Bound.-

Layer Meteor., 177, 1–18, https://doi.org/10.1007/s10546-020-

00545-6.

Chew, L. W., X. Liu, X.-X. Li, and L. K. Norford, 2020: Interaction

between heat wave and urban heat island: A case study in a

tropical coastal city, Singapore. Atmos. Res., 247, 105134,

https://doi.org/10.1016/j.atmosres.2020.105134.

Cui, Z., X. Cai, and C. J. Baker, 2004: Large-eddy simulation of

turbulent flow in a street canyon. Quart. J. Roy. Meteor. Soc.,

130, 1373–1394, https://doi.org/10.1256/qj.02.150.
D’Ambrosio, A., and V. A. Tutore, 2011: Conditional classification

trees by weighting the Gini impurity measure.NewPerspectives

in StatisticalModeling andDataAnalysis, S. Ingrassia, R. Rocci,

and M. Vichi, Eds., Springer-Verlag, 273–280.

Davenport, A. G., C. S. B. Grimmond, T. R. Oke, and J. Wieringa,

2000: Estimating the roughness of cities and sheltered country.

12th Conf. on Applied Climatology, Asheville, NC, Amer.

Meteor. Soc., 4B.2, https://ams.confex.com/ams/May2000/

techprogram/paper_13744.htm.

Deardorff, J., 1980: Stratocumulus-capped mixed layers derived

from a three-dimensional model. Bound.-Layer Meteor., 18,

495–527, https://doi.org/10.1007/BF00119502.

Duan, G., and K. Ngan, 2018: Effects of time-dependent inflow

perturbations on turbulent flow in a street canyon. Bound.-

Layer Meteor., 167, 257–284, https://doi.org/10.1007/s10546-

017-0327-1.

——, and ——, 2019: Sensitivity of turbulent flow around a 3-D

building array to urban boundary-layer stability. J.WindEng. Ind.

Aerodyn., 193, 103958, https://doi.org/10.1016/j.jweia.2019.103958.

——, and ——, 2020: Influence of thermal stability on the venti-

lation of a 3-D building array. Build. Environ., 183, 106969,

https://doi.org/10.1016/j.buildenv.2020.106969.

——, and T. Takemi, 2021: Gustiness in thermally-stratified urban

turbulent boundary-layer flows and the influence of surface

roughness. J. Wind Eng. Ind. Aerodyn., 208, 10 442, https://

doi.org/10.1016/j.jweia.2020.104442.

Edwards, J. M., A. C. M. Beljaars, A. A. M. Holtslag, and A. P.

Lock, 2020: Representation of boundary-layer processes in

numerical weather prediction and climate models. Bound.-

Layer Meteor., 177, 511–539, https://doi.org/10.1007/s10546-

020-00530-z.

Eichhorn, J., 2004: Application of a new evaluation guideline for

microscale flow models. Ninth Int. Conf. on Harmonisation

within Atmospheric Dispersion Modeling for Regulatory

Purposes, Garmisch-Partenkirchen, Germany, HARMO,

http://www.harmo.org/Conferences/Proceedings/_Garmisch/

publishedSections/PPT/1.10-Eichhorn.pdf.

Fang, J., and F. Porté-Agel, 2015: Large-eddy simulation of very-

large-scale motions in the neutrally stratified atmospheric

boundary layer. Bound.-Layer Meteor., 155, 397–416, https://

doi.org/10.1007/s10546-015-0006-z.

Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory.

Bound.-Layer Meteor., 119, 431–447, https://doi.org/10.1007/

s10546-006-9048-6.

Gagne, D. J., II, H. M. Christensen, A. C. Subramanian, and A. H.

Monahan, 2020: Machine learning for stochastic parameteri-

zation: Generative adversarial networks in the Lorenz ’96

model. J. Adv.Model. Earth Syst., 12, e2019MS001896, https://

doi.org/10.1029/2019MS001896.

Ghorbani, M. A., R. C. Deo, S. Kim, M. Hasanpour Kashani,

V. Karimi, and M. Izadkhah, 2020: Development and evalu-

ation of the cascade correlation neural network and the ran-

dom forest models for river stage and river flow prediction in

Australia. Soft Comput., 24, 12 079–12 090, https://doi.org/

10.1007/s00500-019-04648-2.

Grimmond,C. S.B., andT.R.Oke, 1999:Aerodynamic properties of

urban areas derived from analysis of surface form. J. Appl.

Meteor., 38, 1262–1292, https://doi.org/10.1175/1520-0450(1999)

038,1262:APOUAD.2.0.CO;2.

Gronemeier, T., K. Surm, F. Harms, B. Leitl, B. Maronga, and

S. Raasch, 2021: Evaluation of the dynamic core of the PALM

model system 6.0 in a neutrally stratified urban environment:

Comparison between LES and wind-tunnel experiments.

Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/

gmd-14-3317-2021.

Hagishima, A., J. Tanimoto, K. Nagayama, and S. Meno, 2009:

Aerodynamic parameters of regular arrays of rectangular

blocks with various geometries. Bound.-Layer Meteor., 132,

315–337, https://doi.org/10.1007/s10546-009-9403-5.

Hanafusa, T., T. Fujitani, Y. Kobori, andY.Mitsuta, 1982:A new type

sonic anemometer-thermometer for field operation.Pap.Meteor.

Geophys., 33, 1–19, https://doi.org/10.2467/mripapers.33.1.

Hanna, S. R., and Coauthors, 2006: Detailed simulations of at-

mospheric flow and dispersion in downtown Manhattan: An

application of five computational fluid dynamics models. Bull.

Amer. Meteor. Soc., 87, 1713–1726, https://doi.org/10.1175/

BAMS-87-12-1713.

Haugen, D., J. Kaimal, and E. Bradley, 1971: An experimental

study of Reynolds stress and heat flux in the atmospheric

surface layer.Quart. J. Roy. Meteor. Soc., 97, 168–180, https://

doi.org/10.1002/qj.49709741204.

Haupt, S. E., and Coauthors, 2020: On bridging a modeling scale

gap: Mesoscale to microscale coupling for wind energy. Bull.

Amer. Meteor. Soc., 100, 2533–2550, https://doi.org/10.1175/

BAMS-D-18-0033.1.

Horiguchi, M., T. Hayashi, H. Hashiguchi, Y. Ito, and H. Ueda,

2010: Observations of coherent turbulence structures in the

1016 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by KYOTO UNIVERSITY | Unauthenticated | Downloaded 02/22/22 04:13 AM UTC

https://ams.confex.com/ams/annual2000/techprogram/paper_314.htm
https://ams.confex.com/ams/annual2000/techprogram/paper_314.htm
https://doi.org/10.1016/j.jweia.2019.03.022
https://doi.org/10.1016/j.jweia.2019.03.022
https://doi.org/10.1029/2012WR012127
https://doi.org/10.1023/A:1016060103448
https://doi.org/10.1023/A:1016060103448
https://doi.org/10.1016/j.jweia.2007.01.004
https://doi.org/10.1016/j.jweia.2010.12.009
https://doi.org/10.1016/j.jweia.2010.12.009
https://arxiv.org/ftp/arxiv/papers/1910/1910.12125.pdf
https://arxiv.org/ftp/arxiv/papers/1910/1910.12125.pdf
https://doi.org/10.1007/s10546-020-00545-6
https://doi.org/10.1007/s10546-020-00545-6
https://doi.org/10.1016/j.atmosres.2020.105134
https://doi.org/10.1256/qj.02.150
https://ams.confex.com/ams/May2000/techprogram/paper_13744.htm
https://ams.confex.com/ams/May2000/techprogram/paper_13744.htm
https://doi.org/10.1007/BF00119502
https://doi.org/10.1007/s10546-017-0327-1
https://doi.org/10.1007/s10546-017-0327-1
https://doi.org/10.1016/j.jweia.2019.103958
https://doi.org/10.1016/j.buildenv.2020.106969
https://doi.org/10.1016/j.jweia.2020.104442
https://doi.org/10.1016/j.jweia.2020.104442
https://doi.org/10.1007/s10546-020-00530-z
https://doi.org/10.1007/s10546-020-00530-z
http://www.harmo.org/Conferences/Proceedings/_Garmisch/publishedSections/PPT/1.10-Eichhorn.pdf
http://www.harmo.org/Conferences/Proceedings/_Garmisch/publishedSections/PPT/1.10-Eichhorn.pdf
https://doi.org/10.1007/s10546-015-0006-z
https://doi.org/10.1007/s10546-015-0006-z
https://doi.org/10.1007/s10546-006-9048-6
https://doi.org/10.1007/s10546-006-9048-6
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1007/s00500-019-04648-2
https://doi.org/10.1007/s00500-019-04648-2
https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
https://doi.org/10.5194/gmd-14-3317-2021
https://doi.org/10.5194/gmd-14-3317-2021
https://doi.org/10.1007/s10546-009-9403-5
https://doi.org/10.2467/mripapers.33.1
https://doi.org/10.1175/BAMS-87-12-1713
https://doi.org/10.1175/BAMS-87-12-1713
https://doi.org/10.1002/qj.49709741204
https://doi.org/10.1002/qj.49709741204
https://doi.org/10.1175/BAMS-D-18-0033.1
https://doi.org/10.1175/BAMS-D-18-0033.1


near-neutral atmospheric boundary layer. Bound.-Layer

Meteor., 136, 25–44, https://doi.org/10.1007/s10546-010-

9500-5.

Hutchins, N., and I. Marusic, 2007: Evidence of very long

meandering features in the logarithmic region of turbulent

boundary layers. J. Fluid Mech., 579, 1–28, https://doi.org/

10.1017/S0022112006003946.

Inagaki, A., and M. Kanda, 2008: Turbulent flow similarity over

an array of cubes in near-neutrally stratified atmospheric

flow. J. Fluid Mech., 615, 101–120, https://doi.org/10.1017/

S0022112008003765.

Kaimal, J. C., and J. A. Businger, 1963: A continuous wave sonic

anemometer-thermometer. J. Appl. Meteor., 2, 156–164,

https://doi.org/10.1175/1520-0450(1963)002,0156:ACWSAT.
2.0.CO;2.

——, and J. C. Wyngaard, 1990: The Kansas and Minnesota ex-

periments. Bound.-Layer Meteor., 50, 31–47, https://doi.org/

10.1007/BF00120517.

——, ——, D. Haugen, O. Coté, Y. Izumi, S. Caughey, and

C. Readings, 1976: Turbulence structure in the convective

boundary layer. J. Atmos. Sci., 33, 2152–2169, https://doi.org/

10.1175/1520-0469(1976)033,2152:TSITCB.2.0.CO;2.

Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara,

2007: Roughness lengths for momentum and heat derived

from outdoor urban scale models. J. Appl. Meteor. Climatol.,

46, 1067–1079, https://doi.org/10.1175/JAM2500.1.

——, A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, 2013:

A new aerodynamic parametrization for real urban surfaces.

Bound.-Layer Meteor., 148, 357–377, https://doi.org/10.1007/

s10546-013-9818-x.

Kastner-Klein, P., and M. W. Rotach, 2004: Mean flow and tur-

bulence characteristics in an urban roughness sublayer.

Bound.-LayerMeteor., 111, 55–84, https://doi.org/10.1023/B:

BOUN.0000010994.32240.b1.

Klein, P. M., and J. M. Galvez, 2015: Flow and turbulence char-

acteristics in a suburban street canyon. Environ. Fluid Mech.,

15, 419–438, https://doi.org/10.1007/s10652-014-9352-5.

Lellep, M., J. Prexl, M. Linkmann, and B. Eckhardt, 2020: Using

machine learning to predict extreme events in theHénonmap.

Chaos, 30, 013113, https://doi.org/10.1063/1.5121844.

Li, B., X. Zhang, and X. Zhang, 2020: Classifying wakes produced

by self-propelled fish-like swimmers using neural networks.

Theor. Appl. Mech. Lett., 10, 149–154, https://doi.org/10.1016/

j.taml.2020.01.010.

Lo, K. W., and K. Ngan, 2017: Characterizing ventilation and

exposure in street canyons using Lagrangian particles.

J. Appl. Meteor. Climatol., 56, 1177–1194, https://doi.org/

10.1175/JAMC-D-16-0168.1.

——, and ——, 2020: Multiscale parameterisation of passive scalars

via wavelet-based numerical homogenisation. Appl. Math.

Modell., 82, 217–234, https://doi.org/10.1016/j.apm.2020.01.018.

Macdonald, R., R.Griffiths, andD.Hall, 1998: An improvedmethod

for the estimation of surface roughness of obstacle arrays.

Atmos. Environ., 32, 1857–1864, https://doi.org/10.1016/S1352-

2310(97)00403-2.

MacKay, D. J. C., 2003: Information Theory, Inference, and

Learning Algorithms. Cambridge University Press, 628 pp.

Mahrt, L., and E. Bou-Zeid, 2020: Non-stationary boundary layers.

Bound.-Layer Meteor., 177, 189–204, https://doi.org/10.1007/

s10546-020-00533-w.

Maronga, B., and Coauthors, 2020a: Overview of the PALMmodel

system 6.0.Geosci. Model Dev., 13, 1335–1372, https://doi.org/

10.5194/gmd-13-1335-2020.

——, C. Knigge, and S. Raasch, 2020b: An improved surface

boundary condition for large-eddy simulations based on

Monin–Obukhov similarity theory: Evaluation and conse-

quences for grid convergence in neutral and stable conditions.

Bound.-Layer Meteor., 174, 297–325, https://doi.org/10.1007/

s10546-019-00485-w.

Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban

surface exchange parameterisation for mesoscale models.

Bound.-Layer Meteor., 104, 261–304, https://doi.org/10.1023/

A:1016099921195.

Menze, B.H., B.M.Kelm,R.Masuch,U.Himmelreich, P. Bachert,

W. Petrich, and F. A. Hamprecht, 2009: A comparison of

random forest and its Gini importance with standard chemo-

metric methods for the feature selection and classification of

spectral data. BMC Bioinf., 10, 213, https://doi.org/10.1186/

1471-2105-10-213.

Michioka, T., and A. Sato, 2012: Effect of incoming turbulent

structure on pollutant removal from two-dimensional street

canyon. Bound.-Layer Meteor., 145, 469–484, https://doi.org/

10.1007/s10546-012-9733-6.

——,H. Takimoto, H.Ono, andA. Sato, 2019: Large-eddy simulation

of the effects of wind-direction fluctuations on turbulent flow and

gas dispersion within a cubical canopy. Bound.-Layer Meteor.,

173, 243–262, https://doi.org/10.1007/s10546-019-00467-y.
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