
PHYSICAL REVIEW B 103, 064502 (2021)

Superfluid quantum criticality in liquid 3He in anisotropic aerogel
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In the novel superfluid polar phase realized in liquid 3He in highly anisotropic aerogels, a quantum transition
to the polar-distorted A (PdA) phase may occur at low but finite pressure Pc(0). It is shown that the nontrivial
quantum dynamics of the critical fluctuation of PdA order is induced by the presence of both columnar impurity
scattering leading to Anderson’s theorem for the polar phase and the line node of the quasiparticle gap in the
state, and that, in contrast to the situation of the normal to B-phase transition in isotropic aerogels, a weakly
divergent behavior of the compressibility appears in the quantum critical region close to Pc(0).
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I. INTRODUCTION

It has been found recently that the celebrated Anderson
theorem [1], which implies that the bulk properties of an
s-wave paired superfluid phase are insensitive to the impurity
strength, is satisfied in the p-wave polar superfluid phase [2,3]
of liquid 3He realized in highly anisotropic aerogels with a
structure consisting of columnar defects [4–6]. Consequently,
the normal to polar superfluid transition there has no quantum
critical point (QCP), and the polar phase is stabilized as the
high-temperature superfluid phase. In contrast, the A and B
phases appearing at lower temperatures there, referred to as
the polar-distorted A and B (PdA and PdB) phases [7], re-
spectively, are not protected by impurity scattering and are
pushed down to lower temperatures in the pressure (P) to
temperature (T ) phase diagram [6]. Then, we have a P to T
phase diagram in which a QCP of the polar to PdA second-
order transition line is present at a finite pressure Pc(0). This
situation, in which a QCP between the two superfluid phases
occurs, is exceptional in the context of Fermi superfluids, and
it is valuable to see how the present issue is different from the
normal to superfluid B QCP realized in liquid 3He in isotropic
aerogels [8–10].

In the present paper, the quantum fluctuation accompa-
nying the polar to PdA transition is examined both in the
fictitious clean limit and in the model of anisotropic aerogels
in the limit of columnar defects. It is found that, in the clean
limit, the line node of the quasiparticle energy gap in the
polar phase makes the dynamics of the nonpolar boson (i.e.,
collective) modes purely dissipative, just like the fluctuation
mode associated with the normal to B transition occurring
in isotropic aerogels. In contrast, in the realistic polar phase
stabilized by the columnar-like defects where Anderson’s the-
orem is satisfied, the corresponding dynamics of the PdA
critical fluctuation [11] in the zero-temperature limit becomes
an oscillating one multiplied by a logarithmic correction. We
show that this dynamics is reflected in the compressibility as
a divergent behavior like

√
lnT −1 in the close vicinity of the

quantum critical (QC) pressure Pc(0) in contrast to the non-
divergent behavior close to the normal to superfluid B QCP
occurring in the isotropic aerogels. Therefore, the present

result can be regarded as one of the characteristic properties
of the novel three-dimensional (3D) superfluid polar phase
realized in anisotropic aerogels.

The present paper is organized as follows. In Sec. II, the
dynamics of the PdA fluctuation is examined by assuming
that the polar to PdA transition occurs in a clean limit with
no impurity scattering. In Sec. III, the PdA fluctuation is
investigated in the case of columnar impurity scatterings well
describing the scatterings due to the real nematic aerogel.
In Secs. IV and V, a critical behavior occurring within the
polar superfluid phase due to the QC PdA fluctuation is dis-
cussed. In Sec. VI, the results obtained in the present paper
are summarized. Details of the fluctuation-renormalization are
explained in the Appendix.

II. QUANTUM CRITICAL DYNAMICS OF THE POLAR TO
PdA TRANSITION IN A CLEAN LIMIT

As usual, we start from the BCS Hamiltonian for the p-
wave-paired superfluid occurring in the Fermi liquid with an
isotropic Fermi surface. Throughout this manuscript, we work
in the weak-coupling approximation, and the strong coupling
effect is assumed to have already been included in the micro-
scopic model only as a small effect for stabilizing the PdA
phase rather than the PdB phase. Then, the partition function
describing the bulk properties and the possible superfluid tran-
sitions will be expressed as a functional integral over the order
parameter field Aμ, j , Z = ∫

DAμ, jDA∗
μ, j exp(−S ), where

S = 1

3|g|T
∑
q,ω

A∗
μ, jAμ, j − ln

〈
Ts exp �̂

〉
(1)

with

� = 1

2

∑
q,ω

∫
p

p̂ j

[
A∗

μ, j (q, ω)
∫ T −1

0
ds eiωs âp+,α (s)

× i(σ2σμ)α,β â−p−,β (s) + H.c.

]
. (2)

Here, |g| is the attractive interaction strength, T is the tem-
perature,

∫
p = ∫

d3 p/(2π )3, p̂ j = p j/pF ( j = 1, 2, 3), pF/h̄
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is the Fermi wave number, and ap,β (s) is the fermion op-
erator with momentum p, imaginary time s, and spin index
β. Furthermore, 〈· · ·〉 denotes the ensemble average on the
Hamiltonian expressing free fermions. Hereafter, the super-
fluid order-parameter field with the spin and orbital indices μ

and j will be expressed in a form composed of the mean field
polar order parameter �p = �p̂3 and the additional fluctua-
tion e(r) [11] of the PdA state,

Aμ, j (r) = δμ,2(δ j,3� + iδ j,1e(r)). (3)

The overall phase of e(r) is taken to be the same as that
of the polar order parameter �. Consequently, e(r) can be
regarded as a real field equivalent to an Ising spin ordering
[12]. Here, a sign-reversal of e(r) corresponds to a rever-
sal of the chirality of the Anderson-Brinkman-Morel (ABM)
pairing [13].

The Ginzburg-Landau (GL) action for the e-field can be
constructed as usual from S , and, up to O(e2), it takes the
form [14]

S (2) = S − Spolar (�) = 1

T

∑
q,ω

[
1

3|g| |e(q, ω)|2 − T
∑

ε

∫
p

p̂2
1

[
G(p+, ε + ω)G(−p−,−ε)|e(q, ω)|2

− 1

2

(
F (p+, ε + ω)F (−p−,−ε)e∗(q, ω)e∗(−q,−ω) + F†(p+, ε + ω)F†(−p−,−ε)e(q, ω)e(−q,−ω)

)]]
, (4)

where Spolar is the mean field free energy in the polar phase divided by T . The vertices p̂2
1 arise because the e-fluctuation is a

nonpolar Bose excitation in the polar phase.
To examine the dynamics of the PdA fluctuation, for the moment we focus on the terms composed of the Gor’kov Green’s

functions in Eq. (4). In the T → 0 limit, they are expressed by

TS (2)
G = −

∑
q,ω

∫
dε

2π

∫
p

p̂2
1

(−iε − ξ−)[i(ε + ω) − ξ+] + |�p|2
(ξ 2− + ε2 + |�p|2)[ξ 2+ + (ε + ω)2 + |�p|2]

|e(q, ω)|2, (5)

where ξ± = [p2
± − p2

F]/(2m), p± = p ± q/2, and ε and ω are the fermion and boson Matsubara frequencies, respectively. To
focus on the frequency-dependent terms, just the q = 0 term of Eq. (5) will be considered in the remainder of this section. Using
the Feynman integral A−1B−1 = ∫ 1

0 dα[A(1 − α) + Bα]−2 and the replacement ε → ε − αω [15] and then integrating over ε

and ξ , the q = 0 term of Eq. (5) becomes

TS (2)
G = N (0)

8

∑
ω

∫ 1

−1
d p̂3

(
1 − p̂2

3

) ∫ 1

0
dα

(
ln

[
(1 − α2)ω2 + 4 p̂2

3

4xc

]
+ 2

ω2(1 − α2)

(1 − α2)ω2 + 4 p̂2
3

)
|e(0, ω)|2, (6)

where ω = ω/|�|, and xc is the upper cutoff of (ε2 + ξ 2)/�2. Further, by performing the α-integral, the ω-dependent contribu-
tion of S is found to become

δS (2)
G =

∑
ω

N (0)|ω|
8T

∫ 2/|ω|

0
dζ

1 − ω2ζ 2/4√
1 + ζ 2

ln

(√
1 + ζ 2 + 1√
1 + ζ 2 − 1

)
|e(0, ω)|2

= π2

16T

∑
ω

N (0)|ω|
|�|

[
1 − 4

π2

|ω|
|�| + O

(
ω2

|�|2
)]

|e(0, ω)|2. (7)

The |ω|-linear form in Eq. (7) indicates that the critical dy-
namics of the polar to PdA transition in the fictitious clean
limit is purely dissipative. This dissipative dynamics is in-
duced by the horizontal line node of the energy gap in the
polar phase.

Let us compare this result with those in other familiar
situations known so far. First, in the gapful B phase of the bulk
liquid 3He, the quantum dynamics of the collective modes is
of the ω2 form [15]. However, there is no QCP in the bulk
liquid 3He.

The present |ω| term is familiar in the quantum transi-
tion between the normal state and an unconventional Fermi
superfluid state such as a d-wave superconducting phase. In
liquid 3He in aerogels, such a situation occurs as the normal
to B-phase 3D transition in isotropic aerogels [8]. In this
case, however, this fluctuation dynamics does not lead to any
divergent behavior of a second derivative of the free energy,

which, in the present situation, is the compressibility (see
Sec. V).

III. QUANTUM CRITICAL DYNAMICS OF THE POLAR TO
PdA TRANSITION IN A NEMATIC AEROGEL

Now, let us turn to examining the quantum dynamics of
the critical fluctuation of the real polar to PdA transition in
an environment with elastic scatterings due to the anisotropic
aerogel. According to Ref. [6], we introduce the impurity
scattering term

Himp =
∫

r
ψ†

σ (r)u(r)ψσ (r) (8)

in the Hamiltonian. Regarding the random averaging over
u(r), the Fourier transform uk of u(r) is assumed to have zero
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mean and the mean-squared average

|uk|2 = 1

2πN (0)τ
w(k). (9)

The strong anisotropy of the scattering events due to the
columnar-like aerogel is incorporated in the momentum de-
pendence of w(k). According to the treatment in the standard
textbook [16], the impurity-averaged Gor’kov Green’s func-
tions are expressed as

G̃p(ε) = −iε̃p − ξ

ε̃2
p + ξ 2 + |�̃p|2

,

F̃†
p (ε) = −�̃∗

p

ε̃2
p + ξ 2 + |�̃p|2

, (10)

where ε̃p and �̃p satisfy [16]

iε̃p = iε − 1

2πN (0)τ

∫
q
w(p − q)Gq(ε),

�̃p = �p − 1

2πN (0)τ

∫
q
w(p − q)[F†

q (ε)]∗, (11)

respectively. One needs to specify the form of w(k) to proceed
to detailed calculations. In Ref. [6], it was understood that

the scattering events in the real nematic aerogels used in
experiments [2] are well approximated by the limit of strong
anisotropy [4]. Hence, for simplicity, we set hereafter

w∞(k) = πkFδ(kz ). (12)

Then, the resulting expressions of the quantities in Eq. (11)
take the same form as the corresponding ones in the s-wave-
paired Fermi superfluid [16], and they are given by ε̃ =
Ep(ε)ε/

√
ε2 + |�p|2 and �̃p = Ep(ε)�p/

√
ε2 + |�p|2, with

[6]

Ep(ε) =
√

ε2 + |�p|2 + π

4τ
. (13)

By noting that the pairing vertex p̂1 accompanying the PdA
order parameter e(q, ω), which is within the plane of the line
node of the polar energy gap, does not suffer from the impurity
vertex correction induced by w∞, it is straightforward to find
that the corresponding expression to Eq. (5) is given in the
present case by

S (2)
d,G = − 1

T

∑
q,ω

T
∑

ε

∫
p

p̂2
1

[
G̃(p+, ε + ω) G̃(−p−,−ε)|e(q, ω)|2

− 1

2
F̃ (p+, ε + ω) F̃ (−p−,−ε)e∗(q, ω)e∗(−q,−ω) − 1

2
F̃†(p+, ε + ω) F̃†(−p−,−ε)e(q, ω)e(−q,−ω)

]
, (14)

where F̃ (p, ε) = (F̃†(p,−ε))∗. Hereafter, the ω and q dependences will be considered separately. First, we focus on the
frequency dependences by setting q = 0. Then, by performing the ξ -integral, the q = 0 term of Eq. (14) is expressed at T = 0
in the form

TS (2)
d,G|q=0 = N (0)

∑
ω

C20(ω)|e(0, ω)|2, (15)

where

C20(ω) = −1

8

∫ 1

−1
d p̂3

(
1 − p̂2

3

) ∫
dε

1

Ep(ε) + Ep(ε + ω)

(
1 + ε(ε + ω) + |�p|2√

(ε2 + |�p|2)[(ε + ω)2 + |�p|2]

)
. (16)

To make the ensuing analytical treatment tractable, we focus on the low-energy behavior of the above expression, which is
obtained by replacing the prefactor 1/[E (ε) + E (ε + ω)] in the integrand by 2τ/π [see Eq. (13)]. Expecting a nontrivial
frequency dependence associated with the gap node to occur and replacing the upper limit of | p̂3| with infinity, the ω dependence,
�C20(ω) ≡ C20(ω) − C20(0), of Eq. (16) becomes

�C20(ω) 	 τ |�|
4

∫ sc

0
ds

(
2

π

4s − ω2

4s + ω2 K (k) − 1

)
= τ

8|�|ω
2

[
ln

( |�|
|ω|

)
+ lns1/2

c + 1.385

]
, (17)

where k = 4s1/2|ω|/(4s + ω2), sc is the upper cutoff of p̂2
3 + (ε/�)2, and K (k) is the complete elliptic integral of the first kind.

In Fig. 1, the approximated form (17) of the frequency dependence of the coefficient of |e(0, ω)|2 in Eq. (14) is compared
with the numerical results of the full expression, Eq. (16), for the two values of the impurity strength 1/(τ |�|). It is clearly seen
that the exact frequency dependence is well approximated by that of the low-energy expression Eq. (17) for lower ω values, and
that the range of ω in which the low-energy expression is valid becomes wider for dirtier cases.
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In contrast to the frequency terms, the gradient terms are not significantly affected by the gap nodes, and they are obtained
from

δS (2)
d,G

∣∣
ω=0 =

∑
q

∫
dε

2πT

∫
p

p̂2
1

[
ε̃2 + ξ 2 + |�̃p|2(

ξ 2 + E2
p

) − (iε̃ − ξ+)(−iε̃ − ξ−) + |�̃p|2(
ξ 2 + E2

p+

)(
ξ 2 + E2

p−

) ]
|e(q, 0)|2

= N (0)

8T

∑
q

〈
p̂2

1

∫
dε

(v · q)2

E3
p

〉
p̂

|e(q, 0)|2. (18)

Here, 〈· · ·〉p̂ denotes the average over the p-direction.
Although the bulk properties are τ -independent [4,6] in the

present strongly anisotropic limit, the gradient terms are τ -
dependent. Previously, it has been pointed out that, close to a
normal to p-wave superfluid transition in an environment with
elastic impurity scatterings, the gradient term close to zero
temperature is accompanied by a logarithmically divergent
correction [17,18] as a consequence of the impurity-induced
pairing vertex correction. In the present case of the transition
to another superfluid phase in the polar superfluid phase, such

(b)

(a)

FIG. 1. (a) Resulting ω (≡ |ω|/|�|) vs �C20(ω) [≡ C20(ω) −
C20(0)] curves for τ |�| = 7.85. Data directly follow from Eq. (16),
while the solid curve is the corresponding result of Eq. (17). (b) Cor-
responding results for τ |�| = 0.785. We note that, according to
Ref. [6], the experimental phase diagram is explained by using the
value of τ |�| of order unity (see also the discussion related to Fig. 2).
The figures indicate that the frequency range over which Eq. (17) is
valid is wider than in the case (a).

a vertex correction is absent, and hence no nonanalytic cor-
rection arises in the gradient terms.

The resulting gradient terms generally take the form

δS (2)
d,G

∣∣
ω=0 = N (0)

T
ξ 2

0

∑
q

ci jqiq j |e(q, 0)|2, (19)

where

ci j = 3c⊥δi j + ẑi ẑ j (c3 − 3c⊥) − 2l̂i l̂ jc⊥. (20)

Here, ξ0 = vF/|�|. Further, ẑ and l̂ are the directions of the
polar anisotropy and of the gap node in the resulting PdA
phase, respectively, and the inequalities c3 > 0 and c⊥ > 0 are
satisfied as stability conditions. Note that, in the present case
considering the amplitude fluctuation of the order parameter,
l̂ is assumed to be a constant vector as far as one restricts
oneself to the Gaussian fluctuation. A typical value of the
impurity strength 1/(τ |�|) in the polar phase in the nematic
aerogels has been suggested to be of order unity [6]. For
instance, the use of the value 1.10 of τ |�| leads to the values
of the coefficients c3 = 7.56 × 10−3 and c⊥ = 1.16 × 10−2.
The smallness of c3 is a reflection of the fact that the polar
gap |�p| is maximal along ẑ.

IV. GAUSSIAN FLUCTUATION AT ZERO TEMPERATURE

In this section, we will explain how the nonanalytic fre-
quency dependence of the PdA fluctuation in the polar phase
should be reflected in a physical quantity at zero temperature.
First, the results in the preceding section will be summarized.
We have shown that the Gaussian action of the PdA order
parameter fluctuation in the polar superfluid phase takes the
form

TS (2)
d = N (0)

∑
q,ω

[
cm(P) + |�|τ

8
ω2(|ln|ω|| + c2)

+ ξ 2
0 ci jqiq j

]
|e(q, ω)|2, (21)

where c2 = lns1/2
c + 1.385 [see Eq. (17)], and

cm(P) = 1

N (0)

(
1

3g
− T

∑
ε

∫
p

1 − p̂2
3

2

ε̃2 + ξ 2 + |�̃p|2[
ξ 2 + E2

p (ε)
]2

)
.

(22)
The pressure dependence of the coefficient cm of the mass
term has been evaluated in Ref. [6] in terms of the pressure de-
pendence of the superfluid transition temperature of the bulk
liquid 3He, and it takes the form cm = C[Pc(0) − P]/Pc(0)
near the QC pressure Pc(0), where the coefficient C depend
weakly on the impurity strength τ |�| and is about 0.18.
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The τ -dependence of Pc(0) can be seen through Fig. 3 in
Ref. [6]. It is found that, in the limit of strong anisotropy,
a positive Pc(0) appears in (2πτ )−1 > 0.45 (mK), although
the PdA phase itself is lost for stronger disorder (2πτ )−1 >

1.1 (mK).
The parameter c2 grows with decreasing |�|τ . In contrast,

as the impurity scattering is significantly reduced, the sign
of c2 becomes negative. This negative c2 is also reflected in
the solid curves in Fig. 1 and is a vestige of the negative
coefficient of the ω2 term in the clean limit [see Eq. (7)].

As a physical quantity measurable in liquid 3He and show-
ing the critical behavior at low temperatures, we study here
the compressibility

κ = − 1

n2V

∂2F

∂μ2
, (23)

where n is the particle density of liquid 3He, V is the volume,
μ is the chemical potential, and F is the total free energy.
By replacing μ by the pressure P and using the fact that,
near Pc, the P-dependence of κ due to the PdA-fluctuation
is dominated by that of the mass term cm in Eq. (22), the
resulting fluctuation contribution κfl to κ is expressed as

κfl = T

( C
n Pc

∂P

∂μ

∣∣∣∣
Pc

)2 ∑
ω

∫
q

1[
cm + �C20(ω) + ξ 2

0 ci jqiq j
]2 .

(24)
At zero temperature, this expression can be rewritten as

κfl =
( C

nPc

∂P

∂μ

∣∣∣∣
Pc

)2 |�|
2πc⊥ξ 3

0

√
2

3c3τ |�| I (x; c2), (25)

where

I (x; c2) =
∫ ωc

0

dω

2π

1√
x + ω2(lnω−1 + c2)

(26)

and

x = 8C
τ |�|

(
1 − P

Pc

)
. (27)

Examples of the numerically computed I (x) are plotted in
Fig. 2 for the two values of c2. Our knowledge of a realistic
c2-value is based on our previous study of the P-T phase
diagram [6]. The impurity strength 1/(2πτ ) = 0.7 (mK) used
in Ref. [6] (see Fig. 3 in that reference) to qualitatively ex-
plain the experimental phase diagram in the nematic aerogels
[2] corresponds to the value 1.1 of the normalized impurity
strength τ |�|, or equivalently to the value c2 = 0.6. Through
the form of the ω-integral in I (x), it is generally expected that,
far from the QCP at which x = 0, I (x) behaves like ln|x|−1,
which is merely the corresponding behavior of the z = 1 3D
GL model at zero temperature, where z is the dynamical
critical exponent [19,20]. In other words, the ln correction in
�C20(ω) is ineffective far from the x = 0 point. On the other
hand, the ln|ω| correction will change the behavior of I (x)
to the

√|ln|x|| form closer to x = 0. The results presented in
Figs. 2 and 3 justify this expectation.

We note that the above-mentioned value c2 = 0.6 is in the
intermediate range of the two values in Fig. 2, and that the
coefficient 8C/(τ |�|) is of order unity when c2 = 0.6. By

FIG. 2. Computed I (x; c2) curves for a moderately impure case
with c2 = 1.0 [upper two figures (a) and (b)] and for a less impure
case with c2 = −1.0 [lower two figures (c) and (d)]. Each solid curve
is the

√|ln|x|| curve best-fitted to the numerical data (symbols) of
I (x; c2) for each case. To improve the convergence, the frequency
cutoff ωc has been changed for the two cases and was chosen to be
1.0 for (a) and (b) and to be 0.1 for (c) and (d). In both cases, at low
enough x, the

√|ln|x|| behavior is well satisfied.

combining this fact with the curves in Fig. 2, one can expect
the

√|ln(Pc − P)| behavior close to Pc and the crossover to
the |ln(Pc − P)| behavior at lower P of the compressibility κ

to be visible experimentally as a fluctuation-induced enhance-
ment of κfl at low enough temperatures and at slightly lower
pressures than Pc.

V. QUANTUM CRITICAL REGION AT
FINITE TEMPERATURES

As indicated in the preceding section, the nature of the
superfluid fluctuation occurring in the polar phase is closer

FIG. 3. The curve of the computed I (x; 1.0) in Fig. 2 extended
over larger x-values. The data (symbols) nicely obey the |ln|x||
form (the solid curve), implying that the ln|ω| correction in �C20

is ineffective, so that the ordinary z = 1 3D GL action is valid, in the
range 0.1 < x < 1.0.
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to that of the z = 1 3D GL type rather than the z = 2 3D GL
one in the case of the purely dissipative dynamics discussed
in Sec. II. Thus, the QCP of the polar to PdA transition in
the nematic aerogel should show a stronger fluctuation effect
than that of the normal to superfluid B transition in isotropic
aerogels. On the other hand, the z = 1 3D system at zero
temperature belongs to that at the upper critical dimension so
that the genuine critical width of the pressure is negligibly
narrow. Nevertheless, at nonzero temperatures, the quantum
fluctuation behavior is visible in the so-called quantum critical
region, i.e., in the close vicinity of P = Pc(0), reflecting the
temperature dependence of the correlation length ξcr [20].
Below, we show that, in the present case of the polar to PdA
transition, the temperature dependence of ξcr at low enough
T is determined by the mode-coupling, i.e., the interaction
between the fluctuations.

To do this, the mode-coupling term

TSint = N (0)u
∫

r

∑
ω1,ω2,ω3

e−ω1 (r)e−ω2 (r)

× eω3 (r)eω1+ω2−ω3 (r) (28)

will be added to the Gaussian term, Eq. (21). The coeffi-
cient u is positive because the polar to PdA transition is
of second order, as is already known through the previous
studies [3]. By treating Sint in the Hartree approximation,
the resulting self-energy correction � will be incorporated in
the fluctuation propagator D(q, ω) in the form of the renor-
malization of cm. That is, D(q, ω) is given by 1/{2[c(R)

m +
�C20(ω) + ξ 2

0 ci jqiq j]}, where the renormalized mass c(R)
m is

defined through

c(R)
m = cm + �,

� = uT
∑

ω

∫
q
D(q, ω), (29)

where u = u/N (0).
Before examining c(R)

m in detail, one needs to know the T -
dependence of the bare mass cm, which can be found in terms
of the standard technique on the analytic continuation [14,16].
By replacing the first term in Eq. (22) by πT

∑
ε |ε|−1 at

T = Tc0(P), where Tc0(P) is the superfluid transition tempera-
ture of the bulk liquid, cm is expressed by c(MF)

m (0) + δcm(T ),
where

c(MF)
m (0) = 1

3

∫ �

0

dε

ε
tanh

(
ε

2Tc0

)

−
∫ 1

0
d p̂3

1 − p̂2
3

2

∫ �

|�p|
dε

√
ε2 − |�p|2

ε2 − |�p|2 + (π/4τ )2
,

δcm(T ) =
∫ 1

0
d p̂3

1 − p̂2
3

2

∫ ∞

|�p|
dε

√
ε2 − |�p|2

ε2 − |�p|2 + (π/4τ )2

× [exp(ε/T ) + 1]−1. (30)

We have numerically checked that the T = 0 term c(MF)
m (0)

is independent of the upper energy cutoff � and takes the
value ln(|�|/Tc0)1/3 − 0.0213 when τ |�| = 1.1. On the other
hand, δcm is determined by the contribution from the polar
gap nodes at lower temperatures, and, by power counting, it is
found to be proportional to T 3.

Examining the mode-coupling term � can also be straight-
forwardly performed using the analytic continuation for the
fluctuation propagator D(q, ω). Details of its derivation will
be given in the Appendix. It is found that, at finite but low
enough temperatures, the renormalized mass c(R)

m at P = Pc(0)
is given by

c(R)
m = δcm(T ) + 16

u

|�|τ
(

T 2

|�|
)[

ln

( |�|
T

)]1/2

×
∫

q
|q̃|−1 fB(|q̃|), (31)

where fB(x) = 1/[exp(x) − 1] is the Bose distribution func-
tion, and q̃2 = 8ξ 2

0 ci jqiq j/(|�|τ ). Since the mean field
term δcm ∝ T 3 is negligible at lower temperatures, the T -
dependence of c(R)

m at P = Pc(0) and thus of Pc(T ) close to
zero temperature is dominated by the mode-coupling term
proportional to T 2|lnT |1/2. Therefore, along the P = Pc(0)
line at nonzero temperatures, we have

ξcr (T ) 	 ξ0√
c(R)

m [P = Pc(0)]
	 (T |lnT |1/4)−1. (32)

By combining Eq. (32) with the content in the final two
paragraphs in Sec. IV, we expect that, at low enough temper-
atures under a fixed pressure in the close vicinity of Pc(0), κfl

behaves like

κfl

κn
∼ 10−4[1 − 0.6(T/Tc0)3]|ln(T/Tc0)|1/2, (33)

where we have replaced κ − κfl by the compressibility κn in
the normal phase by using the fact that, in the BCS Fermi
superfluid, the particle-hole symmetry is well satisfied so that
∂Tc0/∂μ is extremely small. In Eq. (33), the subdominant
ln|lnT −1| correction has been neglected. It should be noted
that the behavior (33) also arises from δcm(T ) without the
mode-coupling term included, so that it is not easy to identify
the contributions of the mode-coupling term through κ .

In deriving Eq. (33), we have used Eqs. (23) and (25) and
the typical values of c⊥, c3, and C mentioned in Secs. III
and IV together with the T 3 behavior of |�(T )| [6]. Further,
we have used kFξ0 = 102 and |�(0)|τ = 1.0 as their typical
values.

A schematic phase diagram to be expected from our anal-
ysis is drawn in Fig. 4. Equation (33) is valid in the hatched
region in Fig. 4, and, at higher temperatures, its |ln(T/Tc0)|1/2

factor is replaced by |ln(T/Tc0)| according to the results seen
in Figs. 2 and 3. Although Eq. (33) is small in magnitude
due to its numerical factor, we expect a deviation due to
the logarithmic increase from the saturated T 3 behavior of
|�(T )|/|�(0)| upon cooling to be accessible in experiments.

These features appearing close to the QC polar to PdA
transition are in contrast to the nondivergent behavior of the
compressibility near the normal to B QC pressure P(NB)

c in the
isotropic aerogel. In fact, it can be seen by replacing �C20

in Eq. (24) with |ω| that, along P = P(NB)
c and upon cooling

in the case, κfl results in a T -independent positive constant—
O(T 1/2).
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FIG. 4. Schematic phase diagram near the QC point Pc(0) of
the polar to PdA second-order transition curve Pc(T ) (thick red
solid curve). The thin solid curve and the blue solid curve de-
note the normal to polar second-order transition line and the PdA
to PdB first-order transition line, respectively. The dashed curves
imply the crossover lines on entering the thermal fluctuation re-
gion in P > Pc(T ) and the quantum disordered region in P < Pc(0),
which is typically expressed as 1 − P/Pc(0) ∼ 3.6(T/Tc0 )2. The di-
vergent quantum critical behavior of κ is expected to be seen on
cooling along the downward arrow. The behavior Eq. (33) or κ 	√|ln(Pc − P)| can be seen in the hatched region.

VI. CONCLUSION

In the present paper, we have focused on the quantum
critical (QC) behavior accompanying the second-order transi-
tion between the polar and polar-distorted A (PdA) superfluid
phases at zero temperature, which can occur in superfluid 3He
in nematic aerogels, as one of the properties characterizing
the novel superfluid polar phase [2,3]. It has been stressed that
the QC behavior of this transition occurring in the anisotropic
aerogel cannot be described correctly based on the model

in a clean limit with no impurity scattering effects. Further,
in contrast to the familiar normal to a superfluid quantum
transition with the purely diffusive critical dynamics in the
isotropic aerogel, the present quantum transition has the dy-
namics close to that of the z = 1 3D GL model, and we can
expect the resulting divergent quantum critical behavior of
the compressibility in the temperatures and pressure to be
experimentally accessible.

APPENDIX

Here, our derivation of Eq. (31) will be explained. Using
the spectral representation of the Green’s function D(q,�),
� in Eq. (29) is rewritten as

� = u|�|
∫

q

∫
0

d�

π
coth

(
�|�|
2T

)
ImDR(q,−i� + δ), (A1)

where δ is an infinitesimal positive constant, and DR is the
retarded Green’s function corresponding to D, and it takes
the form [DR(q,−i� + δ)]−1 = c(R)

m + ξ 2
0 ci jqiq j − γ (� +

iδ)2[ln|�|−1 + i sgn(�) π/2], where γ = |�|τ/8. The zero-
temperature contribution

�(0) = u|�|
∫

q

∫
0

d�

π
ImDR(q,−i� + δ), (A2)

which is positive, will be combined with the corresponding
mean field term c(MF)

m (0) [see Eq. (30)]. Then, the QCP pres-
sure Pc(0) is defined by c(MF)

m (0) + �(0) = 0. To see the T
dependence of

� − �(0) = 2u|�|
∫

q

∫
0

d�

π
fB(y) ImDR(q,−i� + δ),

(A3)
where y = �|�|/T , we note that, at low enough tempera-
tures, [T 2DR(q,−i� + δ)]−1 is approximated by T −2(c(R)

m +
ξ 2

0 ci jqiq j ) − (y + iδ)2|ln(T/|�|)|. Then, by integrating over
�, one finds that, at P = Pc(0), c(R)

m is given by expression
(31).
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