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Spin-triplet proton-neutron pair in spin-dipole excitations
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Background: Spin-triplet (S = 1) proton-neutron (pn) pairing in nuclei has been under debate. It is well known
that the dynamical pairing affects the nuclear matrix element of the Gamow-Teller (GT) transition and the double
β decay.
Purpose: We investigate the effect of the pn-pair interaction in the T = 0, S = 1 channel on the low-lying
spin-dipole (SD) transition. We then aim at clarifying the distinction of the role in between the SD and GT
transitions.
Method: We perform a three-body model calculation for the transition 80Ni → 80Cu, where 78Ni is taken as a
core. The strength of the pair interaction is varied to see the effect on the SD transition-strength distribution. To
fortify the finding obtained by the three-body model, we employ the nuclear energy-density functional method
for the SD transitions in several nuclei, where one can expect a strong effect.
Results: The effect of the S = 1 pn-pair interaction depends on the spatial overlap of the pn pair and the angular
momentum of the valence nucleons; the higher the angular momentum of the orbitals, the more significant the
effect.
Conclusions: The dynamical S = 1 pairing is effective even for SD states, although the spatial overlap of the pn
pair can be smaller than GT states. The SD transition involving high-� orbitals with the same principal quantum
number is strongly affected by the dynamical S = 1 pairing.
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I. INTRODUCTION

Pairing is a ubiquitous many-body correlation emerging
in various systems, including a nuclear system [1]. The su-
perfluidity or superconductivity is mostly understood by the
spin-singlet pairing [2]. New facets of the nuclear pairing
show up as a spatially correlated two-neutron in dilute and
weak-binding systems [3–10]. The spatial localization of two
neutrons has been confirmed experimentally [11,12]. Mean-
while, there has been an enduring discussion on another type
of exotic unconventional pairing in nuclei: the 3S1 correlation
of isoscalar (IS) proton-neutron (pn) pairs in N ≈ Z nuclei
[13]. The emergence of the S = 1 pn-pair condensation is still
controversial.

The fluctuation of the S = 1 pair field and its effect on the
observables has been discussed recently by investigating, e.g.,
the pn-pair transfer-type modes of excitation [14–16] and the
spin susceptibility [17]. Furthermore, it has been known that
the dynamical S = 1 pairing affects the low-lying Gamow-
Teller (GT) strengths in neutron-deficient nuclei [18–20] and
lowers the GT states in energy and thus shortens the β-decay
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half-lives of neutron-rich nuclei [21–24] including deformed
nuclei [25–27].

The effects of the S = 1 pair interaction on the GT transi-
tion strengths have been thoroughly studied in N = Z odd-odd
nuclei with a three-body model of two nucleons around a
spherical core [28–30]. A remarkable feature found in N = Z
odd-odd nuclei with an LS-closed core (4He, 16O, 40Ca) is the
appearance of the low-energy state with a strong GT strength.
A similar finding is obtained by employing a nuclear energy-
density functional (EDF) method [31]. The low-energy GT
states have been indeed identified experimentally in the tran-
sitions of 18O → 18F [32] and 42Ca → 42Sc [33,34].

The spin-dipole (SD) excitation is induced by the spin
operator, similarly to the GT excitation. To the best of the
authors’ knowledge, however, the effects of the S = 1 pair
interaction on the SD transition strengths have not been well
studied. The principal quantum numbers of the single-particle
orbital of a proton and a neutron differ by one unit contrary
to �N = 0 in the GT transition. Therefore, due to the imbal-
anced Fermi levels of neutrons and protons, the high-energy
first-forbidden β decay occurs in neutron-rich nuclei: −1h̄ω0

excitation [35]. The dynamical S = 1 pair interaction has been
considered for describing the SD excitation as well as the
GT excitation in the systematic calculations [36–39]. Thus,
it is necessary to investigate in details the role of the S = 1
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pair interaction in the forbidden transitions in order to gain a
deeper understanding of the β-decay properties and to be able
to make more accurate predictions, as well as to obtain a new
aspect of the S = 1 pairing.

Therefore, in this article, we are going to investigate the
role of the S = 1 pn-pair interaction in the SD transitions: how
much and in which nuclei the dynamical S = 1 pairing affects
the SD excitation. To this end, we employ a three-body model
to obtain an essential feature of the S = 1 pairing in the SD
excitation. To make what we find in the three-body model
analysis solid and secure, we further perform the nuclear
density-functional theory (DFT) calculation; a nuclear EDF
method is utilized, which is a theoretical model being capable
of handling nuclides with arbitrary mass numbers in a single
framework [40,41].

This paper is organized in the following way. Three-body
model analysis is performed in Sec. II, where the low-lying
SD 1− state in 80Cu is studied. Section III is devoted to the
discussion by employing the nuclear EDF method to fortify
the findings obtained by the three-body model calculation.
Then, a summary is given in Sec. IV.

II. THREE-BODY MODEL ANALYSIS

In this section, we employ the three-body model to make a
qualitative analysis on the effect of the S = 1 pn-pair interac-
tion on the low-lying SD 1− states. Based on the analytic form
of the matrix element of the S = 1 interaction, we discuss
the relation between the quantum numbers of single-particle
states involved in the transition and the gain of energy due to
the S = 1 interaction. Here, we take the 80Ni → 80Cu transi-
tion as a target of the investigation. The SD states with J = 0
and 1 appear lower than the GT states in energy in 80Cu, and
these negative-parity states play an important role in determin-
ing the β-decay half-life, as pointed out in Refs. [39,42].

A. Three-body model

The details of the model are described in Refs. [4,9,28].
We thus briefly recapitulate the basic equations relevant to the
present study. The Hamiltonian of the present model is given
as

H =
∑
i=1,2

[
p2

i

2m
+ VNc(ri )

]
+ 1

2

∑
i �= j

VNN (ri, r j ), (1)

where m is the mass of a nucleon, r = |r|, and the recoil
motion of the core is neglected. The potential between the
nucleon (N) and the core nucleus (c), VNc, is given by

VNc(r) =
[
V0 + Vlsr

2
0 (� · s)

1

r

d

dr

]
f (r) + VC (r) (2)

with f (r) = [1 + exp(r − R)/a]−1 and the Coulomb potential
VC (r) for a proton. The interaction between nucleons, VNN , is
given by

Vnn(r, r′) = vsPs[1 − xs f (r)]δ(r − r′), (3)

Vpn(r, r′) = vsPs[1 − xs f (r)]δ(r − r′)

+ vt Pt [1 − xt f (r)]δ(r − r′) (4)
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FIG. 1. Single-particle energies of the valence nucleons rel-
ative to the Fermi levels of the 78Ni core. Shown are the
proton single-particle states with the (a) original and (b) shifted
(−40 MeV) Woods-Saxon potentials, respectively, while the neu-
tron single-particle states are depicted in (c) and (d). The
shaded area represents the continuum region of neutron states.
Notice that the 2d3/2 and 3s1/2 states in case (d) are al-
most degenerate, which are located at 8.315 and 8.317 MeV,
respectively.

for neutron-neutron and proton–neutron, respectively, where
Ps and Pt is a projector onto the S = 0 and S = 1 two-nucleon
state, respectively.

B. Numerical procedures

The parameters of the Woods-Saxon potential are the stan-
dard one given in p. 239 of Ref. [43]. The Coulomb potential
for a proton is obtained for the uniform charge distribution
with the radius R. The single-particle states in the Woods-
Saxon potential are obtained in a spherical box of 30 fm. The
continuum states are then discretized. When diagonalizing the
Hamiltonian (1), the single-particle states are truncated with a
cut-off energy at 10 MeV, which is enough to cover a few
major shells above the Fermi level that are relevant to low-
lying states. The strength of the S = 0 pair interaction vs is set
as −500 MeV fm3 for the qualitative discussion. We note that,
with the present setup, the ground-state binding energy of the
three-body system 78Ni +2n is 4.0 MeV, which is comparable
to the estimated value of 4.5 MeV [44,45]. To see the effect
of the S = 1 pair interaction, vt is varied by multiplying a
factor fNN as vt = fNN × vs. The parameters xs and xt are
set as 0.5, corresponding to the so-called mixed-type pair
interaction.

Shown in Fig. 1 are the single-particle states near the Fermi
levels relevant to the discussion below.
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FIG. 2. (a) Calculated distributions for the SD 1− transition as
functions of the excitation energy with respect to the target nucleus.
The smearing parameter γ = 0.1 MeV is used. The result obtained
with fNN = 0, 1.0, and 1.7 is depicted by the dotted, dashed, and
solid lines, respectively. (b) Results obtained by changing the depth
of the WS potential by −40 MeV.

C. Low-lying SD states in 80Cu

We consider the response to the SD operator in the (p, n)
channel defined by

F J
K = 1√

2

∑
ss′tt ′

∫
drrψ†(rs′t ′)ψ (rst )

× 〈s′|[Y1 ⊗ σ]J
K |s〉〈t ′|τ−1|t〉, (5)

where σ and τ = (τ+1, τ0, τ−1) denote the spherical com-
ponents of the Pauli matrix of spin and isospin, and
ψ†(rst ), ψ (rst ) represent the nucleon field operators. The re-
duced transition probability is given as

B(SD, J; Ji → Jf ) = 1

2Ji + 1
|〈 f ||F J ||i〉|2. (6)

We show in Fig. 2(a) the calculated SD J = 1 transition
strengths in 80Ni → 80Cu. We found that the 1− state is
the lowest among the SD states. One can see a prominent
peak around ET = −12 MeV and several states with a small
transition strength. The prominent state corresponds to the
low-lying 1− state appearing at −11.5 MeV in the self-
consistent calculation based on the nuclear EDF method [42];
see Fig. 5(b) there. It is also noted that the present model

predicts a prominent GT state around ET = −3 MeV, which
is constructed mainly by the ν2d5/2 → π2d5/2 excitation.
This is compatible with the microscopic calculations [39,42],
where the GT state appears at ≈ −4.5 MeV. This correspon-
dence shows that the present three-body model describes well
the low-lying states in a nucleus with a spherical core plus
two valence nucleons. The 1− state around −12 MeV plays
a crucial role in the isotopic dependence of the β-decay half-
lives in the Ni isotopes [39,42]. We are thus going to look into
the microscopic structure of this 1− state.

The effect of the S = 1 pair interaction is investigated. To
this end, we vary the strength of the interaction. The result
obtained with fNN = 0, 1.0, and 1.7 is depicted by the dotted,
dashed, and solid lines, respectively, in the figure. With these
parameters, the calculated mass difference is 11.7, 11.9, and
12.1 MeV, respectively. These are comparable to the evaluated
value [44,45], 13.4 MeV. The role of the S = 1 pair interaction
depends on the state; the lowest-lying state is weakly affected
by the interaction compared with the second peak. Looking
into the details of these states, we try to understand the role of
the S = 1 pair interaction in the SD excitations.

The lowest and second peaks are constructed mainly by
the ν2d5/2 ⊗ π2p3/2 and ν2d5/2 ⊗ π1 f5/2 configurations, re-
spectively. The shift in the energy and the enhancement in
the transition strength are governed by the two-body matrix
element

〈a′b′, J|VS=1|ab, J〉 = Ra′b′ab × AJ
a′b′ab, (7)

R = vt

∫
dr

1

r2
[1 − xt f (r)]u∗

a′ (r)u∗
b′ (r)ua(r)ub(r), (8)

AJ = 1

8π
ĵa′ ĵb′ ĵa ĵb

[(
ja′ jb′ J
1
2

1
2 −1

)(
ja jb J
1
2

1
2 −1

)

+ δ�a′+�b′+J,oddδ�a+�b+J,odd(−1)�a′+�a+ jb′ − jb

×
(

ja′ jb′ J
1
2 − 1

2 0

)(
ja jb J
1
2 − 1

2 0

)]
, (9)

where ĵ = √
2 j + 1, and ua(r) is the radial wave function

of the single-particle orbital. The diagonal matrix element
(R × AJ ) of the ν2d5/2 ⊗ π2p3/2 and ν2d5/2 ⊗ π1 f5/2 config-
urations is −5.60 × 0.05 = −0.27 MeV and −3.60 × 0.12 =
−0.44 MeV, respectively in the case of fNN = 1.7. The dif-
ference in the diagonal matrix element accounts for a stronger
effect of the S = 1 pair interaction seen on the second peak.
The angular part AJ of the diagonal matrix element for Jπ =
1− reads

A1−
(� j>, (� − 1) j> ; � j>, (� − 1) j> ) = 1

8π

�(� + 1)

2� + 1
, (10a)

A1−
(� j<, (� − 1) j> ; � j<, (� − 1) j> ) = 1

2π

�3

(2� + 1)(2� − 1)
,

(10b)

A1−
(� j<, (� − 1) j< ; � j<, (� − 1) j< ) = 1

8π

�(� − 1)

2� − 1
, (10c)

where � j≷ denotes the orbital angular momentum satisfying

j = � ± 1
2 . The proton-neutron configuration involving the j>

and j< orbitals, Eq. (10b), have the largest matrix element
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as far as � of the configurations is the same. Thus, we see
a more substantial effect of the S = 1 pair interaction for
the ν2d5/2 ⊗ π1 f5/2 configuration though the spatial part R
is slightly smaller due to the difference in the number of
nodes. Notice that the spatial part is larger in the GT excitation
because the GT operator does not change the spatial structure,
and the angular part is as large as the SD excitations as given
in the Appendix, leading to a stronger effect of the S = 1 pair
interaction in the GT excitation.

Another feature seen in Eq. (10) is that the configuration in-
volving a high-� orbital acquires a large matrix element. Thus,
we can expect that the S = 1 pair interaction significantly
affects the configuration composed of the ν1g7/2 orbital. We
are going to investigate this in the following subsection.

D. Role of a high-� orbital

With the present parameters, the ν1g7/2 orbital is located
far above the Fermi level and embedded in the continuum
states. To see the role of this high-� orbital in the SD ex-
citations, we deepen the potential so that the ν1g7/2 orbital
appears near the Fermi level. The single-particle levels with
the shifted potential is also shown in Fig. 1.

Figure 2(b) shows the SD transition strengths. A prominent
state in low energies is constructed mainly by the ν1g7/2 ⊗
π1 f5/2 configuration. As expected, we see a strong effect
of the S = 1 pair interaction. Since the ν1g7/2 and π1 f5/2

orbitals have the same number of nodes, the spatial part is also
large. The second peak in Fig. 2(b) is also strongly affected
by the S = 1 pair interaction. This state is generated predom-
inantly by the ν2d5/2 ⊗ π1 f5/2 configuration, corresponding
to the second peak in Fig. 2(a).

III. DISCUSSION USING NUCLEAR DFT

We have found that the collective shift in the low-lying SD
states due to the residual interactions is mostly governed by
the diagonal matrix element. The larger the spatial and angular
parts of the matrix element, the more strongly the S = 1 pair
interaction affects the SD states. For a larger spatial overlap,
the orbitals should have the same number of nodes. High-�
orbitals acquire a large matrix element in the angular part.

Since the SD states are generated by not only the pair
interactions but the spin-isospin interactions discarded in the
model study above, we employ the nuclear density-functional
theory (DFT) as a realistic calculation and try to fortify the
finding obtained by the three-body model. Here we extend our
discussion to the SD 0− and 2− states.

A. Nuclear EDF method

We perform a self-consistent Kohn-Sham-Bogoliubov
(KSB) and the proton-neutron quasiparticle-random-phase
approximation (pnQRPA) calculation. The details of the cal-
culation scheme are found in Refs. [46] and [25,47] for the
KSB and pnQRPA, respectively. In brief, we solve the KSB
equation in the coordinate space using cylindrical coordinates
r = (ρ, z, φ) with a mesh size of �ρ = �z = 0.6 fm and
a box boundary condition at (ρmax, zmax) = (14.7, 14.4) fm.
The quasiparticle (qp) states are truncated according to the qp

energy cutoff at 60 MeV, and the qp states up to the magnetic
quantum number � = 23/2 with positive and negative parities
are included, with � being the z component of the angular mo-
mentum. We introduce the truncation for the two-quasiparticle
(2qp) configurations in the QRPA calculations, in terms of the
2qp energy as 60 MeV. For the normal (particle-hole) part of
the EDF, we employ the SGII functional [48]. For the pairing
(particle-particle, p-p) energy, we adopt the one in Ref. [49]
that depends on both the IS and IV densities, in addition to
the pair density, with the parameters given in Table III of
Ref. [49]. The same pairing EDF is employed for the S = 0
pn pairing in the pnQRPA calculation, while the linear term
in the IV density is dropped. The strength of the S = 1 pn-pair
interaction is varied by multiplying by a factor fNN . It is noted
that the calculation with a factor fNN = 1.0 describes well the
low-lying GT states in 18F and 42Sc [32–34]. Therefore, in the
present investigation, we discuss the effect of the S = 1 pair-
ing by setting fNN = 0 (without S = 1 pairing) and fNN = 1.0
(with S = 1 pairing). The SD transition matrix elements are
calculated as in Ref. [50].

B. SD 0− state in 132,134Nb

Among the SD excitations, the angular part of the diago-
nal matrix element is the largest in the J = 0 transition; see
Eq. (A2) in the Appendix. Therefore, we can expect a strong
effect of the S = 1 pair interaction to appear in the SD 0−
state involving such as ν1g7/2 ⊗ π1 f7/2 or ν1h9/2 ⊗ π1g9/2

configuration. They correspond to the neutron-rich regions
around Sc and Nb isotopes near the drip line. Since the neuron
1g7/2 orbital is located above the 2d5/2 orbital with the SGII
functional, 78Ca is a candidate for the study. However, we
find it unbound. Therefore, we are going to investigate the
neutron-rich Zr isotopes as an example.

The ground state of 132,134Zr is calculated to be spheri-
cal, though we have local minima at finite deformation. The
neutron occupation probability of the 1h9/2 orbital is 0.04
and 0.06 in 132Zr and 134Zr, respectively. Figure 3 shows the
SD 0− transition-strength distribution in the thus calculated
132,134Zr. The low-energy peak is predominantly constructed
by the ν1h9/2 ⊗ π1g9/2 configuration. Due to the repulsive
character of the spin-isospin residual interactions, the 2qp
excitation of ν1h9/2 ⊗ π1g9/2 is shifted higher in energy when
fNN = 0. However, a tiny difference between the QRPA en-
ergy and the unperturbed one indicates the weak collectivity
of the low-lying state at ET = −15.2(−16.0) MeV in 132Zr
(134Zr). The transition strengths in a low-energy region are
reduced due to the spin-isospin residual interactions, and they
are brought into the giant resonance.

Since the pairing matrix elements entering into the QRPA
equation are approximately proportional to uuuu or vvvv of
the Bardeen-Cooper-Schrieffer amplitude [51], the p-p type
or hole-hole type excitation acquires a large matrix element.
Therefore, the low-lying SD 0− state here is strongly affected
by the dynamical pair interaction. Indeed, the S = 1 pair in-
teraction lowers the energy and enhances the strength of the
SD 0− state, as predicted based on the finding above. We can
expect the β-decay rate in the Zr isotopes near the drip line is
sensitively determined by the S = 1 pair interaction through
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FIG. 3. Similar to Fig. 2 but obtained by employing the Skyrme-
KSB+pnQRPA with the SGII functional for the SD 0− transition in
132,134Zr → 132,134Nb. The results obtained with fNN = 0 and 1.0 are
depicted by the dashed and solid lines, respectively. Shown is also
the unperturbed strengths by the dotted line.

the first-forbidden transition because the positive-parity states,
involving the π1h11/2 orbital, show up in relatively higher ex-
citation energy. It should be noted that extracting the details of
nuclear-structure information from the β-decay rate with such
a high Qβ value requires a careful treatment of the Coulomb
potential [52].

C. SD 2− state in 120,122Sb and 68,70Cu

The SD 2− states appear in low energy widely in the
nuclear chart [53]. It has thus been investigated as a unique
first-forbidden β decay [21], and is proposed as a probe of
the physics beyond the standard model [54]. A neutron in-
truder orbital plays a decisive role in the occurrence of the
low-lying 2− state. From Eq. (A3c), we can expect a strong
effect of the S = 1 pair interaction for the configurations such
as ν1 f7/2 ⊗ π1d3/2, ν1g9/2 ⊗ π1 f5/2, ν1h11/2 ⊗ π1g7/2, and
ν1i13/2 ⊗ π1h9/2.

Around 120Sn, the ν1h11/2 and π1g7/2 orbitals are located
near the Fermi level. The neutron occupation probability of
the 1h11/2 orbital is calculated to be 0.28 (0.37) in 120Sn
(122Sn). Similarly, the ν1g9/2 and π1 f5/2 orbitals are placed
near the Fermi level around 68Ni. The neutron occupation
probability of the 1g9/2 orbital is 0.09 (0.23) in 68Ni (70Ni)
in the present calculation.

Figure 4 shows the calculated transition-strength distribu-
tion in 120,122Sn and 68,70Ni. The low-lying SD 2− state is
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FIG. 4. Same as Fig. 3 but for the SD 2− transition in 120,122Sn →
120,122Sb and 68,70Ni → 68,70Cu.

dominantly generated by a p-p type excitation of ν1h11/2 ⊗
π1g7/2 and ν1g9/2 ⊗ π1 f5/2 in 120,122Sn and 68,70Ni, respec-
tively. We can see the strongest effect in 68Ni among these
examples. This is because the 2qp excitation constructing the
SD 2− state is the most p-p type excitation; the amplitude
uuuu is the largest, giving a large diagonal matrix element.

IV. SUMMARY

We have investigated the effect of the pn-pair interaction
in the T = 0, S = 1 channel on the low-lying spin-dipole
(SD) transitions. We aimed at clarifying the distinction of the
role in between the SD and GT transitions. To this end, we
have performed a three-body model calculation for the tran-
sition 80Ni → 80Cu, where 80Ni = 78Ni +n + n and 80Cu =
78Ni +p + n. The strength of the S = 1 pn-pair interaction
was varied to see the effect on the SD transition-strength
distributions. The depth of the mean-field potential was also
changed to study the shell effect. The effect of the S = 1
pn-pair interaction depends on the spatial overlap of the pn
pair and the angular momentum of the valence nucleons. The
S = 1 pn-pair interaction in the SD excitations is active even if
the spatial overlap of the pn pair is weak, where the principal
quantum numbers of the single-particle orbital are different
by up to one unit, while only the �N = 0 excitation is al-
lowed for the GT transition. The effect of the S = 1 pn-pair
interaction on the SD transition is thus weaker than on the GT
transition.

To fortify the finding obtained by the three-body model
analysis, we have performed the nuclear DFT calculations. In
nuclei where the high-� orbitals are located close to the Fermi
level, we have found a strong effect of the S = 1 pn-pair inter-
action. In neutron-rich nuclei, the negative-parity states appear
in low energies and thus the β-decay rate can be sensitive to
the S = 1 pn-pair interaction, similarly for the GT transition.
A careful analysis of the forbidden β decay is thus needed.
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APPENDIX: ANGULAR PART OF DIAGONAL
MATRIX ELEMENT

We summarize here the angular part (9) of the diagonal
matrix element of the S = 1 pair interaction (4). For the GT
operator, we have

A1+
(� j>, � j> ; � j>, � j> ) = 1

4π

(� + 1)[2(� + 1)2 + 1]

(2� + 3)(2� + 1)
,

(A1a)

A1+
(� j>, � j< ; � j>, � j< ) = 1

8π

3�(� + 1)

2� + 1
, (A1b)

A1+
(� j<, � j< ; � j<, � j< ) = 1

4π

�(2�2 + 1)

(2� + 1)(2� − 1)
. (A1c)

For the SD operators, we have

A0−
(� j<, (� − 1) j> ; � j<, (� − 1) j> ) = �

4π
(A2)

and

A2−
(� j>, (� − 1) j> ; � j>, (� − 1) j> )

= 1

8π

[(2� + 1)2 + 6](� + 1)�

(2� + 3)(2� + 1)(2� − 1)
, (A3a)

A2−
(� j<, (� − 1) j> ; � j<, (� − 1) j> )

= 1

4π

�(� + 1)(� − 1)

(2� + 1)(2� − 1)
, (A3b)

A2−
(� j>, (� − 1) j< ; � j>, (� − 1) j< )

= 1

8π

5�(� + 1)(� − 1)

(2� + 1)(2� − 1)
, (A3c)

A2−
(� j<, (� − 1) j< ; � j<, (� − 1) j< )

= 1

8π

[(2� − 1)2 + 6]�(� − 1)

(2� + 1)(2� − 1)(2� − 3)
(A3d)

for J = 0 and J = 2, respectively.
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