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Background: Giant resonance (GR) is a typical collective mode of vibration. The deformation splitting of the
isovector (IV) giant dipole resonance is well established. However, the splitting of GRs with other multipolarities
is not well understood.
Purpose: I explore the IV monopole and quadrupole excitations and attempt to obtain the generic features of IV
giant resonances in deformed nuclei by investigating the neutral and charge-exchange channels simultaneously.
Method: I employ a nuclear energy-density functional (EDF) method: the Skyrme-Kohn-Sham-Bogoliubov and
the quasiparticle random-phase approximation are used to describe the ground state and the transition to excited
states.
Results: I find the concentration of the monopole strengths in the energy region of the isobaric analog or Gamow-
Teller resonance irrespective of nuclear deformation, and the appearance of a high-energy giant resonance
composed of the particle-hole configurations of 2h̄ω0 excitation. Splitting of the distribution of the strength
occurs in the giant monopole and quadrupole resonances due to deformation. The lower K states of quadrupole
resonances appear lower in energy and possess the enhanced strengths in the prolate configuration, and vice
versa in the oblate configuration, while the energy ordering depending on K is not clear for the J = 1 and J = 2
spin-quadrupole resonances.
Conclusions: The deformation splitting occurs generally in the giant monopole and quadrupole resonances.
The K dependence of the quadrupole transition strengths is largely understood by the anisotropy of density
distribution.
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I. INTRODUCTION

The response of a nucleus to an external field induces vari-
ous modes of excitation, reflecting many-nucleon correlations
and internucleon interactions in the nuclear medium. Since
the external fields are classified by quantum numbers, the
collective modes of motion are selectively excited [1]; the
nuclear response is characterized by the transferred angular
momentum �L, spin �S, isospin �T , and particle number
�N .

The isovector (IV) giant dipole resonance (GDR) repre-
sented as �L = 1,�S = 0,�T = 1,�N = 0 is one of the
well studied collective vibrational modes of excitation among
various types of giant resonance (GR) [2]. The GDR is an
oscillation of protons against neutrons represented as �Tz = 0
and can be seen in a wider perspective when it is considered
as a single component �Tz = 0 of the isovector (IV) dipole
modes [3–6]. The additional components �Tz = ±1 repre-
sent the charge-exchange modes. In addition to the Coulomb
potential, with the presence of excess neutrons, i.e., defor-
mation in isospin space, the IV strengths reveal the splitting
for �Tz = 0,±1 [3]. The charge-exchange excitations have
attracted interest not only because they reflect the isospin and
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spin-isospin character of a nucleus but because they have a
relevance for nuclear β decay, thus connecting strong and
weak interactions [7]. However, there has been little study of
the giant multipole resonances other than the dipole, isobaric
analog (IAR), and Gamow-Teller (GTR) resonances [1].

Extensive theoretical works in Refs. [4–6] opened up an
avenue of the study for the IV multipole excitations other
than �L = 1. Nowadays, not only light-ion but heavy-ion
charge-exchange reactions have become an effective probe
for investigating the multipole excitations, which, using nu-
cleonic probes, are difficult to study [8]. Recent experimental
progress has enabled precise measurements of the electric
quadrupole resonance [9] and leads to the understanding of the
nuclear symmetry energy [10]. Although the IV GRs provide
useful insight into the symmetry energy, the isoscalar (IS)
part is in some cases dominant in the inelastic scattering
reactions with �Tz = 0. Since the IS component is absent
in the �Tz = ±1 channels, a detailed investigation of the
charge-exchange GRs would give an additional constraint on
the symmetry energy. The anti-analog GDR is an example
[11–16]. Furthermore, to investigate the isospin structure of
the excitation modes, such as the pygmy dipole resonance, a
comparative study in the �Tz = 0 and −1 channels has been
carried out in Refs. [17,18]. However, most of the theoretical
studies have been restricted to spherical nuclei except for
some attempts in Refs. [19–25] for the �Tz = 0 channel.
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The nuclear shape deformation brings about a characteris-
tic feature in the GRs; peak splitting of the GDR, which is
caused by the different frequencies of oscillation along the
long and short axes, has been observed in experiments [2].
The splitting of the distribution of the strengths has also been
investigated in the IS giant multipole resonances represented
as �T = 0, which is another branch of the GRs [1]. For the
monopole �L = 0 resonance, the spitting is due to the cou-
pling to the �Lz = 0 component of the quadrupole �L = 2
resonance [26], which manifests the breaking of the rotational
symmetry in the intrinsic frame.

The present work aims to provide a consistent and sys-
tematic description of all three modes �Tz = 0,±1 of IV
excitations for both electric �S = 0 and magnetic �S = 1
types in a single framework, and to study the spitting of the
distribution of the strengths according to �Tz and �Lz or �Jz

associated with deformation in isospin space and real space.
Thus, I consider open-shell nuclei where the nuclear defor-
mation occurs in the ground state after demonstrating that the
present framework describes the IV responses in spherical nu-
clei. I use a nuclear energy-density-functional (EDF) method:
a theoretical model being capable of handling nuclides with
arbitrary mass numbers [27,28],

This paper is organized in the following way: the the-
oretical framework for describing the nuclear responses is
given in Sec. II and the details of the numerical procedures
are also given; Sec. III is devoted to the numerical results
and discussion based on the model calculation; non-spin-flip
electric-type excitations and spin-flip magnetic-type excita-
tions are discussed in Secs. III A and III B, respectively; then,
a summary is given in Sec. IV.

II. THEORETICAL MODEL

A. Kohn-Sham-Bogoliubov and quasiparticle random-phase
approximation calculations

Since the details of the formalism can be found in
Refs. [21,29–31], here I briefly recapitulate the basic equa-
tions relevant to the present study. In the framework of the
nuclear EDF method I employ, the ground state of a mother
(target) nucleus is described by solving the Kohn-Sham-
Bogoliubov (KSB) equation [32]:

∑
s′

[
hq

ss′ (r) − λqδss′ h̃q
ss′ (r)

h̃q
ss′ (r) −hq

ss′ (r) + λqδss′

][
ϕ

q
1,α (rs′)

ϕ
q
2,α (rs′)

]

= Eα

[
ϕ

q
1,α (rs)

ϕ
q
2,α (rs)

]
, (1)

where the single-particle and pair Hamiltonians, hq
ss′ (r) and

h̃q
ss′ (r), are given by the functional derivative of the EDF with

respect to the particle density and the pair density, respec-
tively. An explicit expression of the Hamiltonians is found
in the Appendix of Ref. [33]. The superscript q denotes ν

(neutron, tz = 1/2) or π (proton, tz = −1/2). The average
particle number is fixed at the desired value by adjusting the
chemical potential λq. Assuming the system is axially sym-
metric, the KSB equation (1) is block diagonalized according

to the quantum number �, the z component of the angular
momentum.

The excited states |i〉 are described as one-phonon excita-
tions built on the ground state |0〉 of the mother nucleus as

|i〉 = �̂
†
i |0〉, (2)

�̂
†
i =

∑
αβ

{
X i

αβ â†
α â†

β − Y i
αβ âβ̄ âᾱ

}
, (3)

where â† and â are the quasiparticle (qp) creation and anni-
hilation operators that are defined in terms of the solutions
of the KSB equation (1) with the Bogoliubov transformation.
The phonon states, the amplitudes X i,Y i and the vibrational
frequency ωi, are obtained in the quasiparticle random-
phase approximation (QRPA): the linearized time-dependent
density-functional theory for superfluid systems [28]. The
EDF gives the residual interactions entering into the QRPA
equation. For the axially symmetric nuclei, the QRPA equa-
tion is block diagonalized according to the quantum number
K = �α + �β .

B. Numerical procedures

I solve the KSB equation in the coordinate space using
cylindrical coordinates r = (
, z, φ). Since I assume further
the reflection symmetry, only the region of z � 0 is consid-
ered. I use a two-dimensional lattice mesh with 
i = (i −
1/2)h, z j = ( j − 1)h (i, j = 1, 2, . . . ) with a mesh size of
h = 0.6 fm and 25 points for each direction. The qp states are
truncated according to the qp energy cutoff at 60 MeV, and
the qp states up to the magnetic quantum number � = 23/2
with positive and negative parities are included. I introduce the
truncation for the two-quasiparticle (2qp) configurations in the
QRPA calculations, in terms of the 2qp energy as 70 MeV. The
calculated energy and transition strength of the low-lying and
giant resonance states are almost converged with respect to
the mesh size, the box size, and the energy cutoff [29], and are
compatible with the results obtained in different methodology
[22,34].

For the normal (particle-hole) part of the EDF, I employ
the SkM* functional [35]. For the pairing energy, I adopt the
so-called mixed-type interaction:

V q
pair (r, r′) = V0

[
1 − ρ(r)

2ρ0

]
δ(r − r′) (4)

with ρ0 = 0.16 fm−3, and ρ(r) being the isoscalar (matter)
particle density. I use the parameter V0 as fixed in the previous
studies: V0 = −275 MeV fm3 for the Mg and Si isotopes [36],
V0 = −240 MeV fm3 for the Ni, Zr, and Pb isotopes [20].
For the pairing energy of the Sm isotopes, I adopt the one
in Ref. [37] that depends on both the IS and IV densities, in
addition to the pair density, with the parameters given in Table
III of Ref. [37]. The same pair interaction is employed for the
dynamical pairing in the QRPA calculation and for the S = 0
and S = 1 proton-neutron pairing in the pnQRPA calculation,
while the linear term in the IV density is dropped. Note that
the pnQRPA calculations including the dynamic spin-triplet
pairing with more or less the same strength as the spin-singlet
pairing describe well the characteristic low-lying Gamow-
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FIG. 1. Transition strengths of the non-spin-flip excitations in the μ = −1 [(a), (d), (g)], μ = 0 [(b), (e), (h)], and μ = +1 channels [(c),
(f), (i)]. The Fermi (F), monopole (M), and quadrupole (Q) strengths are shown by the dotted, dashed, and long-dashed lines, respectively.
The quadrupole strengths are multiplied by 1/25 (1/35 for 208Bi, Pb, Tl). The excitation energies Ex are with respect to the ground state of the
daughter nucleus. Arrows indicate the experimental data for the excitation energy.

Teller strength distributions in the light N � Z nuclei [38–40],
and the β-decay half-lives of neutron-rich Ni isotopes [41].
Furthermore, the present theoretical framework describes well
the measured giant resonances in light, medium-heavy, and
heavy nuclei [21,36,42–48], and low-lying collective modes
of vibration [21,49–53].

C. Strength distribution

I investigate the nuclear responses by looking at the
transition-strength distribution:

Sμ
L (E ) =

∑
K

dB(E , FLKμ)

dE
, (5)

dB(E , FLKμ)

dE
= 2Eγ

π

∑
i

Ẽi|〈i|F̂ (e,m)
LKμ |0〉|2

(E2 − Ẽ2
i )2 + E2γ 2

, (6)

where Ẽ2
i = (h̄ωi )2 + γ 2/4 [3]. The operators F̂ (e,m) are de-

fined below. The smearing width γ is set to 2 MeV, which is
supposed to simulate the spreading effect, �↓, missing in the
QRPA. The escaping effect, �↑, is approximately taken into
account using the discretized continuum states in a box. Then,
the sum of strengths is defined as

mμ
L =

∫
dE Sμ

L (E ). (7)

III. RESULTS AND DISCUSSION

A. Electric modes: Non-spin-flip excitations

I consider the response to the IV operators defined by

F̂ (e)
LKμ = 1√

2

∑
ss′

∑
tt ′

∫
dr f (r)YLK (r̂)δss′ 〈t ′|τμ|t〉

× ψ̂†(rs′t ′)ψ̂ (rst ), (8)

where ψ̂†(rst ), ψ̂ (rst ) represent the nucleon field operators,
and 	τ = (τ+1, τ0, τ−1) denotes the spherical components of
the Pauli matrix of isospin. I take f (r) = √

4π for the Fermi
(F, L = 0) transition, while r2 for the monopole (M, L = 0)
and quadrupole (Q, L = 2) transitions.

1. Spherical nuclei

Before investigating deformed nuclei, I study the IV giant
resonances in some spherical nuclei, where the experimental
data are available. Figure 1 shows the transition-strength dis-
tributions in 60Ni, 90Zr, and 208Pb as an example of spherical
nuclei. For the charge-exchange modes of excitation, the ex-
citation energy with respect to the ground state of the mother
nucleus is evaluated by replacing E by E ± (λν − λπ ) for the
μ = ±1 channel [54]. Furthermore, in plotting the strength
distributions with respect to the ground state of the daughter
nucleus, the mass difference between the mother and daughter
is considered by using AME2020 [55,56]: the ground-state Q
value is −6.1 and −2.8 MeV in 60Cu and 60Co with respect
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TABLE I. Summed monopole and quadrupole strengths, and
comparison with the non-energy-weighted sum rule (NEWSR) val-
ues, given in units of fm4. 〈r4〉 for neutrons (protons) is 276 (257)
fm4, 444 (421) fm4, and 1284 (1114) fm4 in 60Ni, 90Zr, and 208Pb,
respectively. The summed monopole strengths excluding the strength
of the IAR are given in the parentheses.

m−1
L m+1

L m0
L m−1

L − m+1
L NEWSR

60Ni
L = 0 228.3 (107.1) 97.00 107.3 131.3 131.1
L = 2 1901 1242 1546 658.6 655.4

90Zr
L = 0 639.2 (202.2) 212.2 217.8 427.0 425.8
L = 2 4427 2289 3259 2138 2129

208Pb
L = 0 6210 (952.3) 599.6 1044 5610 5607
L = 2 33734 5681 16063 28053 28036

to 60Ni, −6.1 and −2.2 MeV in 90Nb and 90Y with respect to
90Zr, and −2.9 and −5.0 MeV in 208Bi and 208Tl with respect
to 208Pb.

A striking feature one sees in the μ = −1 channel is the
concentration of the monopole strength in the isobaric analog
resonance (IAR). I find 53%, 68%, and 85% of the total
strength in the IAR in 60Cu, 90Nb, and 208Bi, respectively, as
summarized in Table I. It is noted that the summed strengths
excluding the IAR are given in parentheses in Table I. A
similar trait was also found in the early investigation [4]. In
the high-frequency region, the peak energy of the monopole
resonance is higher than the quadrupole resonance. This is
also the case in the μ = 0 and μ = +1 channels. Furthermore,
the strengths are spread out over a wider energy region for the
monopole resonance; the width of the isovector giant monople
resonance (IVGMR) is larger than that of the isovector giant
quadrupole resonance (IVGQR).

Table I lists the summed strengths for the monopole and
quadrupole excitations. One can see that the present calcu-
lation satisfies the model-independent non-energy-weighted
sum rule for the charge-exchange modes [3]:

m−1
L − m+1

L

=
{

N − Z, F,
2L + 1

4π
(N〈r4〉ν − Z〈r4〉π ), M, Q,

(9)

where 〈r4〉ν(π ) stands for the expectation value evaluated for
neutrons (protons) in the ground state of the mother nucleus.
In these nuclei, m−1 is always larger than m+1 because 〈r4〉 for
neutrons is slightly larger than that for protons. The monopole
and quadrupole excitations are primarily built of a coherent
particle-hole configurations of 2h̄ω0 excitation, and the high-
frequency resonance is such a mode of excitation. However,
the 0h̄ω0 excitation can also be involved.

For the monopole excitations, the ν2p3/2 → π2p3/2 and
ν1g9/2 → π1g9/2 excitation generates the IAR of 60Ni and
90Zr, while the 0h̄ω0 excitation is strongly suppressed in the
μ = +1 channel due to the Pauli blocking. The summed
strength m−1 excluding the IAR has a value similar to m0 and

m+1. This indicates that the higher-energy monopole strengths
in the μ = −1 channel represent the 2h̄ω0 excitation. In 208Pb,
the summed strength m−1 excluding the IAR has a value
similar to m0. This again indicates that the higher-energy
monopole strengths in the μ = −1 channel correspond to
the 2h̄ω0 excitation. As mentioned above, the spreading ef-
fect is not included in the present framework. In Ref. [57],
the IV monopole resonance in 208Tl was investigated, taking
the coupling to the two-particle–two-hole configurations into
consideration. The distribution is composed of basically two
peaks, with the higher-energy resonance having a broad width.
The present calculation produces the excitation energy with a
qualitative agreement with the results of Ref. [57].

The quadrupole excitation is very complicated. In 60Ni,
the 1 f7/2 → 1 f5/2 excitation is available in all the channels.
The ν1p3/2 → π1p3/2 excitation participates in the low-lying
2+ excitation in the μ = −1 channel, and the 1p3/2 → 1p1/2

excitation further contributes to generate the 2+ excitation in
the μ = −1 and μ = 0 channels. Thus, the 2+ states appear
at low energy with the transition strengths dependent on μ.
In 90Zr, the 1g9/2 → 1g7/2 excitation generates the low-lying
2+ excitation in the μ = 0 and μ = −1 channel. Furthermore,
the ν1g9/2 → π1g9/2 excitation participates in the low-lying
2+ excitation in the μ = −1 channel. Therefore, one sees the
strengths at low energy, while there are no strengths in the
μ = +1 channel since the 0h̄ω0 excitation is not available.
In 208Pb, both 0h̄ω0 and 2h̄ω0 excitations generate the 2+
excitation in the μ = −1 channel, acquiring a large strength.
In the μ = 0 channel, the π1h11/2 → π1h9/2 and ν1i13/2 →
ν1i11/2 excitations as well as the 2h̄ω0 excitation generate the
2+ excitation. However, the 0h̄ω0 excitation is unavailable in
the μ = +1 channel. Therefore, the transition strengths in the
μ = +1 channel are smaller than in the other channels as in
the monopole case.

Here, I compare the calculated strength distributions with
the available experimental data. A systematic study of the
charge-exchange (π±, π0) reaction reveals the IVGMR in
medium-mass and heavy nuclei [58]: the excitation energy
of the IVGMR measured using the 208Pb(π+, π0) 208Bi re-
action is 37.2 ± 3.5 MeV, while Ex = 12.0 ± 2.8 MeV in
208Pb(π−, π0) 208Tl. The excitation energies in lighter nuclei
are Ex = 35.6 ± 2.8 and 25.2 ± 1.7 MeV for 60Cu and 60Co
and Ex = 34.6 ± 2.9 and 22.0 ± 2.0 MeV for 90Nb and 90Y.
The inelastic electron scattering experiment suggests the res-
onance around 33 MeV in 208Pb as the IVGMR [59], though
this is ≈5 MeV higher than the average of ET −1 and ET +1

obtained using the charge-exchange reaction. The nuclear re-
actions have also been employed to measure the IVGMR. The
Pb( 3He, t p)Bi reaction indicates the location of the IVGMR
or spin monopole resonance at 30−45 MeV with respect to
the ground state of Pb [60]. The IVGMR measured using the
( 7Li, 7Be) reaction is found at 20 ± 2 MeV in 60Co [61]. In
most cases, the present calculation describes well the location
of the IVGMR.

The IVGQR has been found around 130 × A−1/3 MeV
in the μ = 0 channel [1]. In 208Pb, the excitation energy is
20–23 MeV [9,62–64]. The IVGQR in 90Zr is located around
26–27 MeV [65,66]. The present calculation employing the
SkM* functional reproduces well these experimental data.
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FIG. 2. As in Fig. 1 but for the deformed 24Mg and 28Si nuclei.
Instead of showing the total strengths, those for each K component
are shown for the quadrupole excitations. The quadrupole strengths
are multiplied by 1/5.

The ( 13C, 13N) reaction has been employed to locate the
IVGQR in 60Co, and it is found at Ex = 20 ± 2 MeV [67]. The
calculation is in remarkable agreement with the experiment, as
shown in Fig. 1(c)

2. Deformation effects

I am going to investigate the deformation effects. Figure 2
shows the transition-strength distributions in 24Mg and 28Si
as an example of light deformed nuclei. As discussed in
Refs. [36,45–47], the ground state is prolately deformed and
oblately deformed with the deformation parameter β2 = 0.39
and −0.22 in 24Mg and 28Si, respectively. Since these nuclei
have the same number of protons and neutrons, the Fermi
transition strength is weak. A characteristic feature of these
N = Z nuclei is that the transition strength distributions in the
three channels are similar to each other. For the dipole case,
this characteristic trait has been discussed in Ref. [18]. With-
out the Coulomb potential, one cannot distinguish the motion
of protons and neutrons in N = Z nuclei, and the isotriplet
states degenerate. However, the Coulomb potential slightly
expands the proton distribution, which leads to the asymmetry,
as expected by the sum rule (9). A simple RPA analysis for a
single normal mode employing the separable interaction gives
the relation for the summed transition strengths as [3]

1

2
(m−1 + m+1) =

[
1 + O

(N − Z

A

)]
m0. (10)

In deformed nuclei, the K splitting occurs for the multi-
pole modes of excitation, and thus the sum rule (9) for the

TABLE II. As in Table I but for 24Mg and 28Si.

m−1
L m+1

L m0
L m−1

L − m+1
L NEWSR

24Mg
L = 0 23.27 29.25 26.20 −5.98 −6.01
L = 2, K = 0 86.94 95.77 91.40 −8.83 −8.93
L = 2, K = 1 80.47 87.56 84.32 −7.09 −7.18
L = 2, K = 2 45.32 48.68 47.04 −3.36 −3.39

28Si
L = 0 26.82 34.67 30.66 −7.84 −7.87
L = 2, K = 0 65.43 71.66 68.64 −6.23 −6.29
L = 2, K = 1 73.32 79.62 76.54 −6.30 −6.35
L = 2, K = 2 93.86 104.0 99.02 −10.12 −10.18

quadrupole excitation is generalized by replacing 〈r4〉 with

5

4
〈4z4 + ρ4 − 4ρ2z2〉,Q(K = 0),

15

2
〈ρ2z2〉,Q(K = ±1),

15

8
〈ρ4〉,Q(K = ±2), (11)

depending on the K quantum number. Table II summarizes the
summed strengths in 24Mg and 28Si, and the NEWSR values
taking the nuclear deformation into account (11). One finds
that in both nuclei the relation (10) holds accurately. It should
be noted that the relation (10) is model dependent. However,
the present self-consistent model satisfies the simple relation,
suggesting that the relation (10) is a rather general rule for the
IV excitations.

As mentioned above, the 24Mg and 28Si nuclei have differ-
ent shapes in the ground states: prolate deformation in 24Mg
and oblate deformation in 28Si. As a consequence of the pro-
late (oblate) deformation, distinctive features show up in the
quadrupole strength distributions at high energy. The K = 0
(K = 2) states move toward low energy and acquire more
considerable strengths in the prolately (oblately) deformed
configuration. Furthermore, the coupling to the K = 0 com-
ponent of the IVGQR brings about the resonance peak in the
IVGMR. These features are common to the IS excitation. The
enhancement of the K = 0 (K = 2) strengths in the prolate
(oblate) configuration, which is also seen in Table II, may
be understood by looking at the summed strengths (11):
a balance of the terms in Eq. (11) determines the relative
strengths. In a prolately (oblately) deformed state, 〈z4〉 in-
creases (decreases), while 〈ρ4〉 decreases (increases), though
the evaluation of 〈ρ2z2〉 requires a detail of the density distri-
bution.

In Ref. [68], the 28Si( 10Be, 10B∗) reaction has been em-
ployed to identify the IVGMR in a deformed nucleus. The
differential cross section displays a broad peak ranging from
10 to 30 MeV in 28Al. The present calculation reasonably
explains the measurement. However, it is not easy to find
unique features due to deformation as the strength distribution
is spread over a wide energy range.

The coupling between the GMR and the K = 0 component
of the GQR becomes strong in a strongly deformed nucleus,
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FIG. 3. Monopole strengths in the (a) μ = −1 channel and
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channel and (d) μ = +1 channel (shifted). The excitation energies
are with respect to the ground state of the target nuclei.

which has been investigated for the ISGMR in detail from
light to medium-heavy nuclei [26]. The deformation effect on
the coupling has also been investigated theoretically for the
IVGMR [20,21]: in the μ = 0 channel, the IVGMR shows
up at about 30 MeV and the IVGQR around 25 MeV in the
Nd and Sm isotopes; see Figs. 6(b) and 6(d) of Ref. [21]. In
154Sm, which is strongly deformed, a resonance peak appears
around 20 MeV and one finds clearly the splitting of the
monopole strengths [21]. Because the study in Ref. [21] is
restricted to the μ = 0 channel, I investigate the deformation
effect on the coupling in the μ = ±1 channels and to see if
the coupling between the GMR and the K = 0 component of
the GQR is a general feature emerging in deformed nuclei.

Figures 3(a) and 3(b) show the monopole strength distribu-
tions in the μ = −1 and μ = +1 channels of the Sm isotopes.
Here, the excitation energies are with respect to the ground
state of the targets: the Sm isotopes. The IARs are excluded in
plotting the strength distribution for the monopole strengths
in the μ = −1 channel, because most of the strengths are
found in the IAR. One sees that a lower-energy resonance
shows up around 30 MeV in 150,152,154Sm, while there appears
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FIG. 4. Fraction of the monopole strengths found in the peak
energy region of the K = 0 component of the quadrupole strength
distribution as a function of the quadrupole deformation parameter
in the deformed Sm isotopes with N = 86–92.

a resonance around 40–50 MeV in all the isotopes, which is
considered as a primal IVGMR. The SkM* functional pro-
duces the onset of quadrupole deformation in between N = 84
and 86, and the deformation gradually develops with an in-
crease in the neutron number [43]. A similar feature can be
seen in the μ = +1 channel: one sees a resonance around
20–25 MeV in all the Sm isotopes, and a prominent peak
appears in 152,154Sm at low energy ≈10−15 MeV. The K = 0
component of the IVGQR in these isotopes has a peak around
10–15 MeV, as shown in Fig. 3(d), where the lower-energy
resonance of the monopole strengths shows up.

The coupling is not only seen in the peak energy but
in the transition strengths. Figure 4 shows the fraction of
the monopole strengths found in the energy range [EK=0 −
2 MeV, EK=0 + 2 MeV], with EK=0 being the peak energy of
the K = 0 component of the quadrupole strength distribution.
The K = 0 component of the quadrupole strengths is shown
in Figs. 3(c) and 3(d). Since most of the monopole strengths
are concentrated in the IAR, a factor of 10 is multiplied in
plotting the fraction of the μ = −1 channel. The stronger the
ground-state deformation, the more enhanced the transition
strengths in the lower energy region. Thus, one finds that the
monopole resonance at low energy is strongly coupled with
the K = 0 component of the IVGQR in the well-deformed
isotopes.

The coupling is governed by the shell effect and/or the
residual interaction. To investigate their roles, I show in Fig. 5
the distributions of the monopole and the K = 0 component
of the quadrupole strengths in 154Sm. Here, the unperturbed
strengths are shown together with those obtained using the
QRPA. As already seen above, the lower-energy peak of the
monopole strength distribution appears at the peak energy of
the K = 0 component of the quadrupole strength distribution
in all the channels. One can see that the deformation-induced
coupling occurs at the mean-field level as a static effect. In
the μ = −1 channel, a two-humped structure appears in the
monopole strengths; the lower peak is located at the peak
energy of the K = 0 quadrupole strength distribution. Simi-
larly, the appearance of a small peak structure at low energy
≈9 MeV in the monopole strength distribution coincides with
the peak of the K = 0 quadrupole strength distribution in the
μ = +1 channel. In the μ = 0 channel, we have unperturbed
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strengths of neutrons and protons. The K = 0 quadrupole
strength distribution has a peak around 15 MeV both for
neutrons and protons, with the peak of protons appearing
slightly higher in energy than that of neutrons. Accordingly,
one sees a lower-energy peak in the monopole strength distri-
bution of neutrons and protons. The monopole and the K = 0
quadrupole peaks coincide in energy due to the static defor-
mation effect, where the total angular momentum J is not
a good quantum number but K is. The coexistence persists
after the residual interaction is applied, and appears as the
coupling between the monopole and the K = 0 component
of the quadrupole resonances. An additional reason for the
appearance of the lower-energy peak in the monopole strength
distribution is that the K = 0 quadrupole strength distribution
has a clear peak structure. If the K = 0 quadrupole strength
distribution were broadened, the lower-energy peak of the
monopole strength distribution could be washed out. This
brings about the difference between the electric and magnetic
monopole modes, as discussed below.

B. Magnetic modes: Spin-flip excitations

Here, I consider the response to the IV operators defined
by

F̂ (m)
JKμ = 1√

2

∑
ss′

∑
tt ′

∫
dr f (r)[YL ⊗ 	σ ]J

K〈t ′|τμ|t〉

× ψ̂†(rs′t ′)ψ̂ (rst ), (12)

where [YL ⊗ 	σ ]J
K = ∑

νν ′ 〈Lν1ν ′|JK〉YLν (r̂)〈s′|σν ′ |s〉 with the
spherical components of the Pauli spin matrix 	σ =
(σ+1, σ0, σ−1). I take f (r) = √

4π for the GT (L = 0) tran-
sition, while r2 for the monopole (L = 0) and quadrupole
(L = 2) transitions as in the electric cases. The J = 3 spin-
quadrupole (SQ) excitation in the μ = 0 channel corresponds
to the spin-M3 excitation apart from a factor. However, in
the present model, the quenching of the transition strength of

the magnetic (spin-flip) modes cannot be described because
the tensor force and the meson-exchange currents are not
considered.

Early extensive works on the spin monopole (SM) re-
sponses in Refs. [6,69] employing Skyrme EDFs revealed that
the coupling between the GT and SM states is strong and the
the excitation energy of the SM resonance (SMR) decreases
as the neutron excess in the μ = +1 channel. I investigate
these features in deformed nuclei. Before that, I study the SQ
excitations in some spherical nuclei.

1. Spin quadrupole excitations in spherical nuclei

Figure 6 shows the transition-strength distributions in 90Zr
and 208Pb as an example of spherical nuclei. As in the electric
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FIG. 6. As in Fig. 1 but for the spin quadrupole (SQ) strengths.
The J = 1, 2, and 3 states are depicted by the dotted, dashed, and
solid lines, respectively.
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|K| = 1 states, respectively.

cases, the μ dependence of the strength distribution is more
substantial with increasing excess neutrons. In 90Zr, the exci-
tations are mainly built of the 2h̄ω0 excitation: N = 3 → 5
and N = 2 → 4. Among them, the 1 f5/2 → 1h11/2 excitation
with J = 3 appears at low energy. In the μ = 0 and −1
channels, the 0h̄ω0 excitation is also possible to occur: the
particle-hole excitations from the ν1g9/2 orbital within the
N = 4 shell. Furthermore, the ν1g9/2 → π1g9/2 excitation
participates in forming the low-lying states in the μ = −1
channel. In 208Pb, the π2d3/2 → ν2g9/2 excitation with J = 3
and the π2d3/2 → ν3d5/2 and π1h11/2 → ν1 j15/2 excitations
generate the low energy states in the μ = +1 channel. In the
μ = 0 and −1 channels, the 0h̄ω0 excitation is also available:
the particle-hole excitations from the ν1i13/2 orbital in the
N = 6 shell. Furthermore, the ν1h11/2 → π1h11/2 excitation
participates in forming the low-lying states in the μ = −1
channel.

In these examples, one sees that the excitation energy of
J = 3 is the lowest and J = 1 the highest. This is already seen
in the unperturbed strength distributions and is consistent with
the finding in the early study [6]. This is partly because the
J = 3 states are constructed by the particle-hole excitation of
the orbitals with (� − 2) j< and � j> , whose unperturbed energy
is lowered by the spin-orbit interaction. This explanation is
similar to that quoted for the lowering of the J = 2 states of
the spin dipole excitations [70].

2. Deformation effects

I am going to investigate the deformation effects. Figure 7
shows the GT and SM transition-strength distributions in

24Mg and 28Si. The total strengths denoted by the solid lines
include the GT and SM transitions to both the J = 1 states
with K = 0 and those with K = ±1, while the dotted and
dashed lines depicting the K = 0 and |K| = 1 states, respec-
tively. A large fraction of the SM strengths is found at low
energy, where the GTR shows up. This characteristic feature
is found in spherical nuclei as well [6,69]. As in the electric
cases, the transition strength distributions in the three chan-
nels are similar to each other. Furthermore, the SM transition
strengths in the μ = +1 channel are enhanced because the
Coulomb potential slightly expands the proton distribution,
which leads to the asymmetry even in the N = Z nuclei.

The strength distributions for K = 0 and K = 1 are dif-
ferent since the ground state is deformed. However, the K
splitting does not show a “universal behavior” that the K =
0 states are shifted lower (higher) in energy in a prolately
(oblately) deformed nucleus. This is because the GT operator
does not change the spatial structure and the SM operator does
not depend on the spatial direction. Furthermore, the ground
state is time-even: 〈σν〉 = 0. The K splitting occurring in the
GT and SM excitations are due not to the collective deforma-
tion but to the underlying shell structure. In 24Mg, the K = 1
states appear lower in energy than the K = 0 states, although
the ground state is prolately deformed. The Fermi levels of
neutrons and protons are both located in between the [211]3/2
and [202]5/2 orbitals. The K = 1 state is mainly gener-
ated by the [211]3/2 → [202]5/2 and [211]3/2 → [211]1/2
excitations, while the K = 0 state is constructed, e.g., by
the [220]1/2 → [211]1/2 excitation, both of which are far
from the Fermi level. Thus, the K = 1 states appear lower
in energy.

I then investigate the SQ excitations. Since the SQ operator
involves the spherical harmonics Y2ν (r̂), the K dependence
can be attributed to nuclear deformation. However, the K
quantum number is composed of the z component of angular
momentum, reflecting the nuclear shape, and intrinsic spin;
it is not apparent one should expect a direct correspondence
between the K splitting and the nuclear deformation.

As discussed so far, the strength distributions in the μ = 0
and ±1 channels are similar to each other for the N = Z
light nuclei. Thus, I show in Fig. 8 the transition-strength
distribution in the μ = +1 channel only. One sees that the
distributions for each K are different. The K = 0 (K = 1)
strengths are enhanced in a prolately (oblately) deformed
nucleus for J = 1. A universal feature of the K splitting
can be seen for J = 3: the lower (higher)-K states appear
lower in energy and possess enhanced strengths in a prolately
(oblately) deformed nucleus. For J = 2, one sees that the
K = 2 strengths appear in a relatively higher (lower) energy
region in a prolately (oblately) deformed nucleus. However, it
is not easy to distinguish the strength distributions of the other
K for J = 2.

In the electric case, the K dependence of the transi-
tion strengths was evaluated qualitatively by looking at the
NEWSR values using Eq. (11). The NEWSR values for the
GT and SM excitations are the same as those assuming spher-
ical symmetry (9): the spatial function f (r) is constant for
the GT operator, and that for the SM operator is r2, which is
scalar. However, one needs to consider the K dependence for
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FIG. 8. As in Fig. 2 but for the spin-quadrupole (SQ) excitations
in the μ = +1 channel.

the SQ excitations. The NEWSR for the SQ excitations with
(J, K ) reads

m−1
L=2(J,K ) − m+1

L=2(J,K )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

8π
(N〈4z4 + ρ4 + 5ρ2z2〉ν − Z〈· · · 〉π ) (1, 0),

1

16π
(N〈2z4 + 5ρ4 + 7ρ2z2〉ν − Z〈· · · 〉π ) (1, 1),

15

8π
(N〈ρ2z2〉ν − Z〈· · · 〉π ) (2, 0),

5

16π
(N〈2z4 + ρ4 − ρ2z2〉ν − Z〈· · · 〉π ) (2, 1),

5

16π
(N〈ρ4 + 2ρ2z2〉ν − Z〈· · · 〉π ) (2, 2),

1

16π
(N〈12z4 + 3ρ4〉ν − Z〈· · · 〉π ) (3, 0),

1

32π
(N〈16z4 + 5ρ4 + 16ρ2z2〉ν − Z〈· · · 〉π ) (3, 1),

5

32π
(N〈ρ4 + 8ρ2z2〉ν − Z〈· · · 〉π ) (3, 2),

15

32π
(N〈ρ4〉ν − Z〈· · · 〉π ) (3, 3),

(13)

where 〈· · · 〉π denotes the expectation value of the first term
by replacing neutrons with protons. In deriving these sum rule
values, I assume that Jπ of the ground state of the mother nu-
cleus is 0+; the time-odd densities vanish in the ground state.
For J = 1, the K = 0 (K = 1) strengths are characterized by a
large 〈z4〉 (〈ρ4〉) term. Since the prolate (oblate) deformation
produces the large 〈z4〉 (〈ρ4〉) value, the above finding can
be reasonably understood. The “stretched” J = 3 excitation
is relatively simple, particularly the K = 0 and K = 3 states.
The prolate (oblate) deformation gives larger strengths in the
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FIG. 9. As in Fig. 3 but for the spin-monopole (SM) excitations.
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K = 0 (K = 3) states. A similar feature has been found in the
“stretched” J = 2 spin-dipole excitation in deformed nuclei
though the K dependence is not clear for the J = 0 and J = 1
excitations [18].

According to the coupling between the monopole and
the K = 0 component of the quadrupole excitations seen
in the electric case, which is universal both in the IS and
IV excitations, one is tempted to expect the spitting of the
SM strengths to appear due to coupling to the K = 0 and
K = 1 components of the SQ excitations in deformed nuclei.
Figure 9 shows the SM transition strengths in the Sm isotopes
with A = 144−154. Here, the K = 0 and K = 1 strengths
are displayed separately. It is hard to see the deformation
effects in these distributions in either the μ = +1 or μ = −1
channels. One reason is that, for the electric quadrupole exci-
tations, the K = 0 strengths are concentrated in a single peak;
however, in the current case, the K = 0 and K = 1 strengths
of the SQ excitations are widely spread out in 30–40 MeV
depending on J . Another reason is that the SM strengths
distribution is broadened irrespective of the nuclear shape, as
shown in Fig. 10. The excitation energy of the SMR in the
μ = +1 channel is lower than that in the μ = −1 channel
from spherical to deformed nuclei, which follows the predic-
tion made in Ref. [69] for spherical nuclei.

3. Dependence on the functional

The residual interaction in the spin-isospin channel plays
a significant role in the IV spin excitations. To investigate
the dependence of the IV magnetic GRs on the functional
employed, I perform the calculation using the SkP functional
[32], which has a property different from SkM*: the Landau
parameter g′

0 of the SkM* and SkP functionals is 0.94 and
0.06, respectively [71].

Figure 10 shows the comparison of the calculated distri-
butions of the SM excitation in 144,154Sm obtained by using
the SkM* and SkP functionals. In the μ = −1 channel, the
GT strength dominates over the SM strength at low energies
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FIG. 10. Calculated distributions of the SM excitation in
144,154Sm obtained using the SkM* and SkP functionals.

E � 20 MeV, and one finds the IVSMR around 30 and
40 MeV in the cases using the SkP and SkM* function-
als, respectively. The excitation energy of the IVSMR in the
μ = +1 channel is calculated to be higher with the use of
SkM* than SkP as in the μ = −1 channel. The deformation
makes the strength distribution smooth because the strength
distributions for K = 0 and K = 1 are different; however, it
does not produce the splitting.

Next, I discuss the functional dependence of the SQ ex-
citation. Figure 11 shows the comparison of the calculated
distributions of the SQ excitation in 144Sm obtained by us-
ing the SkM* and SkP functionals. As observed above, the
excitation energy of the J = 3 IVSQR is the lowest among
J = 1, 2, and 3 states. In all the cases, the excitation energy
calculated by using SkM* is higher than that using SkP,
whereas the calculated excitation energies of J = 3 states in
the μ = +1 channel are not very much different. I found that
the RPA correlation is weak for the J = 3 SQ excitation in the
μ = +1 channel in 144Sm; the energy shift due to the residual
interaction is small.
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FIG. 11. As in Fig. 10 but for the SQ excitations in 144Sm.
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Finally, I investigate the functional dependence of the
SQ excitations in deformed nuclei. As an example of the
deformed nuclei, I show in Fig. 12 the comparison of
the calculated distributions of the SQ excitation in 154Sm
obtained by using the SkM* and SkP functionals. The SkM*
functional produces the IVSQR higher in energy than the
SkP functional. Furthermore, as seen in the SM excitations
in 144,154Sm, nuclear deformation makes the strength distri-
bution smooth irrespective of the functional used. The J = 3
strengths for each K are displayed in Fig. 12(c) for SkP.
One can see a universal behavior for the K splitting: the
lower (higher) K states appear lower (higher) in energy and
possess enhanced (reduced) strengths in a prolately deformed
nucleus.

IV. SUMMARY

I have investigated the electric (non-spin-flip) and magnetic
(spin-flip) IV monopole and quadrupole modes of excita-
tion. To obtain the generic features of the IV excitations,
the neural (μ = 0) and charge-exchange (μ = ±1) channels
have been considered simultaneously. Furthermore, I have
explored open-shell nuclei to obtain unique features associ-
ated with nuclear deformation. To this end, I employed the
nuclear energy-density functional (EDF) method: the Skyrme-
Kohn-Sham-Bogoliubov and the quasiparticle random-phase
approximation were used to describe the ground state and the
transition to excited states.

A strong concentration of the monopole strengths in the
energy region of the IAR has been found regardless of nu-
clear deformation. In addition, a resonance structure appears
at high energy, which is generated mainly by particle-hole
configurations with 2h̄ω0 excitation. The K splitting occurs
in the electric quadrupole excitations due to deformation. The
lower (higher) K states appear lower (higher) in energy in a
prolately deformed nucleus, the opposite in an oblately de-
formed nucleus. Thus, the K splitting of the GQR is universal
in the IS and IV excitations. Furthermore, the coupling to the
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K = 0 component of the GQR brings about the splitting of the
monopole strengths in all the channels of IV excitation.

Similarly to the electric excitations, I have found a strong
concentration of the spin-monopole strengths in the energy
region of the GTR regardless of nuclear deformation. The J =
3 states appear lowest in energy among the spin-quadrupole
resonances. The K splitting occurs in the spin-monopole and
spin-quadrupole excitations. However, the relation between
the energy ordering depending on K and the deformation is
not apparent: the K splitting in the spin-monopole excitation

is due to the change in the underlying shell structure similarly
to the GTR, and that in the J = 3 spin-quadrupole resonance
follows the universal trend.
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