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to 10 micrometers, ICD: International Classification of Disease, NASA: National Aeronautics and Space 14 
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Highlights 16 

• Effect of vegetation fire events on hospital visits for children was examined. 17 

• Effect of PM10 between burning and non-burning day was compared.  18 

• PM10 on burning days associated with hospital visits for respiratory diseases. 19 

• Effect of PM10 on burning day was lower than non-burning day.  20 
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Abstract 28 

Few studies have focused on the effects of exposure to air pollutants from vegetation fire events 29 

(including forest fire and the burning of crop residues) among children. In this study we aimed to 30 

investigate the association between PM10 concentrations and hospital visits by children to address 31 

respiratory disease, conjunctivitis, and dermatitis. We examined and compared these associations by the 32 

presence of vegetation fire events on a given day (burning, non-burning, and mixed) across the upper 33 

northern region of Thailand from 2014 through 2018. A vegetation burning was defined when a fire 34 

hotspot (obtained from NASA-MODIS) exceeded the 90th percentile of the entire region and PM10 35 

concentration was over 100 μg/m3. To determine the association between hospital visits among children 36 

with PM10 concentrations on burning and non-burning days, we performed a time-stratified case-37 

crossover analysis fitted with conditional logistic regression for each province. A random-effects meta-38 

analysis was applied to pool province-specific effect estimates. The number of burning days ranged from 39 

64 to 139 days across eight provinces. A 10 μg/m3 increase in PM10 concentration on a burning day was 40 

associated with a respiratory disease-related hospital visit at lag 0 (OR = 1.01 (95% CIs: 1.00, 1.02)). 41 

This association was not observed for hospital visits related to conjunctivitis and dermatitis. A positive 42 

association was also observed between PM10 concentration on non-burning days and hospital visits 43 
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related to respiratory disease at lag 0 (OR = 1.03 (95% CIs: 1.02, 1.04). Hospital visits for conjunctivitis 44 

and dermatitis were significantly associated with PM10 concentration at lag 0 on both non-burning and 45 

mixed days. 46 

 47 

Keywords: vegetative fire events, particulate matter, hospital visit, children, respiratory disease, remote 48 

sensing 49 

 50 

1. Introduction 51 

In Southeast Asia, vegetation fire events as an agricultural practice as well as from forest fires 52 

causes local and transboundary severe air pollution events, particularly during the dry season (Chen and 53 

Taylor 2018; Takami et al., 2020). According to WHO, vegetation fires was referred to the fire mostly 54 

caused by humans, including forest fire and also slash and burn activities which need the measures to 55 

mitigate smoke effects on population health and to control these events (World Health Organization, 56 

1998). Vegetation burning can emit massive amounts of aerosols and trace gases into the atmosphere. 57 

The frequency of vegetation burning activity is highest over Southeast Asia (Streets et al., 2003). 58 

Seasonal haze from vegetation burning primarily affects human health of the people in Southeast Asian 59 

countries, and is particularly prominent in Brunei, Indonesia, Malaysia, , Singapore, and Thailand (Ho 60 

et al., 2014). 61 

Smoke from vegetation burning in Thailand, particularly in upper northern Thailand (UNT), has 62 

been of concern as a seasonal severe air pollution event (Phairuang et al., 2019). Thailand is an 63 

agricultural country and generates large amounts of agricultural residue which is usually disposed of by 64 

burning in open areas (Phairuang et al., 2019). In addition to agricultural burning, forest fires also 65 

contribute significantly to air pollution from vegetation burning in UNT (Phairuang et al., 2019; 66 

Sukitpaneenit and Kim Oanh, 2014). The forest fire in the UNT are often set to collect non-timber forest 67 

product, e.g. mushroom and bamboo shoot (Forest Fire Control Office, 2005). The fire season typically 68 

lasts from February to April, when atmospheric conditions are dry and stagnant (Kim Oanh and 69 



4 

 

Leelasakultum, 2011). In 2013, the daily peak PM10 concentration in the area was reported to be 428 70 

μg/m3 during this period (Pollution Control Department, 2019). Topographical characteristics of UNT 71 

exacerbate the problem, as this area is primarily a mountain-valley, a feature that can enhance the amount 72 

of pollution trapped (Kim Oanh and Leelasakultum, 2011). Other miscellaneous sources of PM10 in the 73 

area include traffic, tobacco curing, and the brick-making industry (Kim Oanh and Leelasakultum, 2011). 74 

Coal power plants are also located in Lampang province. 75 

Smoke events from vegetative burning are acknowledged as one of the reasons underlying the 76 

high exposure levels to air pollutants among residents in Asia (Chakrabarti et al., 2019; Zhuang et al. 77 

2018). A better understanding of the health effects from air pollution derived from vegetation burning 78 

versus those from urban settings would provide helpful insight for source-specific policy-making that 79 

targets air pollution control. Several existing studies have consistently shown that particulate matter (PM) 80 

from wildfires is associated with health effects (Henderson et al., 2011; Reid et al., 2019; Stowell et al., 81 

2019), while few studies have focused on the health effects of PM from agricultural burning (Gupta, 82 

2019). 83 

Children are more vulnerable to exposure to smoke from burning activities because of their 84 

underdeveloped respiratory system and higher breathing rate (Michael Lipsett and Barbara Materna, 85 

2008), and respiratory disease among children is one of the major consequences of vegetation burning. 86 

Previous studies have suggested that smoke from vegetation burning may increase hospital admission 87 

and emergency room visits due to asthma and acute bronchitis in children (Chen et al., 2006; Paraiso and 88 

Gouveia 2015). However, such studies have not been conducted much in Asia (Gupta, 2019). Exposure 89 

to smoke from vegetation burning may also cause irritating symptoms in the eyes, nose, throat, and skin 90 

(Michael Lipsett and Barbara Materna, 2008). One study examined how respiratory and eye symptoms 91 

were associated with exposure to wildfire smoke in children (Künzli et al., 2006). Given that direct 92 

exposure to pollutants from smoke induces biological responses in both the eyes and skin, the burden of 93 

these symptoms is not negligible. Despite this, few studies have focused on eye and skin symptoms. 94 

Therefore, quantifying the health effects of exposure to air pollutants from vegetation burning is 95 
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warranted to prevent these consequences, particularly among susceptible groups.  96 

Assessing exposure to smoke from vegetation burning is challenging. The most common method 97 

is to use PM concentrations from air pollution monitoring (Martin et al., 2013; Morgan et al., 2010). 98 

However, assessing only PM concentrations may not necessarily yield an accurate level of exposure to 99 

vegetation burning. High PM concentrations may be caused not by vegetation burning but by unusual 100 

activities near the monitoring area such as traffic congestion during long holidays. While air pollution 101 

monitoring stations are most often located in urban areas, where traffic air pollution is the main source 102 

of pollution, burning activities tend to occur outside these areas, farther from monitoring stations. 103 

Satellite-derived fire hotspots have been used for exposure assessment of vegetation burning (Gupta, 104 

2019), and involve the use of satellite data obtained from different temperatures on the ground 105 

(Chakrabarti et al., 2019). Combining the information from fire hotspots with PM concentrations might 106 

increase the accuracy of fire-related PM readings. Indeed, the occurrence of vegetation burning measured 107 

via fire hotspots was found to correlate with PM10 concentrations (Sukitpaneenit and Kim Oanh, 2014). 108 

The number of fire hotspots has been used as a proxy for air pollution in areas without air pollution 109 

monitoring stations (Chakrabarti et al., 2019). Moreover, fire hotspots not only identify burning events, 110 

but can also provide information on burning intensity, which reflects the heat emitted from fire at the 111 

burning area (Elliott et al., 2013). 112 

The aim of this study was to evaluate the effects of smoke from vegetation fire events on health 113 

outcomes in children. Specifically, we evaluated the association between PM10 concentrations and the 114 

number of hospital visits to address respiratory, conjunctivitis, and dermatitis in children under age 15 115 

years. We compared effect estimates on burning, non-burning, and mixed days across UNT, and used 116 

daily PM10 concentrations measured during 2014 through 2018 coupled with fire hotspot data from 117 

Moderate Resolution Imaging Spectroradiometer (MODIS) to identify burning days.  118 

 119 

2. Materials and methods 120 

2.1 Study area 121 
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 The study area consisted of eight provinces in UNT, including Chiangmai, Chiangrai, Lamphun, 122 

Lampang, Mae Hong Son, Nan, Phayao, and Phrea, which are the provinces most affected by smoke 123 

from vegetation fire events (Phairuang et al., 2017; Pollution Control Department, 2019). Figure 1 shows 124 

the provincial boundaries and locations of the ambient air monitoring stations. The area of interest spans 125 

93,690 km2 and borders Myanmar and Laos. 126 

2.2 Hospital visits data 127 

 We obtained hospital visit (outpatient visits) data for children under age 15 years except for new 128 

born less than 1 month old within the study area between January 2014 and December 2018, which were 129 

provided by the Ministry of Public Health (MOPH), Thailand. The data were collected from 1,274 public 130 

hospitals belong to MOPH covering eight provinces of UNT area. Data from each hospital visit included 131 

demographic information (age and sex), date of visit, and International Classification of Diseases version 132 

10 (ICD10) codes for diagnosis. We included diagnoses of respiratory disease (J00-J99.8), conjunctivitis 133 

(H10-H10.9), and dermatitis (L20-L30). This study was officially exempted from ethics approval by the 134 

Ethics Committee of Kyoto University Graduate School of Engineering because it did not use personal 135 

data (No. 201904). 136 

 137 

2.3 Air pollution and meteorological data 138 

 Hourly concentrations of PM10 (μg/m3), carbon monoxide (CO), ozone (O3), sulphur dioxide 139 

(SO2), and nitrogen dioxide (NO2) were obtained from 14 air monitoring stations (Fig. 1) from the 140 

Pollution Control Department, Thailand. Daily concentrations of each air pollutant were computed from 141 

hourly data. Data on meteorological variables (ambient temperature, relative humidity, wind speed, and 142 

rainfall) measured at 16 meteorological stations were obtained from Meteorological Department, 143 

Thailand. We averaged the value of PM10 and meteorological data from the stations within the province.   144 

 145 

2.4 Burning day occurrence 146 

In order to identify burning events, fire hotspot data (MCD14ML) (Giglio et al., 2018) were 147 
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obtained from the National Aeronautics and Space Administration (NASA) Land, Atmosphere Near real-148 

time Capability for EOS (LANCE) Fire Information for Resource Management System (FIRMS) (NASA 149 

2018). Fire hotspot data were retrieved from satellite data obtained from NASA’s Moderate Resolution 150 

Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites. Hotspots are recorded at a 151 

resolution of 1 kilometer when both Terra and Aqua satellites overlap (occurring globally at 1:30 am, 152 

10:30 am, 1:30 pm, and 10:30 pm) (Jordan et al., 2008). We mapped fire hotspots using QGIS 3.4 (QGIS 153 

Development Team 2014) and summed the number of fire hotspots by day and province. The detection 154 

of hotspots may be influenced by reflective surfaces or cloud cover. However, meteorological conditions 155 

during the burning season in UTN are dry with low wind speed and cloudiness (Kim Oanh and 156 

Leelasakultum, 2011). Hotspot data also included confidence values that indicate the quality of 157 

individual fire pixels determined from the geometric mean of the difference between background and 158 

brightness temperatures in each channel algorithm (Giglio et al., 2003). In this study, fire hotspots with 159 

a confidence value under 20% (low confidence) were excluded from the analysis.  160 

As no study have been using fire hotspot data to be a criterion of a burning day,  we defined a 161 

‘burning day’ as a day when the number of fire hotspots exceeded the 90th percentile of the daily 162 

distribution of the entire region (10 counts) and the daily PM10 concentration in each province was greater 163 

than 100 µg/m3. A day without fire hotspot was defined as a ‘non-burning day’. The remaining days were 164 

classified as ‘mixed days’. For example, when the cumulative number of fire hotspots for the entire area 165 

region (sum up of eight provinces) was 35 counts, and PM10 was 120 µg/m3 and 75 µg/m3 in Chiangmai 166 

and Chiangrai, respectively, we defined this day as a ‘burning day’ in Chiangmai and as a ‘mixed day’ 167 

in Chiangrai.  Hence, we assumed that increases in PM10 on a burning day was driven by vegetative fire 168 

events. The previous studies found that the major contributed ion in PM were ammonium and potassium 169 

which is a tracer of vegetation burning while sulfate emitted from fuel combustion also found in this area 170 

(Chantara et al., 2012; Pengchai et al., 2009). The cut-off PM10 concentration was based on published 171 

studies that found that health effects from haze days developed when PM10 concentrations were higher 172 

than 100 µg/m3 (Sahani et al., 2014). Figure 2 shows fire hotspots on April 1, 2014 across eight provinces. 173 
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2.5 Study design and statistical analysis  174 

 We examined the relationship between vegetation burning-derived PM10 and hospital visits 175 

among children using a time-stratified case-crossover study design. This analysis is similar to that of a 176 

case-control study, except that each case serves as its own control (Maclure, 1991). In order to matched 177 

case and control, we assigned the day on which a hospital visits occurred as the case day and comparisons 178 

to a control days chosen on the same day of the week earlier and later in the same month in the same 179 

year (Janes et al., 2005). We used a conditional logistic regression model to estimate the odds ratio for 180 

exposure to PM10 on burning and non-burning days and hospital visits in all health endpoints. We 181 

included the natural splines of a 3-day moving average lag in temperature (Morgan et al., 2010), 182 

assuming 3 degrees of freedom (df). The model with the best fit was selected by the Akaike Information 183 

Criterion (AIC). Relative humidity, precipitation, and wind speed were also included. However, relative 184 

humidity did not influence the AIC value and was omitted from the final model. The analysis was 185 

conducted for burning, non-burning, and mixed days separately because we surmised that this association 186 

may vary by the type of day. We examined the association with single lag (lag 0 - lag 3) and average lag 187 

(lag 01- lag 03) for all health outcomes.  188 

A random-effects meta-analysis was conducted to obtain pooled effect estimates of PM10 and 189 

hospital visits on burning, non-burning, and mixed days. We tested whether the effect estimates for 190 

burning days are significantly different from those for non-burning and mixed day by calculating the 191 

difference of effect estimate, 95% CIs, and P-value (Altman and Bland, 2003). 192 

A stratified analysis was carried out to explore the effect modification by age using two age 193 

groups, i.e. 0-4 year olds (pre-school children) and 5-14 year olds (school children) at lag 0. 194 

We also conducted sensitivity analyses using alternative criteria of a burning day. First, we 195 

compared the results among the different percentile cut-off point of the fire hotspot (i.e. 75th (1 count), 196 

90th (10 counts), and 99th (88 counts)). Next, we repeated the analysis using the different of PM10 197 

concentration (100 µg/m3 and 120 µg/m3) with fixing the fire hotspot at 90th percentile. 198 
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All statistical analyses were conducted using the package “survival” (Fox J, 2012) and “metafor” 199 

(Viechtbauer, 2010) of R (version 1.2.1335, The R Foundation for Statistical Computing, Vienna, 200 

Austria). Results are presented as odd ratios (ORs) with 95% confidence intervals (CIs) for 10 μg/m3 201 

increase in PM10.  202 

 203 

3. Results 204 

Environmental data, including air pollution, temperature, relative humidity, wind speed, 205 

precipitation, and number of fire hotspots, were obtained from burning, non-burning, and mixed days 206 

(Table 1). Numbers of burning days ranged from 64 days in Lamphun to 139 days in Mae Hong Son over 207 

the five-year study period. Concentrations of PM10, CO, NO2, SO2, and O3 were higher on burning days 208 

than on mixed days or non-burning days in all provinces. Mean concentrations of PM10 on burning days 209 

ranged from 122.9 μg/m3 in Phrae to 165.1 μg/m3 in Chiangrai. The daily mean temperature was not 210 

significantly different between burning, non-burning, and mixed days. 211 

In total, 5,641,107 hospital visits due to respiratory disease, conjunctivitis, and dermatitis among 212 

children aged <15 years were recorded during the study period (Table 2). Study participants included 213 

more pre-school children (age 0-4 years) than school-aged children (age 5-14 years). Among the three 214 

reported health conditions, respiratory disease was responsible for the most hospital visits among 215 

children. 216 

PM10 was associated with hospital visits due to respiratory disease on both burning and non-217 

burning days while its associations with conjunctivitis and dermatitis were found on non-burning and 218 

mixed days (Figure 3). Significantly positive associations between PM10 and hospital respiratory diseases 219 

on burning days were observed with lag 0, lag 1, lag 01, and lag 02. The pooled estimate was high on 220 

the day of exposure, with an OR of 1.01 (95% CIs: 1.00, 1.02) (Table S1). Positive associations between 221 

PM10 concentration and hospital visits due to respiratory disease in children were found in all provinces 222 

except Chiangrai (Table S1). 223 

Positive associations were also found between hospital visits for all health outcomes and PM10 224 
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concentrations on non-burning days. On mixed days, hospital visits for conjunctivitis and dermatitis were 225 

associated with PM10 concentrations. Pooled risks for non-burning days were 1.03 (95% CIs: 1.02, 1.04 226 

(lag 0)) for respiratory disease, 1.04 (95% CIs: 1.03, 1.05 (lag 0)) for dermatitis, and 1.02 (95% CIs: 227 

1.00, 1.03 (lag 02)) for conjunctivitis (Table S1). For mixed days, a high estimated risk was found with 228 

lag 0 for conjunctivitis (OR=1.01, 95% CIs: 1.00, 1.02) and dermatitis (OR=1.01, 95% CIs: 1.01, 1.02) 229 

(Table S1). The comparison of non-burning/mixed days with burning days showed that the estimated 230 

effect of PM10 on respiratory disease on burning days was slightly but significantly lower when compared 231 

with non-burning days at lag 0 (Figure 3). 232 

We further examined the association at lag 0 stratified by two subgroups of the children (pre-233 

school and school children) which is presented in the Figure 4. We found that ORs for school children 234 

(5-14 year olds) were slightly higher than pre-school children (0-4 year olds) on both burning and non-235 

burning day although there was no significant difference in ORs between the two age groups. 236 

Sensitivity analyses were performed by comparing the effect estimate of the different cut-off 237 

points for fire hotspot and PM10 concentration. Applying different cut-off point of fire hotspot (Figure 238 

5) and PM10 concentration (Figure 6) generally showed similar effect estimates. 239 

 240 

4. Discussion 241 

 This study investigated the association between hospital visits by children and exposure to PM10 242 

on vegetation burning days. The study also compared the effect estimates on burning days with those on 243 

non-burning and mixed days. Across UNT, PM10 concentrations differed significantly between burning, 244 

non-burning, and mixed days. PM10 concentrations on burning days were generally higher than those on 245 

other days, with daily mean concentrations above the Thailand air quality standards for PM10 (120 µg/m3). 246 

A significant association between PM10 and hospital visits due to respiratory disease were observed on 247 

both burning and non-burning days while its associations with conjunctivitis and dermatitis were found 248 

on non-burning and mixed days. The effect estimates were highest at lag 0 for those significant 249 

associations. These finding indicates an acute effect.    250 
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We found that PM10 concentrations on burning days significantly influenced the number of 251 

hospital visits for respiratory disease. This finding is consistent with previous vegetation-derived 252 

particulate studies (Henderson et al., 2011; Stowell et al., 2019). Specifically, various acute respiratory 253 

outcomes were observed in children during burning events and included asthma (Henderson et al., 2011; 254 

Stowell et al., 2019), upper respiratory inflammation (Künzli et al., 2006), lower respiratory 255 

inflammation (Mirabelli et al., 2009), and respiratory mortality (Sahani et al., 2014). However, we found 256 

an inverse association in Chiangrai province. This may be due to the effectiveness after burning ban 257 

policy has been implemented (Yabueng et al., 2020) or implementation of the preventive activities e.g. 258 

establishment of safety zone, and school closure in the province during burning day. This inverse 259 

association could also be by chance.  Children are more susceptible to respiratory issues because their 260 

lungs are less developed and they have higher respiratory rates than adults. Thus, the effects of vegetation 261 

burning-derived PM are most evident in their respiratory system; in some cases, systemic damage in the 262 

lung may be sustained (World Health Organization, 2005). It is possible that the different patterns of 263 

activities and the duration of time spent in outdoor may contribute to variation in susceptibility to PM 264 

effects among different age groups. However, the effect estimates of preschool children and school 265 

children in this study were not different.      266 

Although we found significant associations between vegetation burning-related PM and the 267 

number of hospital visits for respiratory disease, similar associations were not observed consistently for 268 

conjunctivitis and dermatitis. Few studies have focused on how vegetation-derived particulates influence 269 

conjunctivitis and dermatitis. One previous study found an increased likelihood of doctor visits to address 270 

eye irritation when wildfire-derived PM concentrations were high (Künzli et al., 2006). Another study 271 

reported clinical cases of eye complaints and dermatitis during a haze period in Singapore (Yeo et al., 272 

2014). The discrepancy between our results and those of previous studies may be attributed to differences 273 

in the severity of the disease (e.g. complaint data, eye symptoms reported by school, or hospital visits 274 

data). In the present study, only a few of those who had symptoms may have visited the hospital during 275 

the burning period.   276 
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Vegetation burning-derived particles contained high levels of potassium, organic carbon, black 277 

carbon, and specific components such as methoxyphenol, Polycyclic Aromatic Hydrocarbons (PAHs), 278 

and levoglucosan (Naeher et al., 2007).  We hypothesized that the effects of PM10 on burning days would 279 

be more prominent than those on non-burning and mixed days. However, we found a slightly higher 280 

effect estimate for respiratory diseases of non-burning day compared to burning day at the immediate 281 

lag.  A previous study conducted in Australia estimated an increased risk of approximately 1% in the 282 

number of respiratory illness-related hospital admissions for every 10 µg/m3 increase in bushfire and 283 

urban PM10 (Morgan et al., 2010). In another study, multi-exposure metrics for PM documented a similar 284 

increase in risk of respiratory illness-related hospitalization and PM from smoke and non-smoke days 285 

(Deflorio-Barker et al., 2019). Specifically, that study found a higher likelihood for asthma-related 286 

hospitalizations on smoke days. Our result was inconsistent with the previous studies. One potential 287 

reason can be attributed to difference in the toxicity of PM components derived from different sources. 288 

It is possible that PM during non-burning days may have contained more toxic components in this study. 289 

A toxicological study also found that vegetation-derived PM reduced cell viability and IL-8 induction, 290 

while urban-derived PM increased pro-inflammatory and mutagenic activity (Heuvel et al., 2018). These 291 

findings collectively suggest that both vegetation burning and urban sources can trigger respiratory 292 

incidents in children.    293 

In addition, higher numbers of hospital visits for conjunctivitis and dermatitis were observed on 294 

non-burning and mixed days. In this study, burning day corresponded to a day when the number of fire 295 

hotspots exceeded the 90th percentile of the daily distribution of the entire region and PM10 concentration 296 

in each province was greater than 100 µg/m3, whereas a non-burning day was the day without fire hotspot 297 

detection. Main sources of PM on non-burning and mixed days include urban sources e.g. traffic and 298 

some burning activities such as waste burning. Associations between PM10 concentrations from urban 299 

sources (non-burning days) and hospital visits for dermatitis in children in the present study are similar 300 

to those reported in a previous study (Kim et al., 2017). Children are more susceptible to dermatitis given 301 

their immature skin barrier function, and thus are in a vulnerable developmental stage (Ahn, 2014). We 302 
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also observed positive associations between the number of hospital visits for conjunctivitis and dermatitis 303 

and PM concentrations on mixed days, but not on burning days. This may be due to the fact that people 304 

likely spent more time outside on non-burning days; typically, they are cautioned to stay indoors on 305 

burning days (Moran et al., 2019). In California, for example, children are more likely to take preventive 306 

actions such as staying indoors during the wildfire season (Künzli et al., 2006).  307 

Our study has several strengths. First, we conducted a multi-province analysis, which provides 308 

a representative overview of associations between various health outcomes and air pollution levels 309 

during a burning event in Southeast Asia. Second, we examined associations between the number of 310 

hospital visits and exposure to PM10, specifically focusing on burning days using satellite data coupled 311 

with PM concentrations, whereas some previous studies used only PM concentrations (Martin et al., 312 

2013) or limited the study period to burning seasons which might lead to misclassification of burning 313 

day (Gupta, 2019). Third, we compared effect estimates of PM10 on burning, non-burning, and mixed 314 

days in the same population, rather than in different populations. Finally, we examined the health effects 315 

of vegetation fire events among children, and was thus one of the first to address the question in this 316 

susceptible population (Gupta, 2019; Sahani et al., 2014). 317 

A few limitations are worth noting. We used PM10 concentrations from ground monitoring to 318 

reflect exposure, which may have been subject to misclassification, and may not accurately represent an 319 

individual’s exposure. While our results offer insight into the health effects of vegetation burning, 320 

generalizing these findings to other regions may require further research, since conditions relating to fuel 321 

type, meteorology, and topography can all influence the characteristics of PM (composition, size, and 322 

concentration) and impact health outcomes. An additional limitation might be misclassification of a 323 

burning day. First, smoldering fires sometimes cannot be detected from satellite observation even when 324 

they emit substantial smoke which can lead to high level of PM concentration. Second, valley topography 325 

of UNT might have affected the spatial distribution of PM10 and could cause misclassification of burning 326 

day. 327 

 328 
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5. Conclusion 329 

 We found that PM10 on burning days was significantly associated with the number of hospital 330 

visits among children due to respiratory disease, but not conjunctivitis or dermatitis. Effect estimates of 331 

PM10 on hospital visits for respiratory diseases was lower on burning than non-burning days. The 332 

associations observed were generally acute, occurring within the first two days.  333 

 334 
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Table 1. Daily average of environmental variables during 2014 – 2018 (values represent daily mean (standard deviation))  

Variables Chiangmai Chiangrai Lamphun Lampang 
Mae Hong 

Son 
Nan Phayao Phrae 

Days (count)         

Burning day 103 103 64 122 139 87 119 126 

Non-burning day 950 950 950 950 950 950 950 950 

Mixed day 773 773 812 754 737 789 757 750 

Air pollution*         

PM10 (μg/m3)         

Burning day 132.7 (35.7) 165.1 (55.1) 128.4 (26.5) 125.3 (23.6) 160.3 (60.0) 132.2 (24.3) 135.8 (37.2) 122.9 (22.1) 

Non-burning day 30.4 (10.6) 24.3 (9.3) 24.0 (12.9) 23.4 (10.6) 18.7 (9.9) 21.3 (9.9) 18.0 (12.0) 26.2 (12.5) 

Mixed day 53.4 (20.7) 46.7 (19.6) 53.8 (22.5) 52.1 (24.6) 42.9 (26.4) 45.3 (22.1) 46.8 (22.9) 54.8 (24.4) 

CO (ppm)         

Burning day 1.2 (0.3) 1.3 (0.7) 1.1 (0.4) 1.2 (0.3) 1.1 (0.5) 1.0 (0.2) 0.8 (0.3) 0.8 (0.4) 

Non-burning day 0.7 (0.2) 0.6 (0.4) 0.4 (0.2) 0.6 (0.2) 0.5 (0.3) 0.4 (0.2) 0.3 (0.2) 0.3 (0.2) 

Mixed day 0.8 (0.2) 0.7 (0. 3) 0.6 (0. 3) 0.7 (0.3) 0.6 (0.3) 0.5 (0.2) 0.5 (0.2) 0.4 (0.2) 

O3 (ppb)         

Burning day 39.6 (7.7) 38.6 (6.1) 39.6 (7.6) 47.4 (6.0) 41.9 (10.8) 40.9 (7.8) 49.8 (9.4) 41.6 (8.7) 

Non-burning day 17.2 (7.1) 13.4 (5.8) 19.3 (8.4) 18.2 (5.3) 12.4 (7.0) 14.6 (6.3) 19.3 (7.3) 17.7 (6.9) 

Mixed day 28.5 (9.4) 23.8 (10.3) 31.1 (11.2) 31.4 (11.4) 23.7 (12.2) 26.4 (11.3) 33.3 (12.9) 31.1 (13.1) 

NO2 (ppb)         

Burning day 25.5 (7.1) NA 13.2 (4.0) 10.4 (2.5) NA 7.8 (3.3) 12.3 (4.1) 16.1 (4.0) 

Non-burning day 10.2(4.8) NA 4.8(3.5) 3.4(1.5) NA 2.1(1.5) 4.7(2.2) 5.3 (2.8) 

Mixed day 15.3 (5.9) NA 7.5 (3.9) 6.2 (2.2) NA 4.3 (2.4) 7.4 (2.6) 9.6 (3.9) 

SO2 (ppb)         

Burning day 1.8 (0.9) NA 2.6 (1.3) 1.7 (0.6) NA 1.2 (0.9) 2.0 (1.4) 1.7 (1.6) 

Non-burning day 1.0 (0.4) NA 1.6 (1.3) 1.2 (0.3) NA 0.8 (0.8) 1.0 (1.0) 1.2 (1.5) 

Mixed day 1.1 (0.6) NA 2.0 (1.6) 1.4 (0.5) NA 1.1 (0.9 0.9 (0.9) 1.2 (1.3) 

Meteorology         

Temperature (°C)         

Burning day 29.6 (2.2) 26.8 (2.1) 27.6 (3.1) 28.4 (3.0) 28.6 (2.4) 29.3 (2.1) 27.7 (2.5) 27.9 (2.8) 

Non-burning day 27.1 (2.1) 26.0 (2.6) 27.0 (2.2) 27.1 (2.2) 26.7 (2.2) 27.2 (2.3) 25.9 (3.6) 27.2 (2.1) 

Mixed day 26.6 (3.3) 24.3 (3.4) 26.6 (3.5) 26.7 (3.6) 25.6 (4.3) 26.1 (3.4) 24.6 (4.7) 26.9 (3.6) 

Relative humidity (%)         

Burning day 51.0 (4.5) 61.8 (6.7) 53.7 (5.7) 56.0 (5.8) 54.5 (4.9) 61.0 (4.6) 60.0 (7.4) 61.4 (5.8) 

Non-burning day 76.7 (7.0) 81.0 (5.7) 79.4 (7.2) 79.7 (6.7) 82.5 (5.9) 80.1 (11.0) 82.8 (10.0) 81.3 (6.0) 

Mixed day 64.4 (8.3) 72.2 (7.1) 66.5 (10.6) 69.0 (9.0) 71.1 (10.5) 72.4 (7.3) 73.9 (12.3) 70.6 (8.5) 

Wind speed (m/s)         

Burning day 19.3 (7.1) 17.6 (8.5) 13.8 (6.2) 13.5 (9.4) 18.0 (5.1) 16.6 (3.5) 12.9 (4.6) 13.5 (7.0) 
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Variables Chiangmai Chiangrai Lamphun Lampang 
Mae Hong 

Son 
Nan Phayao Phrae 

Non-burning day 21.5 (10.0) 20.6 (8.3) 18.4 (6.9) 17.9 (9.8) 16.8 (5.6) 17.4 (3.3) 12.4 (4.2) 16.5 (8.5) 

Mixed day 20.6 (11.2) 20.5 (10.4) 16.7 (6.8) 16.4 (11.3) 17.5 (6.8) 17.1 (3.9) 12.7 (5.7) 15.9 (9.0) 

Precipitation (mm)         

Burning day 0.2 (0.2) 0.3 (0.3) 0.5 (0.3) 0.3 (0.3) 0.1 (0.1) 1.1 (0.4) 0.2 (0.2) 0.3 (0.2) 

Non-burning day 5.0 (4.5) 8.1 (4.9) 5.1 (4.7) 5.0 (4.6) 5.4 (3.6) 5.2 (3.2) 5.1 (3.3) 5.3 (4.4) 

Mixed day 1.3 (5.4) 2.3 (8.6) 1.5 (7.0) 1.6 (7.1) 1.0 (4.5) 1.5 (5.9) 1.3 (5.3) 1.5 (6.3) 

No. hotspots          

Burning day 43.9 (40.0) 28.0 (22.3) 7.0 (4.75) 20.2 (17.8) 42.7 (42.6) 32.5 (31.3 7.9 (7.1) 12.6 (10.0) 

    Non-burning day 0 0 0 0 0 0 0 0 

    Mixed day 4.8 (1.4) 3.6 (2.0) 4.9 (1.7) 2.2 (1.6) 3.0 (2.6) 3.1 (3.0) 0.7 (0.6) 1.6 (1.2) 

* One-way ANOVA was applied to compare the concentration of all air pollutants among burning, non-burning, and mixed days in 

each province and the results showed significantly different (p < 0.01) for all provinces. 

NA: not assessed. 
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Table 2. Summary of hospital visits by children during 2014 - 2018 

 Case count 

 Chiangmai Chiangrai* Lamphun Lampang 
Mae Hong 

Son 
Nan Phayao Phrae 

Total number  1680799 1173571 376871 600436 393262 576122 484132 355914 

Daily number (%)         

Age (years)         

0 – 4  60.0 59.6 56.7 53.3 60.7 56.8 52.9 50.4 

5 – 14 40.0 40.4 43.3 46.7 39.3 43.2 47.1 49.6 

Sex         

Male 53.0 52.7 52.7 53.1 52.8 52.4 53.0 53.0 

Female 47.0 47.3 47.3 46.9 47.2 47.6 47.0 47.0 

Diagnosis (ICD-10)         

Conjunctivitis (H10-H19) 2.1 2.1 2.3 2.5 1.7 2.2 1.9 3.3 

Dermatitis (L20-L30) 6.8 7.4 5.5 6.7 6.9 8.5 8.0 7.3 

Respiratory (J00-J99) 91.0 90.5 92.2 90.8 91.4 89.3 90.0 89.4 

*Available data are from October 2014 to December 2018 
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Figure 1: Study area and air monitoring stations. 
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Figure 2: Fire hotspot detected (red dot) on April 1, 2014 over UNT. 
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Figure 3: Odds ratio of hospital visits (pooled effect) as associated with a 10 μg/m3 increase in PM10 

concentration on burning, non-burning, and mixed days for single and average lag models. 

*Statistically significant difference at p < 0.05 compared to burning day. 
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Figure 4: Odds ratio of hospital visits for stratified analysis of children age 0-4 and 5-14 years as 

associated with a 10 μg/m3 increase in PM10 concentration on burning, non-burning,  

and mixed day at lag 0. 
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Figure 5: Odds ratio of hospital visits for respiratory diseases in children associated with a 10 μg/m3 

increase in PM10 concentration on burning and mixed days at lag 0 applying the different cut-off 

point of fire hotspot (75th, 90th, and 99th percentile). The results of non-burning days were not 

presented because changing the cut-off point does not affect them. 
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Figure 6: Odds ratio of hospital visits for respiratory diseases in children associated with a 10 μg/m3 

increase in PM10 concentration on burning and mixed day compared to the different cut-off point of 

PM10 (100 and 120 µg/m3). The results of non-burning days were not presented because changing the 

cut-off point does not affect them. 
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Table S1. Odd ratio and 95% confident interval of hospital visit and PM10 on burning, non-burning, and mixed day of each province 1 

 2 

 Burning day Non-burning day Mixed day 

 Lag 0 Lag 01 Lag 0 Lag 01 Lag0 Lag 01 

Respiratory disease        

Chiangmai 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 1.04 (1.03, 1.04) 1.03 (1.02, 1.04) 1.01 (0.99, 1.01) 1.00 (1.00, 1.00) 

Chiangrai 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 1.03 (1.03, 1.04) 1.03 (1.03, 1.04) 1.01 (1.01, 1.01) 1.01 (1.00, 1.01) 

Lamphun 1.01 (1.00, 1.02) 1.01 (1.00, 1.03) 1.04 (1.04, 1.05) 1.04 (1.03, 1.05) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 

Lampang 1.02 (1.01, 1.02) 1.02 (1.02, 1.03) 1.04 (1.03, 1.04) 1.03 (1.02, 1.04) 1.01 (1.00, 1.01) 1.01 (1.00, 1.01) 

Mae Hong Son 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 1.04 (1.03, 1.05) 1.03 (1.02, 1.04) 1.00 (0.99, 1.00 1.00 (0.99, 1.00) 

Nan 1.02 (1.01, 1.03) 1.02 (1.01, 1.03) 1.02 (1.01, 1.03) 1.01 (1.00, 1.02) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 

Phayao 1.02 (1.01, 1.02) 1.02 (1.01, 1.02) 1.02 (1.01, 1.03) 1.01 (1.00, 1.02) 1.01 (1.01, 1.01) 1.01 (1.00, 1.01) 

Phrea 1.01 (1.00, 1.02) 1.01 (1.00, 1.02) 1.02 (1.01, 1.03) 1.01 (1.00, 1.02) 0.99 (0.99, 1.00) 1.00 (0.99, 1.00) 

Pooled analysis 1.01 (1.00, 1.02) 1.01 (1.00, 1.02) 1.03 (1.02, 1.04) 1.02 (1.02, 1.03) 1.00 (0.99, 1.01) 1.00 (0.99, 1.00) 

Conjunctivitis disease        

Chiangmai 0.99 (0.97, 1.02) 0.99 (0.96, 1.01) 1.04 (1.02, 1.06) 1.03 (1.00, 1.05) 1.02 (1.00, 1.03) 1.01 (0.99, 1.02) 

Chiangrai 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 1.01 (0.98, 1.04) 1.01 (0.98, 1.04) 1.02 (1.00, 1.04) 1.01 (0.99, 1.02) 

Lamphun 0.94 (0.87, 1.01) 0.94 (0.86, 1.03) 1.02 (0.97, 1.07) 1.01 (0.96, 1.06) 0.98 (0.95, 1.00) 0.97 (0.94, 1.00) 

Lampang 1.01 (0.98, 1.05) 1.02 (0.99, 1.06) 1.03 (0.99, 1.07) 1.01 (0.97, 1.05) 1.02 (1.00, 1.04) 1.01 (0.99, 1.03) 

Mae Hong Son 1.01 (0.98, 1.03) 1.01 (0.99, 1.04) 1.02 (0.95, 1.09) 1.05 (0.98, 1.12) 1.01 (0.98, 1.04) 1.00 (0.97, 1.03) 

Nan 1.02 (0.97, 1.06) 1.02 (0.97, 1.06) 1.03 (0.99, 1.06) 1.01 (0.98, 1.05) 1.00 (0.98, 1.02) 1.00 (0.98, 1.03) 

Phayao 0.98 (0.94, 1.01) 0.99 (0.95, 1.02) 1.09 (1.04, 1.14) 1.09 (1.03, 1.14) 1.02 (0.99, 1.04) 1.01 (0.99, 1.04) 

Phrea 1.00 (0.95, 1.05) 1.00 (0.96, 1.05) 0.93 (0.89, 0.97) 0.89 (0.85, 0.93) 1.01 (0.98, 1.03) 1.01 (0.98, 1.03) 

Pooled analysis 0.99 (0.98, 1.01) 0.99 (0.98, 1.01) 1.02 (0.99, 1.05 1.01 (0.97, 1.05 1.01 (1.00 ,1.02) 1.01 (0.99, 1.01) 

Dermatitis disease        

Chiangmai 1.01 (1.00, 1.03) 1.02 (1.00, 1.03) 1.04 (1.03, 1.05) 1.03 (1.02, 1.05) 1.01 (1.00, 1.01) 1.00 (0.99, 1.01) 

Chiangrai 0.98 (0.97, 0.99) 0.98(0.97, 0.99) 1.07 (1.05, 1.08) 1.07 (1.05, 1.08) 1.02 (1.01, 1.03) 1.01 (1.01, 1.02) 

Lamphun 1.04 (0.99, 1.09) 1.04 (0.98, 1.09) 1.03 (0.99, 1.06) 1.02 (0.99, 1.05) 0.99 (0.97, 1.01) 0.99 (0.98, 1.01) 

Lampang 1.02 (1.00, 1.05) 1.03 (1.00, 1.05) 1.04 (1.02, 1.07) 1.04 (1.01, 1.06) 1.01 (1.00, 1.03) 1.01 (1.00, 1.03) 

Mae Hong Son 1.00 (0.99, 1.02) 1.00 (0.99, 1.01) 1.03 (1.00, 1.07) 1.03 (1.00, 1.06) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 

Nan 1.00 (0.98, 1.03) 0.99 (0.97, 1.02) 1.04 (1.02, 1.06) 1.03 (1.01, 1.06) 1.03 (1.02, 1.04) 1.03 (1.02, 1.04) 

Phayao 1.00 (0.99, 1.02) 1.00 (0.98, 1.02) 1.04 (1.02, 1.07) 1.04 (1.02, 1.07) 1.03 (1.02, 1.04) 1.02 (1.01, 1.04) 

Phrea 0.99 (0.96, 1.02) 1.00 (0.97, 1.03) 1.03 (1.00, 1.06) 1.02 (0.99, 1.05) 1.02 (1.00, 1.03) 1.02 (1.01, 1.04) 

Pooled analysis 1.00 (0.99, 1.01)   1.00 (0.99, 1.02) 1.04 (1.03, 1.05) 1.04 (1.03, 1.05) 1.01 (1.01, 1.02) 1.01 (1.00, 1.02) 
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