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The effective interactions between two nuclear clusters, d + d , t + t , and α + α, are investigated within a
cluster model using local nucleon-nucleon (NN) forces. It is shown that the interaction in the spin-aligned d + d
system is repulsive for all intercluster distances, whereas the α + α and spin-aligned t + t systems are attractive
at intermediate distances. The Pauli blocking between identical-nucleon pairs is responsible for the cluster-
cluster repulsion and becomes dominant in the shallow binding limit. We demonstrate that two d clusters could
be bound if the NN force has nonzero range and is strong enough to form a deeply bound d cluster, or if the
NN force has both even-parity and odd-parity attraction. Effective dimer-dimer interactions for general quantum
systems of two-component fermions are also discussed in heavy-light mass limit, where one component is much
heavier than the other, and their relation to intercluster interactions in nuclear systems are discussed. Our findings
provide a conceptual foundation for conclusions obtained numerically in the literature, that increasing the range
or strength of the local part of the attractive nucleon-nucleon interaction results in a more attractive cluster-cluster
interaction.
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I. INTRODUCTION

Nuclear clustering is a fascinating and important feature of
many nuclear systems. Developed cluster structures appear in
excited states of several nuclei and also in the ground states
of systems such as 2α clustering in 8Be(0+

1 ) and 16O +α clus-
tering in 20Ne [1,2]. While α clusters are the most common
type of cluster structure, deuteron and triton clusters have also
been suggested in light p-shell nuclei and at the surface of
closed shell core nuclei. In highly excited states, cluster states
containing more than two clusters such as 3α structures in 12C
and 4α structures in 16O have been attracting great interest in
theoretical and experimental studies [1–4].

The formation of clusters has been also investigated at the
nuclear surface of sd and heavier nuclei where spatial cluster
correlations beyond mean-field may emerge [5,6]. Concerning
a two-nucleon pair with a strong spatial correlation, deuteron-
like pn and dineutron nn correlations are also recent hot
topics. For the latter, two neutrons are not bound in a free
space, but the nn correlation is rather strong in loosely bound
neutron-rich systems such as 6He and 11Li and can be regarded
as a (nn) cluster [7–11]. The possibility of an α + nn + nn
structure has been proposed for an excited state of 8He [12].
Another candidate for multidineutron systems is nn + nn clus-
tering in a four-neutron system called the tetraneutron. But
this remain a controversial issue: experimental signals of
a tetraneutron resonance have been recent reported [13,14]
while several theoretical studies are not able to accommodate
such a resonance [15–21].

The effective interactions between clusters play an im-
portant role in cluster phenomena in nuclear systems. For
example, the ground state of 8Be is a quasibound 2α state
formed by a short-range repulsion and a medium-range at-
traction of the effective α-α interaction, which has been
experimentally observed from the α-α scattering phase shifts.
This α-α interaction also describes the 3α structure of the
Hoyle state, 12C(0+

2 ). The short-range repulsion and medium-
range attraction, which are experimentally known from the
scattering phase shifts, are essential to describe the developed
3α structure in 12C(0+

2 ). In a microscopic α + α cluster model
with the resonating group method (RGM), the repulsive effect
of the α-α interaction was described by a nodal structure of
the intercluster wave function caused by the Pauli repulsion
between identical nucleons in different clusters [22]. A similar
Pauli effect contributes to the effective interaction between
two dineutrons and produces significant repulsion in the tetra-
neutron system [15,16].

In Ref. [23] it was observed that the α-α interaction de-
termines whether nuclear matter forms a nuclear liquid or a
Bose-Einstein condensate (BEC) of α particles. First princi-
ples calculations showed that the range and strength of the
local part of the nucleon-nucleon interaction were essential
for overcoming the Pauli blocking repulsion between the α

particles [23,24]. Here, the term “local interaction” refers to
an interaction kernel that is diagonal in the particle posi-
tions. These results show that cluster-cluster interactions are
important not only for understanding specific nuclear states
with well-defined cluster substructures, but also important for
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understanding the balance of attractive and repulsive forces in
nuclear matter.

Nuclear clustering is characterized by spatial correlations
of the nucleons, and there are clear analogies to universal
phenomena in other quantum degenerate fermionic systems.
Dineutron correlations can be understood in terms of the
universal properties of two-component fermionic superfluids
at large scattering length [25–27], and α condensation in nu-
clear matter can be related to the general theory of fermionic
quartet condensation [28–30]. To understand the fundamental
features of nuclear clustering and cluster-cluster interactions,
it is useful to start with the dimer-dimer system. The dimer
is the simplest composite system, having only two constituent
particles.

In the limit of large particle-particle scattering length, the
short-distance details of the interactions become irrelevant.
In this universal limit we can simplify the particle-particle
interactions to take the form of an attractive zero-range or
δ-function interaction, taking care to properly renormalize the
strength in the zero-range limit. For two-component fermions
in the limit of large scattering length, the dimer-dimer inter-
action is repulsive with a scattering length equal to 0.60 times
the particle-particle scattering length [31–33].

Recently, a study of effective dimer-dimer interactions
for two-component fermions with general fermion-fermion
interactions was performed using one-dimensional lattice
calculations [34]. This study found repulsive dimer-dimer
interactions for short-range forces but attractive dimer-dimer
interactions for forces with larger range. It also found that lo-
cal fermion-fermion interactions produced more attraction for
the dimer-dimer interaction than nonlocal fermion-fermion
interactions.

The universal repulsion for the dimer-dimer interaction
at large scattering length appears also in mass imbalanced
systems, where the two fermion components have masses
M and m with M > m. We find that this approach is useful
for understanding the competition between attractive and re-
pulsive forces analytically in the limit M � m, and we will
refer to it as the heavy-light ansatz or Born-Oppenheimer
approximation [35]. Questions to be answered are whether the
nuclear force behaves as a short-range force, thus producing
universal repulsion between two dimers, and, if so, how the
attractive α-α interaction forms as the number and binding of
the constituent nucleons within the clusters increase.

In this work, we start with a general discussion of the effec-
tive dimer-dimer interactions using the heavy-light ansatz and
consider the relation to the effective intercluster interaction
for the spin-aligned d + d system, which can be viewed as
a two-dimer system composed of two-component fermions
with components corresponding to isospin. We then inves-
tigate the effective intercluster interactions of d + d , t + t ,
and α + α systems with a microscopic cluster model using
Brink-Bloch two-cluster wave functions [36] with effective
nucleon-nucleon (NN) forces. We find a repulsive interaction
in the spin-aligned d + d system, attractive interactions in the
spin-aligned t + t and α + α systems, and strong attractive
interactions in the spin-opposed d + d and t + t systems. By
analyzing single-particle orbitals in the two-cluster systems,
the impact of antisymmetrization between identical nucleons

on the cluster-cluster interaction is illuminated. Energies of
the lowest states of two-cluster systems are calculated with
the generator coordinate method (GCM) [37,38].

The paper is organized as follows. In the next section, two-
dimer systems with the heavy-light ansatz are described and
effective dimer-dimer interactions are discussed. In Sec. III,
effective interactions between two clusters in nuclear sys-
tems are investigated. A summary is given in Sec. IV.
Appendix A gives solutions of the two-δ potential problem
in one dimension, and Appendix B describes parametrization
of the effective NN force. Inter-cluster wave functions in
two-cluster systems are described in Appendix C.

II. EFFECTIVE INTERACTION BETWEEN TWO DIMERS

A. Heavy-light ansatz M � m

We consider a mass imbalanced system of two-component
fermions, where the two fermion components have masses M
and m with M > m. We assume an attractive and local Mm
potential that produces a bound Mm dimer and no interac-
tion between identical particles. We consider the limit M �
m, and we call the resulting simplifications the heavy-light
ansatz. The discussion will begin with the one-dimensional
case, but will then move to the three-dimensional case soon
afterwards.

The heavy particles are stationary at coordinates at
{R1, R2, . . .}, and the light particles are feel the potentials
produced by the heavy particles. The Hamiltonian is

H =
∑

i

h(i), h(i) ≡ t (i) + U (i), (1)

t (i) = − h̄2

2m

∂2

∂x2
i

, U (i) =
∑

j

v(|xi − Rj |), (2)

where U is the one-body potential. The ground state is a Slater
determinant of single particle states,

�(1, . . . , Am) = A{
ψ1, . . . , ψAm

}

= 1√
Am!

det
{
ψ1, . . . , ψAm

}
. (3)

Am is the total number of light m particles and A is the
antisymmetrizer, and the single-particle states are

h(i)ψn(i) = enψn(i). (4)

We here use the notation for the one-dimensional (1D) system,
but it can be readily applied to the three-dimensional (3D)
problem by replacing x → x and R → R. It is also straight-
forward to extend the model to a nonlocal Mm interaction.
In this paper, we consider the Am = 1 and Am = 2 cases for
single-dimer and two-dimer systems.

For the single-dimer system (Mm), the Hamiltonian and
wave function are given as

h(0) = t + v(x), (5)

h(0)φ(0)(x) = ε (0)φ(0)(x), (6)

where x, ε (0), and φ(0) are the relative coordinate, dimer en-
ergy, and dimer wave function respectively. For simplicity, the
phase of φ(0) is chosen to be real.
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To discuss the effective interaction between two dimers,
we consider a two-dimer system Mm + Mm with two heavy
M particles placed at x = −R/2 on the left (L) and x = R/2
on the right (R) with separation distance R. The Hamiltonian
for two light m particles is written as

H = h(1) + h(1′), (7)

h(i) = t (i) + U (xi ), U (x) = vL(x) + vR(x), (8)

vL(x) = v(x + R/2), vR(x) = v(x − R/2), (9)

where the first and second m particles are labeled as 1 and 1′.
The energy E (R) and the two-body wave function �(1, 1′) of
the lowest state are given as

E (R) = ε1 + ε2, (10)

�(1, 1′) = A{ψ1(1)ψ2(1′)}, (11)

where εi and ψi are the ith single-particle energy and state ob-
tained by solving the one-body problem of the single-particle
Hamiltonian, h(i)ψn(i) = εnψn(i). Because of the symmetry
of the one-body potential U (x) = U (−x), ψn(i) are parity
eigenstates with ψ1(x) = ψ1(−x), ψ2(x) = −ψ2(−x). The ef-
fective dimer-dimer interaction is given by the relative energy
E (R) − 2ε (0) measured from the two-dimer threshold energy.
This expression is exact for the heavy-mass limit, whereas
it corresponds to the Born-Oppenheimer approximation for
finite mass ratio.

B. A cluster model for two-dimer system

1. Frozen dimer ansatz

For a general discussion of the effective dimer-dimer inter-
action, we apply a cluster model to the two-dimer system with
a frozen dimer ansatz to approximately evaluate the energy
E (R). In this model, the system is expressed as the antisym-
metrized product of “atomic orbitals” given by the isolated
dimer wave functions around the left and right M particles as

	(1, 1′) = N0A
{
φ

(0)
L (1)φ(0)

R (1′)
}
, (12)

φ
(0)
L (i) = φ(0)(xi + R/2), φ

(0)
R (i) = φ(0)(xi − R/2), (13)

where N0 is the normalization factor. We introduce the follow-
ing notation for the matrix elements of one-body operators O
with respect to φ

(0)
L and φ

(0)
R as

〈
φ

(0)
L

∣∣O∣∣φ(0)
L

〉 = 〈O〉LL,
〈
φ

(0)
R

∣∣O∣∣φ(0)
R

〉 = 〈O〉RR, (14)

〈
φ

(0)
L

∣∣O∣∣φ(0)
R

〉 = 〈O〉LR,
〈
φ

(0)
R

∣∣O∣∣φ(0)
L

〉 = 〈O〉RL. (15)

Here, the single-particle wave functions φ
(0)
L and φ

(0)
R are not

orthogonal but has a nonzero norm overlap 〈1〉LR = 〈1〉RL 	=
0, which vanishes in the limit of large R. Nevertheless,
the total wave function 	(1, 1′) satisfies the Pauli principle
(Fermi statistics) because of the antisymmetrizer, and N0 =
1/

√
1 − 〈1〉2

RL is obtained from the normalization condition
〈	(1, 1′)|	(1, 1′)〉 = 1.

2. Orthonormal bases sets: Molecular orbitals
and orthonormal atomic orbitals

The atomic orbitals φ
(0)
L and φ

(0)
R with small separation

distance (R) overlap considerably with each other and venture
far into the Pauli forbidden region. In this case it is more
natural to view the total wave function 	(1, 1′) rewritten
using a new orthonormal basis set, taking into account the
invariance of the normalized Slater determinant under any
linear transformation of the basis vectors. One choice is the
basis set of “molecular orbitals” as

	(1, 1′) = A{ϕ+(1)ϕ−(1′)}, (16)

ϕ±(i) = 1√
2(1 ± 〈1〉RL)

{
φ

(0)
L (i) ± φ

(0)
R (i)

}
, (17)

where ϕ+ and ϕ− are positive- and negative-parity orbitals
around whole system in analogy to covariant bonds of
homonuclear diatomic molecules. This expression with the
molecular orbitals respects the parity symmetry of the one-
body potential and is useful to discuss the two-dimer system in
the overlapping region. However, at long distances, the atomic
orbital picture is more natural for the probability of an m
particle on the left or right. As yet another alternative basis
set, “orthonormal atomic orbitals” can be also be defined as

	(1, 1′) = A{ϕL(1)ϕR(1′)}, (18)

ϕL(i) = 1√
2

(ϕ+(i) + ϕ−(i)), (19)

ϕR(i) = 1√
2

(ϕ+(i) − ϕ−(i)). (20)

It should be commented that the former set {ϕ+, ϕ−} are
obtained by solving the generalized eigenvalue problem for
the 2 × 2 matrices of the norm and Hamiltonian with respect
to the basis states {φ(0)

L , φ
(0)
R }. In contrast, the latter set of

{ϕL, ϕR} is obtained by solving the generalized eigenvalue
problem for the norm and the position operator x.

As a demonstration, we show the molecular orbitals
{ϕ+, ϕ−} and the orthonormal atomic orbitals {ϕL, ϕR} for
a Gaussian wave function φ(0)(x) = ( 2ν

π
)
1/4

e−νx2
with ν =

0.25 fm−2 in Fig. 1. Figures 1(a)–1(d) compares the molecular
orbitals with the original atomic orbitals for distances R → 0,
R = 2, 4, and 8 fm. As the two dimers come close to each
other, the positive-parity orbital is formed by merging the left
and right atomic orbitals, while the negative-parity molecular
orbital has an extra node at the origin. In Figs. 1(e)–1(h),
the orthonormal atomic orbitals {ϕL, ϕR} are compared with
the original atomic orbitals {φ(0)

L , φ
(0)
R }. At short distances

R � 2 fm, ϕL and ϕR are significantly distorted from the
original orbitals because of antisymmetrization, while at long
distances the effect of antisymmetrization vanishes and they
approach the original orbitals φ

(0)
L and φ

(0)
R .

C. Effective interaction between two dimers

Two dimers cannot exist at the same position because of the
Pauli principle between identical fermions. This effect gives a
repulsive contribution to the effective dimer-dimer interaction
at short distance. As shown in Figs. 1(e)–1(h), significant
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FIG. 1. (a)–(d) Molecular orbitals {ϕ+, ϕ−} and (e)–(h) orthonormal atomic orbitals {ϕL, ϕR} of the two-dimer system for a Gaussian wave
function of a single dimer φ (0)(x) = ( 2ν

π
)
1/4

e−νx2
with ν = 0.25 fm−2. The separation distances are chosen to be R → 0, R = 2, 4, and 8 fm.

The original atomic orbitals {φ (0)
L , φ

(0)
R } on the left and right are also shown.

distortion occurs in the “physical” atomic orbitals, ϕL and ϕR,
at short distances because of the antisymmetrization effect.
As a result of the distortion, each dimer loses some internal
energy. On the other hand, the Mm potential term between dif-
ferent dimers can give an attractive contribution. This shows
that the effective dimer-dimer interaction is determined by the
competition between the internal energy loss and the energy
gain from the inter-cluster potential term. In this section, we
investigate the two-dimer energy E (R) with the frozen dimer
ansatz and discuss the effective dimer-dimer interaction.

1. Expression for general potentials

The present model with the frozen dimer ansatz cor-
responds to an approximation of the single-particle wave
functions ψ in the two-dimer system with linear combination

of the left and right atomic orbitals as ψ ≈ φ = cLφ
(0)
L +

cRφ
(0)
R , which is equivalent to a two-level problem given as

〈H〉αβ =
(

ε (0) + 〈vR〉LL ε (0)〈1〉LR + 〈vL〉LR

ε (0)〈1〉RL + 〈vR〉RL ε (0) + 〈vL〉RR

)
, (21)

〈1〉αβ =
(

1 〈1〉LR

〈1〉RL 1

)
(22)

with (α, β ) = (φ(0)
L , φ

(0)
R ). By solving the generalized eigen-

value problem for these 2 × 2 matrices, one obtains the
molecular orbitals ϕ+ and ϕ− as the eigensolutions with
eigenvalues ε+ and ε− as

ε± = ε (0) + 〈vR〉LL

1 ± 〈1〉RL
± 〈vR〉RL

1 ± 〈1〉RL
. (23)
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The total energy of the two-dimer system and the relative
energy measured from the threshold energy are obtained as

E = ε+ + ε−

= 2ε (0) + 2

1 − 〈1〉2
RL

(〈vR〉LL − 〈1〉RL〈vR〉RL), (24)

�E (R) ≡ E (R) − 2ε (0)

= 2

1 − 〈1〉2
RL

(〈vR〉LL − 〈1〉RL〈vR〉RL). (25)

Note that the kinetic energy contribution does not explicitly
appear in the present expression of �E (R), though it is implic-
itly contained in the exchange potential term with the relation
〈vR〉RL = ε0〈1〉RL − 〈t〉RL.

For the general case, we consider an attractive potential
v(x) � 0 with a potential range r (0) and a dimer wave function
φ(0)(x) � 0 with a dimer size b(0). Let us consider two terms
in the expression 〈vR〉LL − 〈1〉RL〈vR〉RL. The first term,

〈vR〉LL =
∫

vR(x)
∣∣φ(0)

L (x)
∣∣2

dx � 0, (26)

gives a negative (attractive) contribution and is the direct po-
tential term obtained by folding the right-side potential with
the density ρ

(0)
L (x) ≡ |φ(0)

L (x)|2 of the left-side atomic orbital.
Roughly speaking, this term gives a finite contribution in the
R < r (0) + b(0) region, where the dimer density has overlap
with the closest edge of the external potential.

The second term,

−〈1〉RL〈vR〉RL = −〈1〉RL

∫
φ

(0)
L (x)vR(x)φ(0)

R (x)dx � 0,

(27)

gives a positive (repulsive) contribution corresponding to an
exchange potential term. This term becomes significant in the
R < b(0) + min(b(0), r (0) ) region for the overlapping region of
the two atomic orbitals and the right-side potential.

As an alternative expression, the sum of the direct and
exchange potential terms can be rewritten as

〈vR〉LL − 〈1〉RL〈vR〉RL = 〈
φ

(0)
L

∣∣P⊥
R vR

∣∣φ(0)
L

〉
, (28)

where P⊥
R ≡ 1 − |φ(0)

R 〉〈φ(0)
R | is the projection operator onto

the space orthogonal to φ
(0)
R . It means that the sum is the

transition from φ
(0)
L to the orthogonal component P⊥

R |φ(0)
L 〉 of

the left-side particle by the external potential vR on the right,
and the exchange potential term arises from the orthogonal
condition.

For the two-dimer energy �E (R) measured from the
threshold in Eq. (25), the overall factor 2

1−〈1〉2
RL

is positive
because |〈1〉RL| � 1. Therefore, the sign of the effective
dimer-dimer interaction is determined by the competition be-
tween the attraction from the direct potential term of Eq. (26)
and the repulsive effect from the exchange potential term of
Eq. (27).

For the case where the local potential v(x) has a range
longer than the dimer size, r (0) > b(0), the effective dimer-
dimer interaction can be attractive in the intermediate distance
region of 2b(0) < R < r (0) + b(0). In this region the two atomic

orbitals have almost no overlap φ
(0)
L (x)φ(0)

R (x) ∼ 0, and the
exchange potential term is small compared with the direct
potential term. In the opposite case that v(x) is a has a
range shorter than the dimer size, r (0) < b(0), the effective
dimer-dimer interaction can be repulsive because of the strong
contribution from the exchange potential term. Also in the
case of long-range but nonlocal potential v(x, x′), the effective
dimer-dimer interaction may again be repulsive, because the
nonlocality generally suppresses the matrix element 〈vR〉LL

in the direct potential term but enhances 〈vR〉RL in the ex-
change potential term as the exchange potential term for the
nonlocal potential does not vanish even in the case when
φ

(0)
L (x)φ(0)

R (x) ∼ 0.
All of the expressions derived in this section can be applied

to dimer-dimer systems in three dimensions, just by replac-
ing the one-dimensional integrals in the expectation values
with three-dimensional integrals. We note that these findings
provide a conceptual foundation for the conclusions obtained
numerically in Refs. [23,34], that increasing the range or
strength of the local part of the particle-particle interaction
produces a more attractive cluster-cluster interaction.

D. Effective dimer-dimer interaction with zero-range potential

As an example of short-range potentials, we show that the
effective dimer-dimer interactions with M � m in 1D and 3D
for a zero-range potential are always repulsive for any R.

1. Frozen cluster ansatz

Firstly, we discuss the dimer-dimer interaction in 1D with
the frozen cluster ansatz. For the delta potential

v(x) = − h̄2κ0

m
δ(x), (29)

the energy and wave function of a single dimer are given as

ε (0) = − h̄2

2m
κ2

0 , φ(0)(x) = √
κ0e−κ0|x|, (30)

where 1/κ0 is roughly regarded as the dimer size b(0). For
the two-dimer system with the distance R, one can calculate
matrix elements as

〈1〉RL = (1 + κ0R)e−κ0R,

〈vR〉RL = 2ε (0)e−κ0R, (31)

〈vR〉LL = 2ε (0)e−2κ0R,

and obtain energies for the positive- and negative-parity
molecular orbitals

ε± = ε (0) + 2ε (0) e−2κ0R ± e−κ0R

1 ± e−κ0R(1 + κ0R)
, (32)

and the two-dimer energy from the threshold is

�E (R) = |ε (0)| 4κ0Re−2κ0R

1 − (1 + κ0R)2e−2κ0R
> 0. (33)

This shows that the two dimers feel a repulsive dimer-dimer
interaction for any R.

024318-5



YOSHIKO KANADA-EN’YO AND DEAN LEE PHYSICAL REVIEW C 103, 024318 (2021)

Next, we show the result for the dimer-dimer interaction
in 3D obtained with the frozen cluster ansatz. For the renor-
malization of the single-delta potential in 3D, we assume that
we have dimer with energy ε (0)(<0), corresponding with the
bound state wave function

φ(0)(r) =
√

2κ0

4π

e−κ0|r|

|r| (34)

with the definition κ0 ≡
√

2m|ε (0)|/h̄. For the two-dimer sys-
tem in 3D, we consider the single-particle energies for two
delta potentials at −R/2 (on the left) and R/2 (on the right)
with a distance R = |R|. Using the frozen dimer ansatz, the
matrix elements are obtained as

〈1〉RL = e−κ0R,

〈vR〉RL = 2ε (0) e−κ0R

κ0R
, (35)

〈vR〉LL = 0,

and the energies for the positive- and negative-parity molecu-
lar orbitals are

ε± = ε (0) ± 2ε (0) e−2κ0R

κ0R(1 ± e−κ0R)
, (36)

and the two-dimer energy measured from threshold is

�E (R) = |ε (0)| 4e−2κ0R

κ0R(1 − e−2κ0R)
> 0, (37)

indicating again a repulsive dimer-dimer interaction.
Our results for the zero-range potential in 1D and 3D using

the frozen dimer ansatz clearly show that the repulsive dimer-
dimer interaction originates from the exchange potential term
〈vR〉RL, i.e., the antisymmetrization or Pauli blocking effect.

2. Exact solution and asymptotic expansion

We can also obtain exact solutions for the two-dimer en-
ergy in 1D and 3D by solving the two-δ potentials and see
again the universal repulsion of the effective dimer-dimer
interaction in the M � m limit.

We express the exact energies εexact
± in terms of binding

momenta κ± defined as

εexact
± = − h̄2

2m
κ2

±. (38)

For the exact solutions of the positive- and negative-parity
bound states of the 1D two-δ potential, κ+ and κ− are given as

κ+ = κ0

{
1 + 1

κ0R
W0(κ0Re−κ0R)

}
, (39)

κ− = κ0

{
1 + 1

κ0R
W−1(κ0Re−κ0R)

}
, (40)

where W0 and W−1 are branches of the Lambert W function.
With these solutions for κ±, the two-dimer energy measured
from the threshold is expressed as

�E (R) = ε (0)

(
κ2

+
κ2

0

+ κ2
−

κ2
0

− 2

)
. (41)

For large κ0R we have the asymptotic forms

κ+ → κ0(1 + e−κ0R − κ0Re−2κ0R + · · · ), (42)

κ− → κ0(1 − e−κ0R − κ0Re−2κ0R + · · · ), (43)

and hence

�E (R) = |ε (0)|[4κ0Re−2κ0R − 2e−2κ0R + · · · ]. (44)

One can see that the leading term |ε (0)|4κ0Re−2κ0R is con-
sistent with that of the approximate result in Eq. (33) of the
frozen dimer ansatz.

Similarly, the bound-state solutions for the 3D two-δ po-
tential have binding momenta κ+ and κ− of the form

κ+ = κ0

{
1 + 1

κ0R
W0(e−κ0R)

}
, (45)

κ− = κ0

{
1 + 1

κ0R
W−1(e−κ0R)

}
. (46)

The asymptotic forms for large κ0R are

κ+ → κ0

(
1 + e−κ0R

κ0R
− e−2κ0R

κ0R
+ · · ·

)
, (47)

κ− → κ0

(
1 − e−κ0R

κ0R
− e−2κ0R

κ0R
+ · · ·

)
, (48)

and hence

�E (R) = |ε (0)|
[

4e−2κ0R

κ0R
− 2e−2κ0R

(κ0R)2
+ · · ·

]
. (49)

One can see again that the leading term is consistent with that
in Eq. (37) of the frozen dimer ansatz.

In Fig. 2, we compare the single-particle energies and the
two-dimer energy measured from the threshold energy for
exact solutions and approximate ones of the frozen cluster
ansatz. In the 1D results shown in Figs. 2(a) and 2(b), one
can see that the frozen cluster ansatz is a good approximation
for κ0R � 2, but gets worse for R � 2/κ0, where two dimers
are closer than twice of the dimer size b(0) ∼ 1/κ0. For the
3D case, it is a good approximation for κ0R � 1.5 as shown
in Figs. 2(c) and 2(d). It should be noted that, in the short-
distance regions where the exact and approximate solutions
disagree, the general repulsion is still obtained by the ex-
act calculation. The detailed solution for the single-particle
energies and wave functions in the 1D two-δ potential are
described in Appendix A.

III. NUCLEAR SYSTEMS OF TWO CLUSTERS:
d + d, t + t , AND α + α

A. Cluster model wave functions

We now discuss the effective interactions between two
nuclear clusters by applying the Brink-Bloch cluster model
[36]. We consider d + d , t + t , and α + α systems with d ,
t , and α clusters consisting of two, three, and four nucle-
ons, respectively. We denote the mass number of a cluster
as c (c = 2, 3, 4) and use a label “c + c” for the two-cluster
systems.
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FIG. 2. Energies of the two-dimer system for δ potential in the
heavy-light ansatz in one dimension (1D) and three dimensions (3D).
The approximate values with the frozen dimer ansatz and exact
values are compared. (a) Single-particle energies ε± in 1D. (b) The
two-dimer energy from the threshold energy, �E = ε+ + ε− − 2ε (0),
in 1D. (c) Single-particle energies ε± in 3D. (d) The two-dimer
energy from the threshold energy in 3D. Energies are plotted in units
of 1/|ε (0)| = 2m/(h̄2κ2

0 ).

1. Single-cluster wave function

In the cluster model, a single cluster is assumed to be a
c-nucleon state with the harmonic oscillator 0s-orbit configu-
ration noted as (0s)c. The wave function for the cluster placed
at R1 is written as a product of single-particle Gaussian wave
functions as

	c
R1

(1, . . . , c) = A{
φ

(0)
R1

(r1) · · · φ(0)
R1

(rc) ⊗ χc(s1, . . . , sc)
}
,

(50)

φ
(0)
R1

(r) =
(

2ν

π

)3/4

exp[−ν(r − R1)2], (51)

where si indicates the nucleon spin and isospin degrees of
freedom of the ith nucleon, and χc is the spin and isospin func-
tion of the (S = 1, T = 0), (S = 1/2, T = 1/2), and (S =
0, T = 0) states for the deuteron, triton, and α clusters, re-
spectively.

2. Two-cluster wave function

For the d cluster with S = 1, we consider the spin-aligned
[d + d]S=2 and spin-opposed [d + d]S=0 states. Similarly, for
the t cluster with S = 1/2, the spin-aligned [t + t]S=1 and
spin-opposed [t + t]S=0 states are considered.

The wave function of a two-cluster system with separation
distance R is given as

	c+c(R; 1, . . . , c, 1′, . . . , c′)

= (N0)nidA{
	c

− R
2
(1, . . . , c)	c

R
2
(1′, . . . , c′)

}
= (N0)nidA{

φ
(0)
− R

2

(r1) · · · φ(0)
− R

2

(rc)φ(0)
R
2

(r1′ ) · · · φ(0)
R
2

(rc′ )

⊗ [χc(s1, . . . , sc)χc(s1′, . . . , sc′ )]S
}
, (52)

where spins of two clusters are coupled to S in total, and R is
chosen to be (0, 0, R) on the z axis. N0 is the normalization
factor for a pair of identical nucleons and given as

N0 = (
1 − 〈

φ
(0)
− R

2

(r)
∣∣φ(0)

+ R
2

(r)
〉)−1/2

, (53)

and nid is the number of pairs of identical nucleons:
nid = 2, 3, 4 for [d + d]S=2, [t + t]S=1, [α + α]S=0, respec-
tively, and nid = 0, 2 for [d + d]S=0, [t + t]S=0, respec-
tively. For example, the [d + d]S=2, [t + t]S=1, and [α +
α]S=0 systems are composed of d = (p↑n↑), t = (p↑n↑n↓),
and α = (p↑ p↓n↑n↓), and the spin and isospin functions
[χc(s1, . . . , sc)χc(s1′, . . . , sc′ )]S are written as

p↑(s1)n↑(s2)p↑(s1′ )n↑(s2′ ), (54)

p↑(s1)n↑(s2)n↓(s3)p↑(s1′ )n↑(s2′ )n↓(s3′ ), (55)

and

p↑(s1)p↓(s2)n↑(s3)n↓(s4)p↑(s1′ )p↓(s2′ )n↑(s3′ )n↓(s4′ ), (56)

respectively.
The nuclear matter densities of two-cluster wave func-

tions are shown in Fig. 3. The [d + d]S=2, [t + t]S=1, and
[α + α]S=0 systems show a dumbbell-like drop in the density
in the R � 2 fm region, indicating the strong Pauli blocking
effects of the identical-nucleon pairs. On the other hand, in
the [d + d]S=0 system with no identical-nucleon pairs, the two
clusters can penetrate each other without any Pauli blocking
and merge into a 4He state with an (0s)4 configuration in the
R → 0 limit. The [t + t]S=0 state containing two identical-
nucleon pairs shows a weaker Pauli blocking effect than the
[t + t]S=1 state.

For the [d + d]S=2, [t + t]S=1, and [α + α]S=0 systems, the
total wave function 	c+c(R) is expressed by a Slater deter-
minant of nonorthonormal atomic orbitals {φ(0)

− R
2

(i), φ(0)
R
2

(i′)},
which can be transformed into the molecular orbitals
set {ϕ+(i), ϕ−(i′)} or the orthonormal atomic orbitals set
{ϕL(i), ϕR(i′)} under invariance of the total wave function as
described previously in Sec. II.
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FIG. 3. Nuclear matter density of the two-cluster wave functions
for d + d , t + t , and α + α systems with distances R → 0, R = 2, 4,
and 8 fm. The densities are integrated over x and y and normalized
with the mass number A = 2c as ρ(z)/A. The normalized densities
of the [d + d]S=2, [t + t]S=1, and [α + α]S=0 states, which are con-
sistent with each other, are plotted with dashed lines, and those of
[d + d]S=0 and [t + t]S=0 states are shown by dotted and solid lines,
respectively.

3. Parity and orbital-angular-momentum projections

We consider the parity (π ) and orbital-angular-momentum
(L) projection of the two-cluster wave functions as

	π
c+c(R) = Pπ	c+c(R), (57)

	Lπ
c+c(R) = PLPπ	c+c(R) (58)

with the L and π projection operators PL and Pπ . The in-
trinsic energy Eint(R) at a distance R is calculated using the
π -projected wave function without the L projection as

E int
c+c(R) =

〈
	π

c+c(R)
∣∣H ∣∣	π

c+c(R)
〉

〈
	π

c+c(R)
∣∣	π

c+c(R)
〉 . (59)

Similarly the Lπ -projected energy is calculated with the Lπ -
projected wave function as

ELπ
c+c(R) =

〈
	Lπ

c+c(R)
∣∣H ∣∣	Lπ

c+c(R)
〉

〈
	Lπ

c+c(R)
∣∣	Lπ

c+c(R)
〉 . (60)

We take π = − and L = 1 (P wave) for the [t + t]S=1 system
as required by antisymmetry, and π = + and L = 0 (S wave)
for the other systems.

The total angular momentum and parity are Jπ =
0−, 1−, 2− for the [t + t]S=1 system, and Jπ = Sπ for the
other systems. Strictly speaking, the Jπ = 2+ and 0+ states
are coupled in the d + d system and the Jπ = 0−, 1−, and
2− states are coupled in the [t + t]S=1 system because of
the NN spin-orbit and tensor interactions, but we omit such
the channel couplings due to our assumption of effective NN
central forces for simplicity.

4. GCM calculation of two-cluster systems

We calculate the energy Ec+c of the ground states of
two-cluster systems with the GCM [37,38] by superposing
Lπ -projected wave functions

�GCM
c+c =

∑
k

ck	
Lπ
c+c(Rk ), (61)

where coefficients ck are determined by solving the dis-
cretized Hill-Wheeler equation [37], i.e., solving the general-
ized eigenvalue problem for norm and Hamiltonian matrices
with respect to k. This GCM calculation corresponds to op-
timization of the intercluster wave function as described in
Appendix C.

We also perform one-dimensional GCM calculations (1d-
GCM) by superposing the π -projected wave functions instead
of the Lπ projected ones as

�1d-GCM
c+c =

∑
k

ck	
±
c+c(Rk ). (62)

In the 1d-GCM calculation, all nucleons (i =
1, . . . , c, 1′, . . . , c′) are confined for the x and y directions in
the same Gaussian orbit ( 2ν

π
)
1/2

exp[−ν(x2
i + y2

i )], whereas
the intercluster motion in the z direction is optimized by
the superposition. After diagonalization of the norm and
Hamiltonian matrices, one obtains the 1d-GCM energy E1-dim

for the lowest solution of the one-dimensional motion.

B. Hamiltonian and effective nuclear force

The Hamiltonian of nuclear systems is given as

H =
∑

i

ti − Tc.m. +
∑
i< j

vN (i, j), (63)

ti = − h̄2

2MN

∂2

∂r2
i

, Tc.m. = − h̄2

2AMN

∂2

∂r2
c.m.

, (64)

where MN is the nucleon mass and vN is the effective two-
body nuclear force. In the cluster model, the center of mass
(c.m.) motion can be separated and the c.m. kinetic energy
term Tc.m. is constant, Tc.m. = (3/4)h̄ω with ω = 2h̄2ν/MN .
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TABLE I. Parameter sets of the Volkov No. 2 force for four types of the NN forces, vSU4
N (SU4-even), vtuned

N (tuned), vst-ind
N (state-

independent), and 3vSU4
N (strong-even) forces. Details of the strength parameters ( f3E , f1E , f3O, and f1O) for the 3E , 1E , 3O, and 1O terms

and the parameters (W B, H , and M) for the Wigner, Bartlett, Heisenberg, and Majorana terms are described in Appendix B.

f3E f1E f3O f1O W B H M

vSU4
N SU4-even 1 1 0 0 0.5 0 0 0.5

vtuned
N tuned 1.3 0.7 −0.2 −0.2 0.4 0.15 0.15 0.6

vst-ind
N state-independent 1.3 1.3 1.3 1.3 1 0.3 0 0

3vSU4
N strong-even 3 3 0 0 1.5 0 0 1.5

As for the effective NN force, we use a finite-range central
force of the Volkov No. 2 force [39], which can be written
with the triple-even (3E ), singlet-even (1E ), triplet-odd (3O),
and singlet-odd (1O) terms as

vN (1, 2) = VN (r) × [ f3E P(3E ) + f1E P(1E )

+ f3OP(3O) + f1OP(1O)], (65)

r ≡ |r2 − r1|, (66)

where the radial function VN (r) is given by a two-range
Gaussian form. In the original expression, the Volkov force
is given by the Wigner, Bertlett, Heisenberg, and Majorana
terms. Details of parametrization of the Volkov No. 2 force
and its relation to ratios f3E , f1E , f3O, and f1O in Eq. (65) are
explained in Appendix B.

The parameter sets { f3E , f1E , f3O, f1O} adopted in the
present calculation are summarized in Table I. The first set
is a purely even-parity force with SU4 symmetry as

vSU4
N = VN (r)[P(3E ) + P(1E )], (67)

which we call the SU4-even force. This force acts on spatial
even components of otherwise-nucleon pairs, (p↑ p↓), (p↑n↑),
(p↑n↓), and (n↑n↓) with the same strength. Note that the
[d + d]S=2 state is equivalent to a four-neutron system of two
dineutrons (nn) + (nn) in the case of SU4-symmetric forces.
The second set is a tuned force,

vtuned
N = VN (r)[1.3P(3E ) + 0.7P(1E )

− 0.2P(3O) − 0.2P(1O)], (68)

adjusted to fit the experimental data of S-wave NN scattering
lengths in the spin-triplet and spin-singlet channels and α-α
scattering phase shifts. This tuned force contains a stronger
3E force and a weaker 1E force with the ratio of 1.3/0.7 to
describe a bound deuteron state and an unbound nn state.

In addition, we consider two optional sets to make the
[d + d]S=2 system to be bound, which do not describe physi-
cal nuclear systems. One is a strong-even NN force

3vSU4
N = VN (r)[3P(3E ) + 3P(1E )], (69)

which is three times as strong as the SU4-even NN force. The
other is a state-independent NN force containing 1E , 3O, and
1O attraction with the same strength as the 3E component of
vtuned

N ,

vst-ind
N = VN (r)[1.3P(3E ) + 1.3P(1E )

+ 1.3P(3O) + 1.3P(1O)]. (70)

C. Energy of single-cluster systems

In Table II, we show the total, kinetic, and potential ener-
gies for a single-cluster system of d , t , and α calculated with
the (0s)c configurations. Values of the width parameter ν used
in the present calculation are also listed in the table. For the
vSU4

N force, ν is fixed to be a common value ν = 0.25 fm−2,
which reproduces the root-mean-square (rms) radius of an α

particle. For other three forces, vtuned
N , vst-ind

N , and 3vSU4
N , we

use the values ν = 0.16, 0.16, and 0.35 fm−2 for the d cluster,
respectively, which are optimized to minimize the d-cluster
energy. As for the α cluster, ν = 0.25 fm−2 is adopted for
vtuned

N because the vSU4
N and vtuned

N forces give the same energy
for a single-α system.

Let us compare the energies of the d , t , and α clusters
obtained with the SU4-even force (vSU4

N ). As the number
of constituent nucleons increases, the single-cluster system
obtains a deeper binding because the kinetic energy cost to
confine c nucleons in the cluster is proportional to c − 1
while the potential energy gain is proportional to the number
c(c − 1)/2 of nucleon pairs. The tuned NN force (vtuned

N )
gives a bound d state at the energy εd = −1.6 MeV for ν =
0.16 fm−2, while it gives the same α energy εα = −28.7 MeV
as the SU4-even force. The state-independent force vst-ind

N
obtains εd = −1.6 MeV, same as the tuned NN force because
the NN force in the 3E channel is unchanged.

The strong-even NN force (3vSU4
N ) gives a deeply bound

d state with ν = 0.35 fm−2 at εd = −24.0 MeV. The radial
dependence of the 3E component and the deuteron wave func-
tion for the tuned and strong-even NN forces are shown in
Fig. 4. Compared with the tuned force, the d-cluster for the
strong-even force is more deeply bound and the cluster size is
much smaller.

D. Two-cluster systems

1. GCM and 1d-GCM results

To obtain the lowest states of two-cluster systems, we
perform the GCM calculations using the two-cluster wave
functions with Rk = 0.5, 1, . . . , 10 fm. The calculations
correspond to a bound state approximation in a finite
box boundary Rk � 10 fm. We also perform the 1d-GCM
calculations to check whether two clusters effectively feel an
attraction forming a one-dimension bound state or not.

In Table II, the GCM and 1d-GCM energies of two-cluster
systems are listed. For the GCM result, the energy is mea-
sured from the c + c threshold energy as �Ec+c ≡ Ec+c −
2εc. For the 1d-GCM result, the energy is measured from the
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TABLE II. Energies of single-cluster and two-cluster systems calculated with the cluster model using four types of the NN force. For
single-cluster systems, the total (εc), kinetic (T ), and potential (V ) energies are shown together with the adopted ν values (fm−2). For two-cluster
systems, GCM energies measured from the c + c threshold energy (2εc ) and 1d-GCM energies relative to the one-dimensional c + c decay
threshold energy (2εc + h̄ω/2) are shown. For the [t + t]S=1 system, the GCM result for the Lπ = 1− state and the 1d-GCM result for the
π = − state are shown. For other systems, the GCM result for the Lπ = 0+ state and the 1d-GCM result for the π = + state are shown. For
unbound systems, positive energies are obtained in the present framework of a bound state approximation with R � 10 fm. The energy unit is
MeV.

vSU4
N : SU4

ν εc T V �Ec+c �E 1-dim
c+c

d 0.25 3.0 15.6 −12.6 [d + d]S=2 unbd.(1.34) unbd.(0.98)
[d + d]S=0 −34.8 −45.1

t 0.25 −6.6 31.1 −37.7 [t + t]S=1 unbd.(1.14) −1.12
[t + t]S=0 −12.8 −21.5

α 0.25 −28.7 46.7 −75.3 [α + α]S=0 −7.6 −12.5

vtuned
N : tuned

ν εc T V �Ec+c �E 1-dim
c+c

d 0.16 −1.6 10.0 −11.6 [d + d]S=2 unbd.(2.9) unbd.(0.97)
α 0.25 −28.7 46.7 −75.3 [α + α]S=0 −2.7 −3.6

3vSU4
N : strong even

ν εc T V �Ec+c �E 1-dim
c+c

d 0.35 −24.0 21.8 −45.7 [d + d]S=2 −0.36 −5.1

vst-ind
N : state-independent

ν εc T V �Ec+c �E 1-dim
c+c

d 0.16 −1.6 10.0 −11.6 [d + d]S=2 −1.1 −6.1

one-dimensional c + c decay threshold

�E1-dim
c+c = E1-dim

c+c − (
2εc + 1

2 h̄ω
)

(71)

are shown. Here the one-dimensional decay threshold con-
tains an extra kinetic energy cost 2(h̄ω/4) for localization in
two directions on the xy plane.
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FIG. 4. Radial dependence of the 3E component of the tuned
(vtuned

N ) and strong-even (3vSU4
N ) forces. The internal wave function

	d (r) ∝ exp[−2νr2] of a d cluster with the (0s)2 configuration with
ν = 0.16 fm−2 for the tuned force and that with ν = 0.35 fm−2 for
the strong-even force are shown by pink and light-blue colored areas,
respectively, in an arbitrary unit.

For the [d + d]S=2 system with the vtuned
N (tuned) and vSU4

N
(SU4-even) forces, no bound state is obtained in both the
GCM and 1d-GCM calculations, indicating that the effective
interaction between to d clusters in the S = 2 channel is repul-
sive. For the [α + α]S=0 system with the vtuned

N (tuned) force,
the GCM calculation obtains a weakly bound state without the
Coulomb force, but an unbound state with the Coulomb force,
consistent with the observed quasibound 2α state of 8Be(0+).
The [t + t]S=1 system with the vSU4

N (SU4-even) force, is not
bound in the GCM calculation but bound in the 1d-GCM
calculation meaning that the effective interaction between two
t-clusters in the S = 1 channel is a weak attraction.

In the [d + d]S=0 system for the spin-opposed d + d in the
S = 0 channel, two d clusters are deeply bound and form an
α particle because there is no Pauli blocking in this system.
Also the [t + t]S=0 system forms a bound state because of a
weaker Pauli effect than the [t + t]S=1 system.

2. Energy curves of two-cluster systems

To discuss effective intercluster interactions, we analyze
the R dependence of the Lπ -projected energies ELπ

c+c(R) for
the two-cluster wave functions 	Lπ

c+c(R) with the distance R.
In Fig. 5, we show the total, kinetic, and potential energy
contributions of d + d , t + t , and α + α systems calculated
with the SU4-even (vSU4

N ) force. Each energy contribution is
shifted by subtracting the “asymptotic” value at R → ∞. In
this plot, the two-cluster decay threshold energy 2εc is lo-
cated at h̄ω/4 below the “asymptotic” total energy at R = ∞,
which contains the kinetic energy cost for localization of the
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FIG. 5. Lπ -projected energies ELπ
c+c(R) of two-cluster systems with separation distance R calculated with the SU4-even NN force (vSU4

N ).
Total (E ), kinetic (T ), and potential (V ) energy contributions of (a) [d + d]S=2, (c) [α + α]S=0, (d) [d + d]S=0, and (e) [t + t]S=0 for the
Lπ = 0+ states and those of (b) [t + t]S=1 for the Lπ = 1− state are shown. The asymptotic values at R → ∞ are subtracted from each
energy contribution. Black dashed lines show the two-cluster decay threshold relative to the asymptotic total energy at R → ∞, given as
2ε (0)

c − ELπ
c+c(∞) = −h̄ω/4.

intercluster wave function in the R direction. In Fig. 6(a), we
show the intrinsic energy E int

c+c(R) for 	π
c+c(R) measured from

the one-dimensional decay threshold energy (2εc + 1
2 h̄ω).

Since 	π
c+c(R) contains a kinetic energy cost 3(h̄ω/4) for the

localization in three directions, the offset energy at R → ∞ is
h̄ω/4.

From the energy curves for [d + d]S=2, [t + t]S=1, and
[α + α]S=0, the effective intercluster interaction in the [d +
d]S=2 system is found to be repulsive for all R, whereas
those in the [t + t]S=1 and [α + α]S=0 systems are attractive
in the medium distance region. The kinetic energy term gives
a repulsive contribution in the short-distance range because
of the Pauli effect, whereas the potential energy term gives
an attractive contribution in a slightly longer range than the
kinetic repulsion. As the mass number c of clusters increases,
the potential energy attraction rapidly increases, and finally
produces the medium-range attraction of the effective interac-
tion in [α + α]S=0.

In the [d + d]S=0 and [t + t]S=0 systems, the effective
inter-cluster interactions are attractive because two clusters
feel either no or a weaker Pauli effect. In particular, two d
clusters in the S = 0 channel feel a rather strong attraction at
short distances and come close to each other without the Pauli
repulsion. In these spin-opposed states, two clusters merge
into bound α and 6He states losing their identity.

In both the spin-aligned and spin-opposed cases, the com-
petition between kinetic an potential energy terms plays an
important role in the effective intercluster interactions. The
relatively short-range repulsion of the intercluster interac-

tions comes from the Pauli effect between identical nucleons
mainly through the kinetic energy term.

3. Energy contributions in the atomic-
and molecular-orbital pictures

For further discussion of the effective intercluster interac-
tion in the [d + d]S=2, [t + t]S=1, and [α + α]S=0 systems,
we count kinetic and potential energy contributions with the
atomic and molecular orbitals, which are described in the
previous section. For a general discussion, we here choose
f3E = f1E ≡ feven and f3O = f1O ≡ fodd and consider a SU4-
symmetric NN force as

vN = VN (r)( fevenPeven + foddPodd) (72)

with Peven ≡ P(3E ) + P(1E ) and Podd ≡ P(3O) + P(1O). The
energy for a single cluster is given as

εc = (c − 1)T̄0 + c(c − 1)

2
V̄ E

0 , (73)

T̄0 ≡ 〈
φ

(0)
0

∣∣t ∣∣φ(0)
0

〉 = 3

4
h̄ω, (74)

V̄ E
0 ≡ feven

〈
φ

(0)
0 φ

(0)
0

∣∣VN

∣∣φ(0)
0 φ

(0)
0

〉
, (75)

where φ
(0)
0 = φ

(0)
R1=0. Note that the odd component gives no

contribution to single-cluster systems.
For the [d + d]S=2, [t + t]S=1, and [α + α]S=0 systems, the

intrinsic energy can be expressed with the orthonormal atomic
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FIG. 6. Intrinsic energies E int
c+c(R) of (a) [d + d]S=2, [t + t]S=1,

and [α + α]S=0 with the SU4-even (vSU4
N ) force, (b) [d + d]S=2

calculated with the tuned (vtuned
N ), state-independent (vst-ind

N ), and
strong-even (3vSU4

N ) forces, and those of (c) [d + d]S=2 calculated
with the tuned and strong-even forces. The energies measured from
the one-dimensional decay threshold energy (2εc + 1

2 h̄ω) are plotted.
In (c), the densities of the orthonormal atomic orbitals ϕL(z) and
ϕR(z) in the [d + d]S=2 system with ν = 0.35 fm−2 at the distance
R = 2.4 fm are shown by blue dotted lines in an arbitrary unit, and
the original atomic orbitals φ

(0)
L (z) and φ

(0)
R (z) are shown by cyan

colored areas. The wave functions for the left and right clusters are
symmetric for the reflection at z = 0 corresponding to R = 1.2 fm,
and those in the range of z � −1.2 fm are presented.

orbitals {ϕL, ϕR} as

E int
c+c − 2εc = T̄0 + 2�εc + (c2 − c)V̄ E

LR + c2V̄ O
LR, (76)

�εc = c(T̄LL − T̄0) + c(c − 1)

2

(
V̄ E

LL − V̄ E
0

)
, (77)

T̄LL ≡ 〈ϕL|t |ϕL〉,
V̄ E

LL ≡ feven〈ϕLϕL|VN |ϕLϕL〉,
V̄ E

LR ≡ feven〈ϕLϕR|VN Peven|ϕLϕR〉,
V̄ O

LR ≡ fodd〈ϕLϕR|VN Podd|ϕLϕR〉. (78)

The first term T̄0 is the kinetic energy cost to localize two clus-
ters with the distance R. �εc in the second term stands for the
internal energy loss of a cluster by the cluster distortion from
{φ(0)

L , φ
(0)
R } to {ϕL, ϕR} because of the Pauli effect. The fourth

term is the potential energy contribution of the odd part, which
vanishes for the SU4-even NN force. The third term for the
even part of the potential energy contribution is proportional
to the factor c2 − c counting the number of different-nucleon
pairs. In the [α + α]S=0 system, this factor is c2 − c = 12
and this third term gives a significant contribution to produce
the medium-range attraction of the effective inter-cluster in-
teraction, whereas the [d + d]S=2 system contains only two
different-nucleon pairs, which is not enough to compensate
the repulsion from the first and second terms.

The energy can be expressed also by molecular orbitals
{ϕ+, ϕ−}. In the present cluster model, ϕ+ and ϕ− become
the harmonic-oscillator 0s and 0p orbits in the R → 0 limit,
{ϕ+, ϕ−} → {ϕs, ϕp}. In this limit, the intrinsic energy of the
two-cluster systems are written as

E int
c+c − 2εc = T̄0 + 2�εc + (c2 − c)V̄ E

sp + c2V̄ O
sp, (79)

�εc = c

2
h̄ω + c

(
V̄ E

pp − V̄ E
0

)
, (80)

V̄ E
pp ≡ feven〈ϕpϕp|VN |ϕpϕp〉,

V̄ E
sp ≡ feven〈ϕsϕp|VN Peven|ϕsϕp〉,

V̄ O
sp ≡ fodd〈ϕsϕp|VN Podd|ϕsϕp〉. (81)

Here, ϕs = φ
(0)
0 and 〈ϕp|t |ϕp〉 = 5h̄ω/4 are used. The internal

energy change �εc contains the significant repulsive effect
from the kinetic energy cost for raising half of A = 2c nucle-
ons from the 0s orbit to the 0p orbit to avoid Pauli blocking.

4. Bound states of [d + d]S=2 with unrealistic NN forces

As shown in Eq. (76), two d clusters in the S = 2 chan-
nel can be bound if the third term 2V̄ E

LR and/or the fourth
term 4V̄ O

LR could give attractive contributions strong enough
to compensate the kinetic energy increase T̄0 and the reduced
binding energy of the clusters, 2�εc. We consider two choices
corresponding to artificial NN forces which produce a bound
[d + d]S=2 state. One is the strong-even force 3vSU4

N , and the
other is the state-independent force vst-ind

N . Although these
forces do not describe physical nuclear systems, it is worth
considering these examples in order to better understand the
underlying physics involved.

The energies of [d + d]S=2 obtained with the GCM and 1d-
GCM calculations for the 3vSU4

N and vst-ind
N forces are shown in

Table II together with the deuteron energy εd , and the R plot
of the intrinsic energies is shown in Fig. 6(b).
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The strong-even force (3vSU4
N ) gives the deeply bound

deuteron cluster with the cluster size smaller than the range
of the NN force, as shown in Fig. 4. This is in contrast to
the tuned NN force vtune

N , which provides a loosely bound
deuteron state with a larger size. Moreover, for the deeply
bound “deuteron” state, the potential energy contribution be-
comes twice the kinetic energy contribution (see Table II). As
seen in the energy curve of the [d + d]S=2 system in Fig. 6(b),
a medium-range attraction of the effective intercluster inter-
action is obtained with the strong-even force. In Fig. 6(c),
we show single-particle densities of the orthonormal atomic
orbitals in the [d + d]S=2 system with the distance R = 2.4 fm
to see the cluster distortion due to Pauli effects at intermedi-
ate distances. One can see that left and right atomic orbitals
have only small overlap and the cluster distortion is minor in
this region. It means that the Pauli repulsion is not crucial
in this region, whereas the potential attraction 2V̄ E

LR gives
significant contribution to the binding of the two d clusters.
In other words, the deeply bound d clusters effectively feel a
longer-range NN force than the weakly bound d-clusters. This
binding mechanism of the [d + d]S=2 system is similar to that
of a two-dimer system (Mm + Mm) with a long-range Mm
potential previously discussed with the heavy-light ansatz.

The second case is the state-independent force vst-ind
N ,

which contains even-parity and odd-parity components with
the same strength. It should be commented that this NN force
is an exactly local potential, whereas other NN forces are
not but state-dependent forces having no odd-parity com-
ponent or a weakly repulsive odd-parity component. The
odd component in vst-ind

N force gives no contribution to the
internal energy of clusters but provides an additional attrac-
tion to the intercluster potential. In Fig. 6(b), the intrinsic
energy of the [d + d]S=2 system obtained with the vst-ind

N
force is shown by a dash-dotted line. The energy curve
shows an attractive cluster-cluster interaction over a wide
range, R � 5 fm. Different from the case of the strong-even
force, there is no short-distance repulsion for this case, and
the system may go to the R → 0 limit with the (0s)2(0p)2

configuration.

IV. SUMMARY

We began with a discussion of effective dimer-dimer inter-
actions for general two-component fermion systems using the
heavy-light ansatz. In our analysis we were able to give a con-
ceptual understanding of why increasing the range or strength
of the local part of the attractive particle-particle interaction
results in a more attractive dimer-dimer interaction.

We then considered the effective cluster-cluster inter-
actions of the d + d , t + t , and α + α systems using a
microscopic cluster model with Brink-Bloch two-cluster wave
functions. As the effective NN force, we use the Volkov cen-
tral force with two sets of the parametrization, the SU4-even
and tuned NN forces. The latter is adjusted to fit the data of
the S-wave NN scattering lengths and the α-α scattering phase
shifts. It was shown that the effective inter-cluster interaction
in the [d + d]S=2 system is repulsive for all R, whereas those

in the [t + t]S=1 and [α + α]S=0 systems are attractive at in-
termediate distances.

In these systems, the kinetic energy term gives a repul-
sion to the effective intercluster interaction because of Pauli
blocking of identical-nucleon pairs. Meanwhile, the potential
energy term gives an attractive contribution with a slightly
longer range than the kinetic energy repulsion. As the mass
number increases, the potential energy contribution increases
rapidly and produces enough medium-range attraction to form
a bound 2α state in the absence of Coulomb effects. For the
[d + d]S=0 and [t + t]S=0 systems, the effective inter-cluster
interactions are attractive since the two clusters feel a weaker
Pauli repulsion or none at all. They then merge to form an α or
6He, respectively, giving up their initial two-cluster structures.

Since the [d + d]S=2 system is a two-dimer system of
two-component fermions in the isospin sector, the effective
intercluster interaction in this system can help to connect
with our analysis of the dimer-dimer interactions for general
fermionic systems. We extended our analysis of the effective
intercluster interaction of the [d + d]S=2 system by artificially
changing the NN forces. It was found that two d clusters
could be bound if two nucleons are deeply bound to form
a compact d cluster with a strong even-parity NN force,
or if the NN force contains both even-parity and odd-parity
attraction.

The present model for the dimer-dimer interactions with
the heavy-light ansatz may be generalized to draw insights on
nucleus-nucleus potentials with larger clusters than α clusters.
Employing the frozen cluster ansatz with mean-field wave
functions for isolated clusters, two-cluster systems correspond
to the case that nucleons are well bound in the long-range
potential of a cluster, and hence, two clusters feel an attrac-
tive cluster-cluster potential at intermediate distances because
of the direct potential term. In the shorter distance region,
the attractive direct potential term is partially suppressed by
repulsive contributions from the kinetic and exchange poten-
tial terms, but the cluster-cluster potential is still attractive
because there are many nucleons deeply bound in the inner
region of each clusters. These features are consistent with gen-
eral understanding of nucleus-nucleus potentials. It may be
also interesting to consider a case of weakly bound nuclei near
the neutron drip-line. In such a case, loosely bound neutron
orbitals can extend in the outer region than the potential range,
and the exchange potential term can yield a slight repulsion of
the cluster-cluster potential at the long distance.
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APPENDIX A: TWO-DIMER SYSTEM WITH DELTA
POTENTIALS IN 1D

As explained in Sec. II, the solution for the two-dimer
system Mm + Mm with a δ Mm potential in the heavy-light
ansatz (M � m) is obtained by solving the single-particle
problem in the two-δ potential

U (x) = v

(
x + R

2

)
+ v

(
x − R

2

)
, (A1)

v(x) = − h̄2κ0

m
δ(x). (A2)

In the frozen dimer ansatz, single-particle energies and wave
functions are approximately expressed as

ε± = ε (0) + 2ε (0) e−2κ0R ± e−κ0R

1 ± e−κ0R(1 + κ0R)
, (A3)

ϕ±(x) = 1√
2[1 ± e−κ0R(1 + κ0R)]

×
[
φ̃

(
κ0; x + R

2

)
± φ̃

(
κ0; x − R

2

)]
, (A4)

φ̃(κ; x) = √
κe−κ|x|, (A5)

where ε (0) = − h̄2

2m κ2
0 and φ̃(κ0; x) = φ(0)(x) are the single-

particle energy and wave function for the bound-state solution
in the single-δ potential U (x) = v(x). ϕ+(x) and ϕ−(x) are the
molecular orbitals with positive and negative parities.

For the exact energies εexact
± , we define valuables

κ± =
√−2mεexact±

h̄
. (A6)

κ± satisfy equations
κ±
κ0

= 1 ± e−κ±R, (A7)

and the solutions are given as

κ+ = κ0

{
1 + 1

κ0R
W0(κ0Re−κ0R)

}
, (A8)

κ− = κ0

{
1 + 1

κ0R
W−1(−κ0Re−κ0R)

}
. (A9)

The exact single-particle energies and wave functions are
written with κ± as

εexact
± = − h̄2

2m
κ2

±, (A10)

ψ±(x) = 1√
2[1 ± e−κ±R(1 + κ±R)]

×
[
φ

(
κ±; x + R

2

)
± φ

(
κ±; x − R

2

)]
. (A11)

Note that the negative-parity state is not bound for κ0R < 1,
meaning that the two-δ potential is not enough to bind two
fermions.

By comparing Eqs. (A4) and (A11), one can see that the ap-
proximate single-particle wave functions ϕ±(x) are expressed

in a similar form to ψ±(x), but κ0 for the unperturbed energy
ε (0) is used in ϕ±(x) instead of κ± for the exact solutions.

Also for the two-δ potential in 3D, exact single-particle
energies (εexact

± = − h̄2

2m κ2
±) for the positive-and negative-parity

bound states can be expressed in similar forms with κ± given
in Eq. (45), which satisfy equations

κ±
κ0

= 1 ± e−κ±R

κ0R
. (A12)

The full details for the 3D case can obtained from the authors
upon request.

APPENDIX B: EFFECTIVE NN INTERACTION

The effective NN force vN (i, j) used in the present calcu-
lations of two-cluster systems is the Volkov central force [39],
which is a finite-range two-body nuclear force with a Gaussian
form as

vN (1, 2) = VN (r)
(
W + BPσ

12 − HPτ
12 − MPσ

12Pτ
12

)
, (B1)

VN (r) =
∑

k=1,2

Vke
− r2

η2
k , r ≡ √

r2 − r1, (B2)

where Pσ
12 and Pτ

12 are the exchange operators of nucleon
spins and isospins, respectively. For the strength and range
parameters, we use the Volkov No. 2 parametrization given
as V1 = −60.65 MeV, V2 = 61.14 MeV, η1 = 1.80 fm, and
η2 = 1.01 fm.

The Volkov NN force can be rewritten as

vN (1, 2) = VN (r)[ f3E P(3E ) + f1E P(1E )

+ f3OP(3O) + f1OP(1O)] (B3)

with

f3E = W + B + H + M,

f1E = W − B − H + M,

f3O = W − B + H − M,

f1O = W + B − H − M. (B4)

It means that the strengths of the 1E , 3E , 1O, and 1O terms
can be adjusted by W , B, H , and M for the Wigner, Bartlett,
Heisenberg, and Majorana terms, respectively, in the Volkov
force.

The parameter sets of W , B, H , and M for the SU4-even,
tuned, strong-even, and state-independent forces used in the
present calculation and corresponding values of f3E , f1E , f3O,
and f1O are summarized in Table I.

The vtuned
N force is adjusted to fit the experimental data

of the S-wave NN scattering lengths at in the spin-triplet
and as in the spin-singlet, and also the α-α scattering phase
shifts. The theoretical values obtained with the vtuned

N force
are at = 5.4 fm and as = −23.9 fm, and the experimental
values measured by pn scattering are at = 5.42 fm and as =
−23.75 fm [40].
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APPENDIX C: RELATIVE WAVE FUNCTION BETWEEN CLUSTERS IN TWO-CLUSTER WAVE FUNCTIONS

The spacial part of the two-cluster wave function 	c+c(R) in Eq. (52) can be rewritten in a separable form of the c.m.,
intercluster, and intrinsic coordinates as

Phic
− R

2
(r1, . . . , rc)	c

R
2
(r1′ , . . . , rc′ ) = φc.m.(rc.m.) ⊗ φrel(R, rrel ) ⊗ 	c(ξ) ⊗ 	c(ξ′) ⊗ [χc(s1, . . . , sc)χc(s1′ , . . . , sc′ )]S, (C1)

φc.m. =
(

4cν

π

)
e−2cνr2

c.m., (C2)

φrel(R, rrel ) =
(

2γ

π

)3/4

e−γ (rrel−R)2 =
∑

L

�L(rrel, R)
∑

m

YLM (r̂rel )Y
∗

LM (R̂), (C3)

�L(rrel, R) ≡ 4π

(
2γ

π

) 3
4

iL(2γ Rrrel )e
−γ (r2

rel+R2 ), (C4)

rcm ≡ 1

2c

c∑
i=1

(ri + ri′ ), rrel ≡ 1

c

c∑
i=1

(ri − ri′ ) (C5)

with γ ≡ c
2ν. Here, rc.m., rrel, ξ, and ξ′ indicate the c.m. coordinate, the intercluster coordinate, and intrinsic coordinates of the

first and second clusters, respectively.
The GCM calculation is performed by superposing Lπ -projected wave functions as given in Eq. (61). The GCM calculation

is equivalent to optimization of the inter-cluster wave function by the expansion with the base function �L(rrel, Rk ) as

�GCM
c+c = A{φc.m.(rc.m.) ⊗ ψGCM(rrel )YLM (r̂rel ) ⊗ 	c(ξ) ⊗ 	c(ξ′) ⊗ [χc(s1, . . . , sc)χc(s1′ , . . . , sc′ )]S}, (C6)

ψGCM(rrel ) =
∑

k

ck

√
2L + 1

4π
�L(rrel, Rk ). (C7)

Similarly, the intercluster wave function ψ1d-GCM(rrel ) in the 1d-GCM wave function is given as

�1d-GCM
c+c = A{φc.m.(rc.m.) ⊗ ψ1d-GCM(rrel ) ⊗ 	c(ξ) ⊗ 	c(ξ′) ⊗ [χc(s1, . . . , sc)χc(s1′, . . . , sc′ )]S}, (C8)

ψ1d-GCM(rrel ) =
∑

k

ckPπφrel(rrel, Rk ) (C9)

with Rk = (0, 0, Rk ).
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