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How patterns in community diversity emerge is a long-standing question in
ecology. Studies suggested that community diversity and interspecific inter-
actions are interdependent. However, evidence from high-diversity ecological
communities is lacking because of practical challenges in characterizing spe-
ciose communities and their interactions. Here, I analysed time-varying
interaction networks that were reconstructed using 1197 species, DNA-based
ecological time series taken fromexperimental rice plots and empirical dynamic
modelling, and introduced ‘interaction capacity’, namely, the sumof interaction
strength that a single species gives and receives, as a potential driver of commu-
nity diversity. As community diversity increases, the number of interactions
increases exponentially but the mean interaction capacity of a community
becomes saturated, weakening interspecific interactions. These patterns are
modelled with simple mathematical equations, based on which I propose
the ‘interaction capacity hypothesis’: that interaction capacity and network con-
nectance can be two fundamental properties that influence community
diversity. Furthermore, I show that total DNA abundance and temperature
influence interaction capacity and connectance nonlinearly, explaining a large
proportion of diversity patterns observed in various systems. The interaction
capacity hypothesis enables mechanistic explanations of community
diversity. Therefore, analysing ecological community data from the viewpoint
of interaction capacity would provide new insight into community diversity.
1. Introduction
How patterns in community diversity in nature emerge is one of the most chal-
lenging and long-standing questions in ecology [1]. Community diversity, or
species diversity, a surrogate of biodiversity that is most commonly focused on
[2], is a collective consequence of community assembly [3]. In the community
assembly processes, interspecific interactions, which contribute to the process
of selection, play an important role in shaping community diversity particularly
at a local (i.e. small/short spatio-temporal) scale [4,5]. They have played a central
role when devising theories of ecological communities, including modern
coexistence theory [6], niche theory [7] and many others. Understanding how
interspecific interactions shape community diversity is key to understanding
how patterns in an ecological community emerge in nature.

Theoretical studies and simple manipulative experiments have supported the
view that interspecific interactions contribute to community diversity [4,8–13].
Nonlinear, state-dependent interspecific interactions have been shown to influence
community diversity, composition and even dynamics [8,9,12], and weak inter-
actions are key to the maintenance of community diversity [10,14]. However,
despite enormous efforts to understand the interdependence between interspecific
interactions and community diversity, especially efforts made in theoretical
studies (e.g. [9,11–13]), whether and how interspecific interactions control diver-
sity in a complex, high-diversity, empirical ecological community remain poorly
understood. This is largely due to two difficulties: (i) the number of species and
interspecific interactions examined in previous theoretical and experimental
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studies have been limited compared with those of a real, high-
diversity ecological community under field conditions, and (ii)
detecting causal relationships between interspecific interactions
and diversity is not straightforward because manipulative
experiments, a most effective strategy to detect causality, are
not feasible when a large number of species and interactions
are targeted under field conditions. Nonetheless, understand-
ing the mechanism by which interspecific interactions drive
community diversity in nature is necessary for predicting
responses of ecological communities and their functions to
the ongoing global climatic and anthropogenic threats [15].

To overcome the previous limitations and examine the
causal relationships between interspecific interactions and
diversity of a speciose, empirical community, I integrated
quantitative environmental DNA monitoring and a nonlinear
time-series analysis and found the potential influences of the
capacity of species for interspecific interactions on commu-
nity diversity. Efficient water sampling, DNA extraction
and quantitative MiSeq sequencing with an internal standard
DNA [16,17] overcame the first difficulty noted above: quan-
titative, highly diverse, multi-taxonomic, daily, 122-day-long
ecological time series were obtained from five experimental
rice plots under field conditions. This extensive ecological
time series was analysed using a framework of nonlinear
time series analysis, empirical dynamic modelling (EDM)
[18–20], to overcome the second difficulty: EDM quantified
fluctuating interaction strengths, reconstructed the time-vary-
ing interaction network of the ecological communities, and
detected potential causal relationships between network
properties and community diversity. Here, I look specifically
at how interaction strengths change with community diver-
sity, and how interspecific interactions and community
diversity are causally coupled. Then, I derive a hypothesis
that could explain community diversity in various empirical
systems, which I call the ‘interaction capacity hypothesis’.
2. Results and discussion
(a) Experimental design and ecological community

monitoring
Ecological time series were taken from five experimental rice
plots established at the Center for Ecological Research, Kyoto
University, Japan (figure 1a; electronic supplementary
material, figure S1). Ecological communities were monitored
by analysing DNA in water samples taken from the rice plots
using two types of filter cartridge [16]. Daily monitoring
during the rice-growing season of 2017 (23 May to 22 Septem-
ber) resulted in 1220 water samples in total (5 plots × 2 filter
types [w0.45 µm and w0.22 µm filters] × 122 days). Prokar-
yotes and eukaryotes (including fungi and animals) were
analysed by amplifying and sequencing 16S rRNA, 18S
rRNA, ITS (for which DNAs extracted from w0.22 µm filters
were used) and mitochondrial COI regions (for which
DNAs from w0.45 µm filters were used), respectively, using
quantitative MiSeq sequencing [16,17]. Over 80 million
reads were generated by four runs of MiSeq, and the
sequences generated were then analysed using the amplicon
sequence variants (ASVs) method [21] (see electronic sup-
plementary material, figure S2 for the sequence quality).
Examination of the relationships between the copy numbers
and sequence reads of standard DNAs (electronic
supplementary material, figure S3a,b) and comparisons of
the quantitative MiSeq method with three independent ana-
lyses showed that the quantitative MiSeq sequencing has a
reasonable capability to measure the quantity, composition
and diversity of the ecological communities (electronic sup-
plementary material, figure S3c–i). Among over 10 000
ASVs detected, 1197 ASVs (equivalent to 1197 taxonomic
units) were abundant, frequently detected and contained
enough temporal information for subsequent time-series ana-
lyses (see the electronic supplementary material, Methods).

(b) Community dynamics and reconstruction of
fluctuating interaction network

The total DNA copy number increased late in the sampling
period (figure 1b). By contrast, ASV diversity (a surrogate
of species diversity in the present study) was highest
in August and then decreased in September (figure 1c).
Prokaryotes largely accounted for this pattern (electronic sup-
plementary material, figure S4), which is not surprising given
their higher diversity and abundance compared with the
other taxa.

Fluctuating interaction networks were reconstructed
using EDM, a time-series analytical framework for nonlinear
dynamics [18–20]. In the analysis, I detected interacting ASV
pairs using convergent cross-mapping (CCM) [18], a causal-
ity test of EDM and then quantified the interaction
strengths by multivariate, regularized S-maps [20,23,24]
(a locally weighted linear regression tool of EDM). Linear
trends of air temperature during the monitoring season
were included in the S-maps, and thus the interaction
strength estimated here reflect net interactions between
species (see the electronic supplementary material, Methods).
In addition, although the total number of ASVs analysed was
over 1000, most ASVs have fewer than 20 causal interactions
(electronic supplementary material, figure S5a), suggesting
that the estimation of interaction strengths by S-map would
be reliable (i.e. the number of data points is more than or
roughly equal to the square of the dimensions of recon-
structed state space, which is required for robust
estimations of the S-map coefficients). Note that, in the case
that the number of dimensions far exceeds the number of
data points, a recently proposed S-map method would be
more suitable [25].

Figure 2 shows the reconstructed network of the detected
interactions over the monitoring period (for the time-varying
interaction networks, see electronic supplementary material,
figure S5b and the electronic supplementary material, video;
https://doi.org/10.6084/m9.figshare.16456179). The properties
of the ecological network changed over time. For example, rela-
tively dense interactions among community members in July
and August (in Plot 1) disappeared by September (electronic
supplementary material, figure S5b). Interestingly, dynamic
stability [26], an index that quantifies how fast the community
bounces back from small perturbations (i.e. the dominant eigen-
value of the interaction matrix), was almost always over 1,
suggesting unstable community dynamics (electronic sup-
plementary material, figure S5c–g). This pattern may not be
surprising because the rice plots were open systems under
field conditions. Many community members could immigrate
and emigrate, leading to inherently unstable community
dynamics. Analysis of the dynamic stability of subset commu-
nities suggested that fluctuations in moderately abundant
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Figure 1. Workflow of the present study and time series of the rice plot ecological communities. (a) Workflow of the present study. (b) Mean DNA copy number of
the ecological communities in rice plots. Different colours indicate different superkingdoms. (c) Temporal patterns of the number of ASVs detected from each plot.
Different symbols and colours indicate different rice plots (n = 122 for each plot; total n = 610).
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community members could contribute to the unstable
dynamics (electronic supplementary material, figure S5d–g).
The fluctuating, seemingly unstable conditions might be key
to understanding the coexistence of many community members
in nature. Alternatively, calculating and comparing different
stability measures such as structural stability [27] may provide
a different insight.
(c) Patterns emerging in the interaction networks
Properties of the interaction networks showed intriguing pat-
terns (figure 3; electronic supplementary material, table S1).
As ASV diversity increases, the mean interaction strength
per link decreases (figure 3a; for mathematical definitions of
network properties, see the electronic supplementary
material, Methods), while the number of interactions in a
community increases exponentially (electronic supplemen-
tary material, figure S6), being consistent with the
theoretical and experimental evidence [4,10]. This suggests
that the total interaction strength that a species receives and
gives, which I call ‘interaction capacity’, might not exceed a
certain upper limit, even when ASV diversity and the
number of interactions in a community increase. Note that
‘interaction capacity’ should ideally be defined as an index
of the total amount of available energy, resources and time
that can be invested in interspecific interactions. However, in
the present study, the interaction capacity is measured as the
total interaction strength, which is actually ‘realized’ inter-
action capacity. In reality, the availability of energy, resources
and time, which are required to interact with other species,
is limited. For example, it seems difficult for a single species
to strongly interact with a large number of species within a cer-
tain time interval given their constrained body size, abundance
and generation time. Also, interspecific interactions usually
involve the consumption of a certain amount of energy.
Thus, it is intuitively plausible to assume that there is a certain
upper limit of interaction capacity. Indeed, the upward trend
of the mean ‘realized’ interaction capacity is weakened when
ASV diversity is over 100 in the studied system (figure 3b),
supporting the assumption.

Another important property of the interaction networks,
connectance, is also relatively constant as ASV diversity
varies (figure 3c; for the definition of connectance, see the
electronic supplementary material, Methods). Importantly,
these patterns were not reproduced when the randomly
shuffled version of the original time series was analysed
(electronic supplementary material, figure S7). In addition,
this pattern of interaction strength per link decreasing and
converging when the number of interactions and/or species
is high and the relatively constant connectance are valid
even at the species level (electronic supplementary material,
figure S8). These findings suggest that the original results
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may not have been experimental or statistical artefacts but
rather may have emerged as consequences of empirical com-
munity assembly processes. Another intriguing pattern is
that mean values of coefficient of variation (CV) of DNA
copy numbers, an EDM-independent index of realized tem-
poral variability, decrease as a function of ASV diversity
(figure 3d; one outlier shows a relatively high CV regardless
of a high community diversity). This showed, for the first
time, that the small temporal variability in species abun-
dances observed in plant communities [28] is also valid
even when all major cellular organisms are taken into
account, and that there is a connection between community
diversity and temporal dynamics in this system.
(d) Interdependence of community diversity and
interaction capacity revealed by simple
mathematical equations

To better understand and clarify the implications of the pat-
terns that emerged in the network properties, I explicitly
show the relationship between the network properties by
developing a simple mathematical model. By starting with
minimal assumptions, I demonstrate that community diver-
sity and interaction capacity are interdependent on each
other. Since connectance, C, is defined as C ¼ Nlink=S2,
species diversity (species richness), S, can be simply rep-
resented as S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nlink=C
p

, where Nlink indicates the total
number of interactions in a community. Furthermore, Nlink

can be decomposed into the mean realized interaction
capacity at the community level (IC), defined as
IC ¼ 2�PS

j¼1
PS

i¼1
i=j

jISi!jj=S (see the electronic supplemen-
tary material, Methods), and the mean interaction strength
per link, ISlink, as follows:

Nlink ¼ IC
2� ISlink

� S: ð2:1Þ

IC=ISlink is divided by 2 because each interaction strength
is counted twice (for donor and receiver species).
Therefore, S, C, IC and ISlink should satisfy the following
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Figure 3. Relationships between the interaction network properties. (a–d ) Covarying relationships (correlations) between ASV diversity and properties of the inter-
action network, namely the mean interaction strength (a), interaction capacity (b), connectance (c) and coefficients of variations in population dynamics (d ).
Interaction capacity is defined as the sum of absolute values of interaction strength that a species gives or receives. Dashed line in a indicates a converged
value of mean interaction strength (approx. equal to 0.03). (e–h) Relationships between interaction capacity, connectance, mean air temperature and total
DNA copy numbers. (i–n) Causal influences of air temperature and total DNA copy numbers on connectance, interaction capacity and community diversity quantified
by EDM. CCM was first applied to each pair, and then multivariate, regularized S-map was applied to quantify the causal influences. Red lines indicate statistically
significant nonlinear regressions by general additive model and grey shaded region indicate 95% confidence interval.
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relationship:

S ¼ IC
2� ISlink � C

: ð2:2Þ

No system-specific assumption is used to derive equation (2.2),
and thus S, IC, ISlink and C should satisfy equation (2.2) in any
system and under any condition. Note that the four par-
ameters are all interdependent, and thus a change in one
parameter influences other parameters. Results of CCM of
the time series taken from the rice plots suggested that the
four parameters in equation (2.2) are indeed interdependent
in the empirical communities (electronic supplementary
material, figure S9).

The simple equation, equation (2.2), suggests that there is
a negative relationship between S and C or ISlink given that
the other parameters are constant. Similar arguments were
made in previous seminal theoretical studies [11,13], but
there are important contributions of equation (2.2) to under-
standing empirical ecological communities. ‘Interaction
capacity’ is an easily understandable concept, and it can be
defined as ‘trait’ for any biological level (e.g. for community,
species or even local populations). Equation (2.2) explicitly
shows the linkage between the interaction capacity and
other fundamental properties of an ecological community,
opening up a new research direction to link the biological
trait and network properties. Furthermore, it would enable
intuitive and clear explanations of mechanisms of community
diversity by investigating how IC and C are determined and
it has empirical supports as shown in the following sections.

(e) The interaction capacity hypothesis
A potentially important feature of the emerging empirical
patterns is that ISlink tends to converge when community
diversity increases (figure 3a). When using the system-
specific parameter value of converged ISlink in the present
study, maximum possible community diversity, Smax, in the
rice plots is approximated based on equation (2.2) as follows:

Smax � IC
2� 0:03� C

: ð2:3Þ

Equation (2.3) predicts that there is a positive relationship
between the interaction capacity and community diversity
while there is a negative relationship between connectance
and community diversity, which is consistent with previous
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theoretical studies (e.g. [11,13]). Although equation (2.3)
alone is not sufficient to understand which variable is an ulti-
mate determinant of the system properties, this mathematical
model indicates that species diversity can be predicted if we
know how IC and C are determined in a community.

My ecological time series provides a unique opportunity
to detect potential variables that influence interaction
capacity (IC) and connectance (C) under field conditions. In
the analysis, I focused on two fundamental variables that
are statistically independent of the network properties: air
temperature and total DNA copy number (an index of total
abundance/biomass). Also, I focused on these because air
temperature is an independent external driver of community
dynamics and because total abundance could be an index of
net ecosystem productivity or available energy in a system,
which could be a potential driver of community diversity
[29,30]. Correlation analysis shows that the interaction
capacity is positively correlated with mean air temperature
and total DNA copy number (figure 3e,f ). Connectance is
positively correlated with total DNA copy number and is
weakly correlated with mean air temperature (figure 3g,h).

Causal relationships between the network properties and
external forces were examined with CCM, and the results
suggested that mean interaction capacity and connectance are
causally influenced by mean air temperature and total DNA
copy number (electronic supplementary material, figure S9).
The S-map revealed that mean air temperature in general posi-
tively influenced interaction capacity and connectance, as
indicated by mostly positive values along the gradient
(figure 3i,j; values on the y-axis indicate how changes in temp-
erature cause changes in interaction capacity or connectance).
Temperature may influence many aspects of biological pro-
cesses (e.g. physiological rates of individuals), and therefore
the influences of air temperature on interaction capacity and
connectance may arise from the increased activities of individ-
uals. Although temperature effects on connectance and mean
interaction capacity at the community level were comparable,
the net effects of temperature on diversity, that is, effects of
temperature through its effects on interaction capacity and con-
nectance, were consistently positive (figure 3k). This indicates
that the positive influence of temperature on mean interaction
capacity, not that on connectance, plays a major role in shaping
community diversity.

When total DNA copy number is low, its influence on con-
nectance is variable (figure 3l ). When total DNA copy
number is high, however, total DNA copy number strongly
and positively influences connectance, suggesting that denser
populations should have higher connectance, probably because
the greater population size may facilitate random encounters
among individuals or species. On the other hand, the influences
on interaction capacity are relatively small and variable
(figure 3m). These results predict that total DNA copy number
(or abundance/biomass) over a certain threshold negatively
influence diversity, which is indeed the case here (figure 3n).

Together, the results of EDM show that interaction
capacity and connectance are influenced by temperature (T )
and total DNA copy number (DNA). This suggests that, if
we assume that ISlink is converged in a system, species diver-
sity, S, in the system can be approximated using these two
fundamental parameters as follows:

S � IC(T, DNA)
2� 0:03� C(T, DNA)

: ð2:4Þ
Although the influences of temperature and abundance
(biomass or energy) on diversity have long been recognized
in literatures (e.g. [31]), this model, supported by empirical
evidence, provides mechanistic explanations about how
temperature and abundance control community diversity.
The present study did not include other potentially important
abiotic factors such as water pH and nutrient availability, but
the mechanisms of the influence of such factors may also be
understood by considering their effects on interaction
capacity and connectance. Because community diversity,
interaction capacity and connectance are interdependent in
any system and under any condition according to equation
(2.2), the influences of any biotic/abiotic factors on commu-
nity diversity can be mechanistically explained and
predicted if we can understand the interdependence among
these factors, interaction capacity and connectance, a
proposal which I call the ‘interaction capacity hypothesis’.
( f ) Empirical evidence supporting the interaction
capacity hypothesis in other systems and
predictions based on the hypothesis

The simple mathematical model and the analyses of the
extensive ecological time series reported here suggest that
community diversity, interaction capacity and connectance
are interdependent, and that the long-recognized patterns
that temperature and total species abundance influence com-
munity diversity could be understood by considering their
influences on interaction capacity and connectance. In some
cases, variable responses of community diversity to tempera-
ture and/or abundance might be observed because of the
nonlinear influences of temperature and abundance on inter-
action capacity and connectance (figure 3i–n). Conversely, if
the hypothesis is applicable to other systems, it should be
possible to explain community diversity reasonably well by
a nonlinear regression using temperature and total abun-
dance. Indeed, a meta-analysis that compiled two global
datasets and four local datasets collected in Japan showed
that biodiversity is surprisingly well explained only by a
nonlinear regression using temperature and abundance,
suggesting that the interaction capacity hypothesis might be
applicable to a wide range of taxa and ecosystems (electronic
supplementary material, figure S10a–f and Text; see also
electronic supplementary material, figure S10g,h for other
evidence).

The interaction capacity hypothesis provides quantitative
and unique predictions about community diversity in nature.
For example, everything else being equal, community diver-
sity may increase with increasing temperature because of
increased interaction capacity under warmer conditions
(figure 4a,b). Similarly, community diversity will increase
with increasing habitat heterogeneity because of decreased
connectance (figure 4a,b). Thus, high-diversity communities
will exist under optimal environmental conditions (i.e. high
interaction capacity) with spatially heterogeneous habitats
(i.e. low connectance), such as plants in tropical forests or
microbes in soils with neutral pH (figure 4c,d ). Furthermore,
under such conditions, community dynamics will be stabil-
ized because of the decreased interaction strengths
(figures 3d and 4c; also see evidence from a recent experimen-
tal study [10]). On the other hand, low-diversity communities
will exist under extreme environmental conditions with



extreme temperature
low spatial heterogeneity

a few interactions
are possible

many interactions
are possible

high connectance low connectance

optimal temperature
high spatial heterogeneity

community diversity

interaction strength
per link

temporal variability

low diversity high diversity

strong interaction weak interaction

high variability low variability

e.g. desert e.g. tropical forest

interaction capacity

connectance

(b)   mechanism

(a)   potential external drivers

(c)   outcomes in ecological communities

(d )   example communities

Figure 4. Potential drivers of the community network according to the interaction capacity hypothesis and examples of ecological communities. (a) Potential
external drivers that contribute to the community diversity and network structure. (b) Mechanisms of community assembly. Extreme and optimal temperature
would generally decrease and increase species interaction capacity, respectively. Spatial heterogeneity decreases connectance, which subsequently increases com-
munity diversity. (c) Outcomes of community diversity and dynamics. Extreme temperature and low spatial heterogeneity (e.g. desert ecosystem) generate a
community with low diversity, high interaction strength (and a small number of interactions) and unstable dynamics. On the other hand, optimal temperature
and high spatial heterogeneity (e.g. tropical forests) generate a community with high-diversity, low-interaction strength (but a large number of interactions)
and stable community dynamics. (d ) Examples of ecological communities (low-diversity versus high-diversity community) according to the potential external drivers
and the interaction capacity hypothesis. (Online version in colour.)
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spatially homogeneous habitats, such as deserts, because of
decreased (or consumed) interaction capacity and increased
connectance.
(g) Future directions
Although there are several potential limitations of the present
study (see the electronic supplementary material for the
details), the interaction capacity hypothesis has some empiri-
cal and theoretical supports, and thus how interaction
capacity is determined will be an interesting question in ecol-
ogy. For example, interaction capacity may be influenced by
energy and resources provided to a system, but it can also
be influenced by species identity (i.e. species’ ecology,
physiology and evolutional history; e.g. higher interaction
capacities of prokaryotes than of eukaryotes; see electronic
supplementary material, figure S8b,d ). Also, rapid evolution
and eco-evolutionary feedbacks may cause changes in species
trait, their interactions and dynamics (e.g. [32]), which would
influence how species assign their interaction capacity to
biotic/abiotic interactions. Incorporating species identity,
evolutionary history and eco-evolutionary feedbacks into
the interaction capacity hypothesis would be an interesting
direction for future studies. Furthermore, abiotic factors can
easily and explicitly be incorporated into the interaction
capacity hypothesis. For example, if interaction capacity (or
energy resources) is ‘consumed’ to adapt to harsh environ-
mental conditions, interaction capacity that can be used for
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interspecific interaction will decrease, which will conse-
quently decrease community diversity. Incorporating the
impact of climate change into the interaction capacity
hypothesis might reveal implications for how ecological
communities respond to climate change.
publishing.org/journal/rspb
Proc.R.Soc.B

289:20212690
3. Conclusion
How patterns in community diversity emerge has been exten-
sively studied by experimental and theoretical approaches, yet
rarely examined for highly diverse, complex ecological com-
munities. Using DNA-based, highly frequent, quantitative,
extensive ecological time series and EDM, I proposed that
‘interaction capacity’ would be a key concept to understand
and predict community diversity. Connectance may also
play an important role, because it influences how interaction
capacity is divided into each interaction link. Interaction
capacity can be influenced by the total abundance and temp-
erature, which can provide mechanistic explanations for
many observed ecological patterns in nature. Carefully
designed experiments (e.g. manipulation of interaction
strength, capacity and/or community diversity) and large-
scale monitoring of natural ecological communities are
required to empirically verify the interaction capacity hypoth-
esis. However, once validated, expanding spatial and
temporal scales and incorporating the other processes in com-
munity assembly (that is, speciation, dispersal and drift) [3]
into the interaction capacity hypothesis will further deepen
our understanding of community assembly processes, which
will contribute to how we can predict, manage and conserve
biodiversity and the resultant ecosystem functions in nature.
4. Method summary
For the full method descriptions, see the electronic supplemen-
tary material, Methods.

(a) Experimental setting
Five artificial rice plots were established using small plastic con-
tainers (90 × 90 × 34.5 cm; 216 l total volume; Risu Kogyo,
Kagamigahara, Japan) in an experimental field at the Center
for Ecological Research, Kyoto University, in Otsu, Japan (34˚
580 180 0N, 135˚ 570 330 0E) (electronic supplementary material,
figure S1). Sixteen Wagner pots (w174.6 × w160.4 × 197.5 mm;
AsOne, Osaka, Japan) were filled with commercial soil, and
three rice seedlings (var. Hinohikari) were planted in each pot
on 23 May 2017 and then harvested on 22 September 2017
(122 days). The containers (hereafter, ‘plots’) were filled with
well water, and the ecological community was monitored by
analysing DNA in the well water (see following subsections).

(b) Field monitoring of the ecological community
To monitor the ecological community, water samples were col-
lected daily from the five rice plots. Approximately 200 ml of
water in each rice plot was collected from each of the four corners
of the plot using a 500 ml plastic bottle and taken to the labora-
tory within 30 min. The water was filtered using Sterivex filter
cartridges (Merck Millipore, Darmstadt, Germany). Two types
of filter cartridges were used to filter water samples: to detect
microorganisms, w0.22 µm Sterivex (SVGV010RS) filter car-
tridges that included zirconia beads inside were used [16], and
to detect macroorganisms, w0.45 µm Sterivex (SVHV010RS)
filter cartridges were used. After filtration, 2 ml of RNAlater
solution (ThermoFisher Scientific, Waltham, Massachusetts,
USA) were added to each filter cartridge to prevent DNA degra-
dation during storage. In total, 1220 water samples (122 days × 2
filter types × 5 plots) were collected during the census term. In
addition, 30 field-level negative controls, 32 PCR-level negative
controls with or without the internal standard DNAs and 10
positive controls to monitor the potential DNA cross-contami-
nation and degradation during the sample storage, transport,
DNA extraction and library preparations were used.

(c) DNA extractions, library preparations for MiSeq
sequencing with internal standard DNAs and
sequence processing

Due to the space limitation, detailed information about how
DNA was extracted, DNA library was prepared, and generated
sequences were processed are described in the electronic sup-
plementary material, Methods. Briefly, DNA was extracted and
purified using a DNeasy Blood & Tissue kit following a protocol
described in my previous study [16]. After the purification, DNA
was eluted using 100 µl of the elution buffer and stored at −20°C
until further processing.

Two-step PCR approach was adopted for the library prep-
aration for quantitative MiSeq sequencing. Briefly, the first-
round PCR (first PCR) was carried out with the internal standard
DNAs to amplify metabarcoding regions using primers specific
to prokaryotes (515F and 806R), eukaryotes (Euk_1391f and
EukBr), fungi (ITS1-F-KYO1 and ITS2-KYO2) and animals
(mlCOIintF and HCO2198) (for primer sequences and references,
see the electronic supplementary material). The second-round
PCR (second PCR) was carried out to append indices for differ-
ent samples for sequencing with MiSeq. The DNA library was
sequenced on the MiSeq (Illumina, San Diego, CA, USA).

Scripts to process the sequence data are available at Zenodo
(https://doi.org/10.5281/zenodo.5867264). The raw MiSeq data
were converted into FASTQ files using the bcl2fastq program
provided by Illumina (bcl2fastq v.2.18). The FASTQ files were
then demultiplexed using the command implemented in Clai-
dent v.0.2.2019.05.10 (http://www.claident.org) [33].
Demultiplexed FASTQ files were then analysed using the ASV
method implemented in the DADA2 (v.1.11.5) package of
R. Taxonomic identification was performed using Claident.

(d) Estimations of DNA copy numbers and validation of
the quantitative capability of the MiSeq sequencing
with internal standard DNAs

For all analyses in this subsection, the free statistical environment
R v.3.6.1 was used [34]. The procedure used to estimate DNA
copy numbers consisted of two parts, following previous studies
[16,17]. Briefly, I did (i) linear regression analysis to examine the
relationship between sequence reads and the copy numbers of
the internal standard DNAs for each sample (electronic sup-
plementary material, figure S3a,b), and (ii) the conversion of
sequence reads of non-standard DNAs to estimate the copy num-
bers using the result of the linear regression for each sample. The
regression equation was MiSeq sequence reads = sample-specific
regression slope × the number of standard DNA copies (per µl)
(see electronic supplementary material, figure S3 for the vali-
dation of this method).

The quantitative capacity of the MiSeq sequencing with
internal standard DNAs (i.e. the quantitative MiSeq sequencing)
is one of important factors that could influence subsequent data
analyses. Therefore, I checked the reliability of the quantitative
capacity of the method using three independent experiments
(fluorescent-based total DNA quantifications, quantitative PCR

https://doi.org/10.5281/zenodo.5867264
https://doi.org/10.5281/zenodo.5867264
http://www.claident.org
http://www.claident.org
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[qPCR] of the 16S region and shotgun metagenomic analysis)
and compared the results with those of the quantitative MiSeq
sequencing. Details of the total DNA quantification, qPCR and
shotgun metagenomic analysis and discussion of the results are
provided in the electronic supplementary material, Methods.

(e) Empirical dynamic modelling: convergent cross-
mapping and the regularized, multivariate S-map
method

The reconstruction of the original dynamics using time-lagged
coordinates is known as state space reconstruction (SSR) [35,36]
and is useful when one wants to understand complex dynamics.
Recently, developed tools for nonlinear time-series analysis
called ‘empirical dynamic modelling (EDM),’which were specifi-
cally designed to analyse state-dependent behaviour of dynamic
systems, are rooted in SSR [18–20,26]. These methods do not
assume any set of equations governing the system and thus are
suitable for analysing complex systems, for which it is often dif-
ficult to make reasonable a priori assumptions about their
underlying mechanisms.

To detect causation between species detected by the DNA
analysis, CCM, a causality detection tool of EDM [18],
implemented in ‘rEDM’ (v.0.7.5) [19,37] was performed with
some modifications based on an algorithm described in ‘rUIC’
(v.0.1.5) packages [22]. After the detection of causal pairs, the
multivariate, regularized S-map (sequential locally weighted
global linear map) method was used to quantify dynamic (i.e.
time varying) interactions of the causal pairs [20,24]. What cri-
teria were used for each analysis, how statistical significance
was determined, and other detailed information are described
in the electronic supplementary material, Methods and https://
doi.org/10.5281/zenodo.5867264. How properties of the inter-
action network were calculated after the network
reconstruction are also described in the electronic supplementary
material, Methods.
Data accessibility. Computer codes used in the present study are available
from Zenodo (https://doi.org/10.5281/zenodo.5867264) and GitHub
(https://github.com/ong8181/interaction-capacity). Sequence data
are deposited in DDBJ Sequence Read Archives (DRA) (DRA accession
number =DRA009658, DRA009659, DRA009660 and DRA009661 for
ecological community monitoring data and DRA012505 for support-
ing shotgun metagenomic data).

Authors’ contributions. M.U.: conceptualization, data curation, formal
analysis, funding acquisition, investigation, methodology, project
administration, resources, software, supervision, validation, visual-
ization, writing—original draft and writing—review and editing.
Competing interests. I declare I have no competing interests.

Funding. This research was supported by PRESTO (JPMJPR16O2) from
the Japan Science and Technology Agency (JST), KAKENHI (B)
20H03323 (to M.U.), and the Hakubi Project in Kyoto University.

Acknowledgements. I thank Asako Kawai for the assistance in field moni-
toring and DNA library preparations, Saori Furukawa and Atsushi
J. Nagano for help in the additional DNA experiments, Akira Matsu-
moto, Satoru Yonezawa and Satomi Yoshinami for assistance in the
monitoring setup and field monitoring, Yutaka Osada for advice
and discussion on EDM, Takeshi Miki, Erik A. Hobbie, Masahiro
Ryo and Hao Ye for comments on the manuscript, and Ai Matsuda
for help in the figure editing. I thank Mohammad Bahram, Yukiko
Goda, Jun-ichi Okano, Yusuke Okazaki, Noboru Okuda and Jun-ya
Shibata for providing the dataset for the meta-analysis. I also thank
Christoph Ratzke and Akira Yamawo for providing the raw data
published in their previous studies.
References
1. Gaston KJ. 2000 Global patterns in biodiversity.
Nature 405, 220–227. (doi:10.1038/35012228)

2. Willig MR, Kaufman DM, Stevens RD. 2003
Latitudinal gradients of biodiversity: pattern,
process, scale, and synthesis. Annu. Rev. Ecol. Evol.
Syst. 34, 273–309. (doi:10.1146/annurev.ecolsys.34.
012103.144032)

3. Vellend M. 2016 The theory of ecological
communities. Princeton, NJ: Princeton University
Press. See https://www.jstor.org/stable/j.ctt1kt82jg.

4. Kokkoris GD, Troumbis AY, Lawton JH. 1999 Patterns
of species interaction strength in assembled
theoretical competition communities. Ecol. Lett. 2,
70–74. (doi:doi:10.1046/j.1461-0248.1999.22058.x)

5. Maynard DS, Serván CA, Allesina S. 2018 Network
spandrels reflect ecological assembly. Ecol. Lett. 21,
324–334. (doi:doi:10.1111/ele.12912)

6. Chesson P. 2000 Mechanisms of maintenance of
species diversity. Annu. Rev. Ecol. Syst. 31, 343–366.
(doi:10.1146/annurev.ecolsys.31.1.343)

7. Chase JM, Leibold MA. 2003 Ecological niches:
linking classical and contemporary approaches.
Chicago, IL: University of Chicago Press.

8. Reynolds PL, Bruno JF. 2013 Multiple predator species
alter prey behavior, population growth, and a trophic
cascade in a model estuarine food web. Ecol. Monogr.
83, 119–132. (doi:10.1890/11-2284.1)

9. Bairey E, Kelsic ED, Kishony R. 2016 High-order
species interactions shape ecosystem diversity. Nat.
Commun. 7, 12285. (doi:10.1038/ncomms12285)
10. Ratzke C, Barrere J, Gore J. 2020 Strength of species
interactions determines biodiversity and stability in
microbial communities. Nat. Ecol. Evol. 4, 376–383.
(doi:10.1038/s41559-020-1099-4)

11. May RM. 1972 Will a large complex system be
stable? Nature 238, 413–414. (doi:10.1038/
238413a0)

12. Mougi A, Kondoh M. 2012 Diversity of interaction
types and ecological community stability. Science
337, 349–351.

13. Allesina S, Tang S. 2012 Stability criteria for
complex ecosystems. Nature 483, 205–208. (doi:10.
1038/nature10832)

14. Wootton JT, Emmerson M. 2005 Measurement of
interaction strength in nature. Annu. Rev. Ecol. Evol.
Syst. 36, 419–444. (doi:10.1146/annurev.ecolsys.36.
091704.175535)

15. Aronson MFJ et al. 2014 A global analysis of
the impacts of urbanization on bird and plant
diversity reveals key anthropogenic drivers.
Proc. R. Soc. B 281, 20133330. (doi:10.1098/rspb.
2013.3330)

16. Ushio M. 2019 Use of a filter cartridge combined
with intra-cartridge bead-beating improves
detection of microbial DNA from water samples.
Methods Ecol. Evol. 10, 1142–1156. (doi:10.1111/
2041-210X.13204)

17. Ushio M, Murakami H, Masuda R, Sado T, Miya M,
Sakurai S, Yamanaka H, Minamoto T, Kondoh M.
2018 Quantitative monitoring of multispecies fish
environmental DNA using high-throughput
sequencing. Metabarcoding Metagenomics 2,
e23297.

18. Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty
M, Munch S. 2012 Detecting causality in complex
ecosystems. Science 338, 496–500. (doi:10.1126/
science.1227079)

19. Ye H, Beamish RJ, Glaser SM, Grant SCH, Hsieh CH,
Richards LJ, Schnute JT, Sugihara G. 2015 Equation-
free mechanistic ecosystem forecasting using
empirical dynamic modeling. Proc. Natl Acad. Sci.
USA 112, E1569–E1576. (doi:10.1073/pnas.
1417063112)

20. Deyle ER, May RM, Munch SB, Sugihara G. 2016
Tracking and forecasting ecosystem interactions in
real time. Proc. R. Soc. B 283, 20152258. (doi:10.
1098/rspb.2015.2258)

21. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW,
Johnson AJA, Holmes SP. 2016 DADA2: high-
resolution sample inference from Illumina amplicon
data. Nat. Meth. 13, 581–583.

22. Osada Y, Ushio M. 2021 rUIC: unified information-
theoretic causality for R. Zenodo. (doi:10.5281/
zenodo.5163234)

23. Cenci S, Sugihara G, Saavedra S. 2019 Regularized
S-map for inference and forecasting with noisy
ecological time series. Methods Ecol. Evol. 10,
650–660. (doi:10.1111/2041-210X.13150)

24. Sugihara G. 1994 Nonlinear forecasting for the
classification of natural time series. Phil. Trans. R.

https://doi.org/10.5281/zenodo.5867264
https://doi.org/10.5281/zenodo.5867264
https://doi.org/10.5281/zenodo.5867264
https://doi.org/10.5281/zenodo.5867264
https://doi.org/10.5281/zenodo.5867264
https://github.com/ong8181/interaction-capacity
https://github.com/ong8181/interaction-capacity
http://dx.doi.org/10.1038/35012228
http://dx.doi.org/10.1146/annurev.ecolsys.34.012103.144032
http://dx.doi.org/10.1146/annurev.ecolsys.34.012103.144032
https://www.jstor.org/stable/j.ctt1kt82jg
https://www.jstor.org/stable/j.ctt1kt82jg
http://dx.doi.org/doi:10.1046/j.1461-0248.1999.22058.x
http://dx.doi.org/doi:10.1111/ele.12912
http://dx.doi.org/10.1146/annurev.ecolsys.31.1.343
http://dx.doi.org/10.1890/11-2284.1
http://dx.doi.org/10.1038/ncomms12285
https://doi.org/10.1038/s41559-020-1099-4
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/nature10832
http://dx.doi.org/10.1038/nature10832
http://dx.doi.org/10.1146/annurev.ecolsys.36.091704.175535
http://dx.doi.org/10.1146/annurev.ecolsys.36.091704.175535
http://dx.doi.org/10.1098/rspb.2013.3330
http://dx.doi.org/10.1098/rspb.2013.3330
https://doi.org/10.1111/2041-210X.13204
https://doi.org/10.1111/2041-210X.13204
http://dx.doi.org/10.1126/science.1227079
http://dx.doi.org/10.1126/science.1227079
http://dx.doi.org/10.1073/pnas.1417063112
http://dx.doi.org/10.1073/pnas.1417063112
http://dx.doi.org/10.1098/rspb.2015.2258
http://dx.doi.org/10.1098/rspb.2015.2258
http://dx.doi.org/10.5281/zenodo.5163234
http://dx.doi.org/10.5281/zenodo.5163234
http://dx.doi.org/10.1111/2041-210X.13150


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 F

eb
ru

ar
y 

20
22

 

Soc. Lond. A 348, 477–495. (doi:10.1098/rsta.1994.
0106)

25. Chang CW, Miki T, Ushio M, Ke PJ, Lu HP, Shiah FK,
Hsieh C. 2021 Reconstructing large interaction
networks from empirical time series data. Ecol. Lett.
24, 2763–2774. (doi:10.1111/ele.13897)

26. Ushio M, Hsieh C, Masuda R, Deyle ER, Ye H, Chang
CW, Sugihara G, Kondoh M. 2018 Fluctuating
interaction network and time-varying stability of a
natural fish community. Nature 554, 360–363.

27. Cenci S, Saavedra S. 2019 Non-parametric
estimation of the structural stability of
non-equilibrium community dynamics.
Nat. Ecol. Evol. 3, 912–918. (doi:10.1038/
s41559-019-0879-1)

28. Tilman D, Reich PB, Knops JMH. 2006 Biodiversity
and ecosystem stability in a decade-long grassland
experiment. Nature 441, 629–632.
29. Huston MA. 2014 Disturbance, productivity, and species
diversity: empiricism vs. logic in ecological theory.
Ecology 95, 2382–2396. (doi:10.1890/13-1397.1)

30. Evans KL, Warren PH, Gaston KJ. 2005 Species-
energy relationships at the macroecological scale: a
review of the mechanisms. Biol. Rev. 80, 1–25.
(doi:10.1017/S1464793104006517)

31. Begon M, Townsend CR, Harper JL. 2005 Ecology:
from individuals to ecosystems, 4th Edition.
Hoboken, New Jersey: Wiley Blackwell Publishing.
See https://www.wiley.com/en-us/Ecology%3A+
From+Individuals+to+Ecosystems%2C+4th+
Edition-p-9781405111171.

32. Kasada M, Yamamichi M, Yoshida T. 2014 Form of
an evolutionary tradeoff affects eco-evolutionary
dynamics in a predator-prey system. Proc. Natl Acad.
Sci. USA 111, 16 035–16 040. (doi:10.1073/pnas.
1406357111)
33. Tanabe AS, Toju H. 2013 Two new computational
methods for universal DNA barcoding: a benchmark
using barcode sequences of bacteria, archaea,
animals, fungi, and land plants. PLoS ONE 8,
e76910. (doi:10.1371/journal.pone.0076910)

34. R Core Team. 2019 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

35. Takens F. 1981 Detecting strange attractors in
turbulence. In Dynamical systems and turbulence
(eds D Rand, L-S Young), pp. 366–381. New York,
NY: Springer-Verlag. (doi:10.1007/BFb0091924)

36. Deyle ER, Sugihara G. 2011 Generalized theorems
for nonlinear state space reconstruction. PLoS ONE
6, e18295. (doi:10.1371/journal.pone.0018295)

37. Ye H et al. 2018 rEDM: applications of empirical
dynamic modeling from time series. (doi:10.5281/
zenodo.1294063)
2
89
:20212690

http://dx.doi.org/10.1098/rsta.1994.0106
http://dx.doi.org/10.1098/rsta.1994.0106
http://dx.doi.org/10.1111/ele.13897
http://dx.doi.org/10.1038/s41559-019-0879-1
http://dx.doi.org/10.1038/s41559-019-0879-1
http://dx.doi.org/10.1890/13-1397.1
http://dx.doi.org/10.1017/S1464793104006517
https://www.wiley.com/en-us/Ecology%3A+From+Individuals+to+Ecosystems%2C+4th+Edition-p-9781405111171
https://www.wiley.com/en-us/Ecology%3A+From+Individuals+to+Ecosystems%2C+4th+Edition-p-9781405111171
https://www.wiley.com/en-us/Ecology%3A+From+Individuals+to+Ecosystems%2C+4th+Edition-p-9781405111171
https://www.wiley.com/en-us/Ecology%3A+From+Individuals+to+Ecosystems%2C+4th+Edition-p-9781405111171
http://dx.doi.org/10.1073/pnas.1406357111
http://dx.doi.org/10.1073/pnas.1406357111
http://dx.doi.org/10.1371/journal.pone.0076910
https://doi.org/10.1007/BFb0091924
http://dx.doi.org/10.1371/journal.pone.0018295
http://dx.doi.org/10.5281/zenodo.1294063
http://dx.doi.org/10.5281/zenodo.1294063

	Interaction capacity as a potential driver of community diversity
	Introduction
	Results and discussion
	Experimental design and ecological community monitoring
	Community dynamics and reconstruction of fluctuating interaction network
	Patterns emerging in the interaction networks
	Interdependence of community diversity and interaction capacity revealed by simple mathematical equations
	The interaction capacity hypothesis
	Empirical evidence supporting the interaction capacity hypothesis in other systems and predictions based on the hypothesis
	Future directions

	Conclusion
	Method summary
	Experimental setting
	Field monitoring of the ecological community
	DNA extractions, library preparations for MiSeq sequencing with internal standard DNAs and sequence processing
	Estimations of DNA copy numbers and validation of the quantitative capability of the MiSeq sequencing with internal standard DNAs
	Empirical dynamic modelling: convergent cross-mapping and the regularized, multivariate S-map method
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


