Overview

ジェットスキームの有理2重点上の ファイバーの既約成分の配置

Yoshimune Koreeda
Hiroshima university
October 27th 2021

Overview

Setting

S ：surface with rational double point singularity at 0
$m>0$
S_{m} ：＂m－th jet scheme＂
$\pi_{m}: S_{m} \rightarrow S$ ：＂truncation map＂
The following one－to－one correspondence is known（Mourtada）：
Irred．comps．of $\pi_{m}^{-1}(0) \leftrightarrow$ Exceptional curves in a minimal resolution

Problem

Can one reconstruct the resolution graph from the informations of the jet scheme？

Main Theorem
 For A_{n} or D_{4}－type singular surfaces，the following conditions are equivalent：
 －The intersection of two distinct irreducible components of $\pi_{m}^{-1}(0)$ is ＂maximal＂．
 －The corresponding exceptional curves on the minimal resolution intersect．

Today
\rightsquigarrow Mainly talk about the case of the D_{4}－type singular surface．

Preparation ：Definition of jet schemes

Setting

Sch／ \mathbb{C} ：the category of schemes over \mathbb{C}

Set ：the category of sets
$X \in \mathbf{S c h} / \mathbb{C}$ ：a scheme of finite type over \mathbb{C}
For $m \in \mathbb{Z}_{\geq 0}$ ，the functor

$$
F_{m}^{X}: \mathbf{S c h} / \mathbb{C} \rightarrow \mathbf{S e t} ; Z \mapsto \operatorname{Hom}_{Z}\left(Z \times \operatorname{Spec} \mathbb{C}[t] /\left\langle t^{m+1}\right\rangle, Z \times X\right)
$$

is a representable functor，and is represented by a scheme X_{m} of finite type over \mathbb{C} ．
Definition（Jet scheme）
The scheme X_{m} is called the m－th jet scheme of X ．

Preparation ：Calculation of jet schemes

$X=(f(x, y, z)=0) \subset \mathbb{A}^{3}$
The $m\left(\in \mathbb{Z}_{\geq 0}\right)$－th jet schemes are calculated as follows：

```
Let \(\mathbf{x}=x_{0}+x_{1} t+x_{2} t^{2}+\cdots+x_{m} t^{m}, \mathbf{y}=y_{0}+y_{1} t+y_{2} t^{2}+\cdots+y_{m} t^{m}\)
\(z=z_{0}+z_{1} t+z_{2} t^{2}+\cdots+z_{m} t^{m}\)
Expand \(f(\mathbf{x}, \mathbf{y}, \mathbf{z})\) as
    \(f(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv f^{(0)}+f^{(1)} t+\cdots+f^{(m)} t^{m} \bmod t^{m+1}\)
\(\left(f^{(0)}, \ldots, f^{(m)} \in \mathbb{C}\left[x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right]\right)\)
```

Then the m－th jet scheme X_{m} of X is defined by

$$
\left\langle f^{(0)}, \ldots, f^{(m)}\right\rangle
$$

in $\mathbb{A}^{3(m+1)}$ ．
$\pi_{m}: X_{m} \rightarrow X$ ：truncation morphism（the map given by＂t $=0$＂）

Preparation

For $X=\mathbb{A}^{3}$ ，the m－th jet scheme is $X_{m}=\mathbb{A}^{3(m+1)}$ and the truncation morphism is as follows

$$
\pi_{m}: X_{m} \rightarrow X ;\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{m}, c_{0}, \ldots, c_{m}\right) \mapsto\left(a_{0}, b_{0}, c_{0}\right)
$$

Definition（Singular fiber）

The inverse image of the singular point $\pi_{m}^{-1}(0)$ ，denoted by X_{m}^{0} ，is called the singular fiber．

Singular fiber

$S=\mathbf{V}(f) \subset \mathbb{A}^{3}$ ：surface with an A_{n}－or D_{4}－type singular point at 0
The singular fiber S_{m}^{0} is defined by the following ideal in $\left(\mathbb{A}^{3}\right)_{m} \cong \mathbb{A}^{3(m+1)}$ ；

$$
\left\langle x_{0}, y_{0}, z_{0}, f^{(0)}, \ldots, f^{(m)}\right\rangle
$$

The following theorem was proven by H．Mourtada．

Theorem（H．Mourtada［1，Theorem 3．1，Theorem 3．2］）

Suppose $n>0$ and $m \gg 0$ ．The singular fiber S_{m}^{0} decomposes into n irreducible components and their codimensions are 1 in S_{m} ．

We considering the following problem about irreducible components of the singular fiber．

Problem

Fix the degree m of jets．When is the intersection of two distinct irreducible components of the singular fiber＂maximal＂？

October 27 2021 $7 / 12$

Main result1

（1）For A_{n}－type singular surfaces，

Theorem（Main theorem 1）［2，Theorem 2．10，Corollary 2．14］

Suppose $m \geq 2 n+2$ and $S_{m}^{0}=Z_{m}^{1} \cup Z_{m}^{2} \cup \cdots \cup Z_{m}^{n}$ ．For $1 \leq i<j \leq n$ ， the number of irreducible components $Z_{m}^{i} \cap Z_{m}^{j}$ is $n-(j-i)+2$ and the codimension of $Z_{m}^{i} \cap Z_{m}^{j}$ in S_{m} is 2 ．

Moreover

$$
Z_{m}^{i} \cap Z_{m}^{j} \text { is maximal in }\left\{Z_{m}^{I_{1}} \cap Z_{m}^{I_{2}} \mid 1 \leq I_{1}<I_{2} \leq n\right\} \Leftrightarrow j-i=1 .
$$

Method：Concrete calculation using the defining ideals of Z_{m}^{i}
（2）For a D_{4}－type singular surface，
\rightsquigarrow The generators of defining ideal of irred．components are not known．
\rightsquigarrow Find some jets explicitly and determine the inclusion relations．

The irreducible components for D_{4}－singularity（Mourtada）

Let $f=x^{2}-y^{2} z+z^{3}, S=\mathbb{V}(f), m \geq 5$ and
$R_{m}=\mathbb{C}\left[x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right]$ ．
The defining ideals of the irreducible components of S_{m}^{0} are as follows：
$I_{m}^{0}:=\left\langle x_{0}, x_{1}, x_{2}\right.$,
y_{0}, y_{1}
z_{0}, z_{1},
$\left.f^{(0)}, \ldots, f^{(m)}\right\rangle$
$J_{m}^{1}:=\left\langle x_{0}, x_{1}\right.$,
y_{0},
z_{0},
z_{1},
$\left.f^{(0)}, \ldots, f^{(m)}\right\rangle$
$J_{m}^{2}:=\left\langle x_{0}, x_{1}, \quad y_{0}, \quad z_{0}, \quad y_{1}-z_{1}, \quad f^{(0)}, \ldots, f^{(m)}\right\rangle$
$J_{m}^{3}:=\left\langle x_{0}, x_{1}, \quad y_{0}, \quad z_{0}, \quad y_{1}+z_{1}, \quad f^{(0)}, \ldots, f^{(m)}\right\rangle$
$I_{m}^{0} \rightsquigarrow$ the defining ideal of an irreducible component
$J_{m}^{i} \rightsquigarrow$ the defining ideals of irreducible components in $y_{1} \neq 0$

$$
I_{m}^{i}:=J_{m}^{i} \cdot\left(R_{m}\right)_{y_{1}} \cap R_{m}(i=1,2,3),
$$

then

$$
Z_{m}^{i}=\mathbb{V}\left(I_{m}^{i}\right)(i=0,1,2,3)
$$

Main result2

Theorem（Main theorem 2）［2，Theorem 3．17］

Suppose $m \geq 5$ and Z_{m}^{i}＇s are as above．Then $S_{m}^{0}=Z_{m}^{0} \cup Z_{m}^{1} \cup Z_{m}^{2} \cup Z_{m}^{3}$ and the maximal elements of $\left\{Z_{m}^{l_{1}} \cap Z_{m}^{l_{2}} \mid 0 \leq I_{1}<I_{2} \leq 3\right\}$ are

$$
Z_{m}^{0} \cap Z_{m}^{1}, Z_{m}^{0} \cap Z_{m}^{2}, Z_{m}^{0} \cap Z_{m}^{3}
$$

We outline the proof of $Z_{m}^{0} \cap Z_{m}^{1} \nsubseteq Z_{m}^{0} \cap Z_{m}^{2}$ i．e．
$Z_{m}^{0} \cap Z_{m}^{1} \supsetneq Z_{m}^{0} \cap Z_{m}^{1} \cap Z_{m}^{2}$ ，in the case $m \geq 6$ ．
Consider the following two elements．

$$
\begin{aligned}
h_{1}= & -4 y_{2}^{2} z_{2}^{2}+y_{1}^{2} z_{3}^{2}+4 x_{3}^{2} z_{2}-4 x_{2} x_{3} z_{3} \\
h_{2}= & -y_{2}^{4}-4 y_{2}^{3} z_{2}+2 y_{2}^{2} z_{2}^{2}+12 y_{2} z_{2}^{3}-9 z_{2}^{4}+4 y_{3}^{2} z_{1}^{2}-8 y_{3} z_{1}^{2} z_{3} \\
& +4 z_{1}^{2} z_{3}^{2}+8 x_{3}^{2} y_{2}-8 x_{3}^{2} z_{2}-8 x_{2} x_{3} y_{3}+8 x_{2} x_{3} z_{3} .
\end{aligned}
$$

We can prove $h_{1} \in I_{m}^{1}$ and $h_{2} \in I_{m}^{2}$ ，and using these we can prove $y_{2} \in \sqrt{I_{m}^{0}+I_{m}^{1}+I_{m}^{2}}$ ．
On the other hand，we have $\left(0, t^{2}, 0\right) \in Z_{m}^{0} \cap Z_{m}^{1}$ and so $y_{2} \notin \sqrt{I_{m}^{0}+I_{m}^{1}}$ ．

Main result2

For $m \gg 0$ ，we construct the graph as follows：
vertices：Irreducible components of S_{m}^{0}
edges ：When two irreducible components are maximal in

$$
\left\{Z_{m}^{i} \cap Z_{m}^{j} \mid 1 \leq i<j \leq n\right\} .
$$

Corollary［2，Corollary 2．16，Corollary 3．18］

For an $A_{n^{-}}$or D_{4}－type singularity，the graph constructed as above is isomorphic to the resolution graph of the minimal resolution of singularity．

In the D_{4} case，the graph is as follows；

ReferencesH．Mourtada，Jet schemes of rational double point singularities， Valuation theory in interaction，EMS Ser．Congr．Rep．，Eur．Math． Soc．，Zürich（2014），373－388．
固 Y．Koreeda，On the configuration of the singular fibers of jet schemes of rational double points，arXiv：math／2012．08144，to appear in Communications in Algebra．

