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Overview

Setting
S : surface with rational double point singularity at 0
m > 0
Sm : “m-th jet scheme”
πm : Sm → S : “truncation map”

The following one-to-one correspondence is known (Mourtada)ɿ

Irred. comps. of π−1
m (0) ↔ Exceptional curves in a minimal resolution

Problem

Can one reconstruct the resolution graph from the informations of
the jet scheme?
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Overview

Main Theorem
For An- or D4-type singular surfaces, the following conditions are
equivalent:

The intersection of two distinct irreducible components of π−1
m (0) is

“maximal”.

The corresponding exceptional curves on the minimal resolution
intersect.

Today
! Mainly talk about the case of the D4-type singular surface.
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Preparation : Definition of jet schemes

Setting

Sch/C : the category of schemes over C
Set : the category of sets

X ∈ Sch/C : a scheme of finite type over C

For m ∈ Z≥0, the functor

FX
m : Sch/C → Set;Z $→ HomZ (Z × Spec C[t]/〈tm+1〉,Z × X )

is a representable functor, and is represented by a scheme Xm of finite type
over C.

Definition(Jet scheme)

The scheme Xm is called the m-th jet scheme of X .
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Preparation : Calculation of jet schemes

X = (f (x , y , z) = 0) ⊂ A3

The m(∈ Z≥0)-th jet schemes are calculated as follows:

Let x = x0+x1t+x2t2+· · ·+xmtm, y = y0+y1t+y2t2+· · ·+ymtm,
z = z0 + z1t + z2t2 + · · ·+ zmtm.
Expand f (x, y, z) as

f (x, y, z) ≡ f (0) + f (1)t + · · ·+ f (m)tm mod tm+1

(f (0), ..., f (m) ∈ C[x0, ..., xm, y0, ..., ym, z0, ..., zm]).

Then the m-th jet scheme Xm of X is defined by

〈f (0), ..., f (m)〉

in A3(m+1).

πm : Xm → X : truncation morphism(the map given by ”t = 0”)
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Preparation

For X = A3, the m-th jet scheme is Xm = A3(m+1) and the truncation
morphism is as follows:

πm : Xm → X ; (a0, ..., am, b0, ..., bm, c0, ..., cm) $→ (a0, b0, c0).

Definition(Singular fiber)

The inverse image of the singular point π−1
m (0), denoted by X 0

m, is called
the singular fiber.
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Singular fiber

S = V(f ) ⊂ A3ɿsurface with an An- or D4-type singular point at 0
The singular fiber S0

m is defined by the following ideal in (A3)m ∼= A3(m+1):

〈x0, y0, z0, f (0), ..., f (m)〉.

The following theorem was proven by H. Mourtada.

TheoremʢH. Mourtada [1, Theorem 3.1, Theorem 3.2]ʣ

Suppose n > 0 and m + 0. The singular fiber S0
m decomposes into n

irreducible components and their codimensions are 1 in Sm.

We considering the following problem about irreducible components of the
singular fiber.

Problem

Fix the degree m of jets. When is the intersection of two distinct
irreducible components of the singular fiber “maximal”?
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Main result1

ᶃ For An-type singular surfaces,

Theorem(Main theorem 1) [2, Theorem 2.10, Corollary 2.14]

Suppose m ≥ 2n + 2 and S0
m = Z 1

m ∪ Z 2
m ∪ · · · ∪ Zn

m. For 1 ≤ i < j ≤ n,
the number of irreducible components Z i

m ∩ Z j
m is n − (j − i) + 2 and the

codimension of Z i
m ∩ Z j

m in Sm is 2.
Moreover

Z i
m ∩ Z j

m is maximal in {Z l1
m ∩ Z l2

m | 1 ≤ l1 < l2 ≤ n} ⇔ j − i = 1.

MethodɿConcrete calculation using the defining ideals of Z i
m

ᶄ For a D4-type singular surface,
! The generators of defining ideal of irred. components are not known.
! Find some jets explicitly and determine the inclusion relations.
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The irreducible components for D4-singularityʢMourtadaʣ

Let f = x2 − y2z + z3, S = V(f ), m ≥ 5 and
Rm = C[x0, ..., xm, y0, ..., ym, z0, ..., zm].
The defining ideals of the irreducible components of S0

m are as follows:

I 0m := 〈x0, x1, x2, y0, y1 z0, z1, f (0), ..., f (m)〉
J1m := 〈x0, x1, y0, z0, z1, f (0), ..., f (m)〉
J2m := 〈x0, x1, y0, z0, y1 − z1, f (0), ..., f (m)〉
J3m := 〈x0, x1, y0, z0, y1 + z1, f (0), ..., f (m)〉

I 0m ! the defining ideal of an irreducible component
J im ! the defining ideals of irreducible components in y1 2= 0

I im := J im · (Rm)y1 ∩ Rm (i = 1, 2, 3),

then

Z i
m = V(I im) (i = 0, 1, 2, 3).
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Main result2

Theorem(Main theorem 2) [2, Theorem 3.17]

Suppose m ≥ 5 and Z i
m’s are as above. Then S0

m = Z 0
m ∪ Z 1

m ∪ Z 2
m ∪ Z 3

m

and the maximal elements of {Z l1
m ∩ Z l2

m | 0 ≤ l1 < l2 ≤ 3} are

Z 0
m ∩ Z 1

m,Z
0
m ∩ Z 2

m,Z
0
m ∩ Z 3

m.

We outline the proof of Z 0
m ∩ Z 1

m 2⊆ Z 0
m ∩ Z 2

m i.e.
Z 0
m ∩ Z 1

m ! Z 0
m ∩ Z 1

m ∩ Z 2
m, in the case m ≥ 6.

Consider the following two elements.

h1 =− 4y22 z
2
2 + y21 z

2
3 + 4x23 z2 − 4x2x3z3

h2 =− y42 − 4y32 z2 + 2y22 z
2
2 + 12y2z

3
2 − 9z42 + 4y23 z

2
1 − 8y3z

2
1 z3

+ 4z21 z
2
3 + 8x23y2 − 8x23 z2 − 8x2x3y3 + 8x2x3z3.

We can prove h1 ∈ I 1m and h2 ∈ I 2m, and using these we can prove
y2 ∈

√
I 0m + I 1m + I 2m.

On the other hand, we have (0, t2, 0) ∈ Z 0
m ∩ Z 1

m and so y2 /∈
√

I 0m + I 1m.
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Main result2

For m + 0, we construct the graph as follows:
verticesɿIrreducible components of S0

m

edgesɿWhen two irreducible components are maximal in
{Z i

m ∩ Z j
m | 1 ≤ i < j ≤ n}.

Corollary [2, Corollary 2.16, Corollary 3.18]

For an An- or D4-type singularity, the graph constructed as above is
isomorphic to the resolution graph of the minimal resolution of singularity.

In the D4 case, the graph is as follows;

Z 2
m

Z 1
m Z 0

m

Z 3
m.
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