The degree of the irrationality of Fano complete intersections.

Taro YOSHINO

Graduate School of Mathmatical Sciences, the Univ. Tokyo

October 27, 2021

<ロ > → □ > → □ > → □ > → □ → ○ ○ ○

Faro YOSHINO (Graduate School of MathmiThe degree of the irrationality of Fano comple

October 27, 2021

1 / 14

Introduction

Purpose

Obtain a lower bound of the degree of the irrationality of Fano complete intersection/ $\mathbb{C}. \label{eq:complete}$

k: a field, X: a variety/k

Definition 1 (Bastianelli. et. al.[1])

An invariant $irr_k(X)$ is defined as the minimal degree of dominant generically finite rational maps from X to the projective space.

Definition 2

An invariant $m_k(X)$ is defined as the minimal degree of dominant generically finite rational maps from X to a ruled variety.

Remark 0.1

 $\operatorname{irr}_k(X) \geq \operatorname{m}_k(X)$

Previous work

Previous work

	Hypersurfaces	Complete Intersections
Rationality	Kollár('95) [4]	Braune('17) [2]
Lower bound of $irr_k(-)$	Chen-Stapleton('20) [3]	???

Theorem 3 (Y.)

p: a prime number. $e, n \in \mathbb{Z}_{>0}$ s.t. $e \le n-1, e \le \frac{1}{2}(n+3)$, $(e, n) \notin \mathscr{E}_p$. $d_1, d_2, \ldots, d_e \in \mathbb{Z}_{>0}$,

$$I := \left| \frac{\sum_{i=1}^{e} (p+1) \left\lfloor \frac{d_i}{p} \right\rfloor - (n+e-2)}{2} \right|$$

Then $\operatorname{irr}_{\mathbb{C}}(X_{d_1,d_2,\ldots,d_e}) \geq \min\{l,p\}$, for X: a very general complete intersection.

Taro YOSHINO (Graduate School of MathmiThe degree of the irrationality of Fano compl

October 27, 2021

3/1

Sketch of proof of main theorem

Setting 1.1

R: a DVR of mixed characteristic,

 η : gen. pt. κ : cl. pt. of Spec(R), char(κ) = p.

 $d_1,\ldots,d_e\in\mathbb{Z}_{>0}.$

 $X := V(\{Y_j^p - f_j(\mathbb{X})\}, \{pY_j - g_j(\mathbb{X})\}) \subset \mathbb{P}_R^{n+2e}(d_1, d_2, \dots, d_e, 1, 1, \dots, 1)$

where $f_j, g_j \in R[X]^h, \deg(f_j) = pd_j, \deg(g_j) = d_j$.

Remark 1.2

 X_{η} : a (pd_1,\ldots,pd_e) -complete intersection in \mathbb{P}_{η}^{n+e} .

 X_{κ} : a p-cyclic cover of a (d_1,\ldots,d_e) -complete intersection in $\mathbb{P}_{\kappa}^{n+e}$.

Taro YOSHINO (Graduate School of MathmiThe degree of the irrationality of Fano comple

October 27 20

5 / 1

Sketch of proof of main theorem

Separateness

Definition 4 (Chen-Stapleton [3]2.1, "separeteness"

 $k = \overline{k}$, X: a variety /k, L: a line bundle of X. We say that L separates almost all I points of X: \Leftrightarrow $\emptyset \neq \exists U$: open subset of X s.t. $\forall x_1, \ldots, x_l \in U(k)$, $\exists s \in \Gamma(X, L)$ s.t. s vanishes at x_1, \ldots, x_{l-1} but not at x_l .

Example 5

 $X = \mathbb{P}_k^n, L = \mathcal{O}(d),$ L separates almost all d + 1 points.

Taro YOSHINO (Graduate School of Mathm: The degree of the irrationality of Fano comple

October 27, 2021

7/

How to obtain a lower bound of $m_k(X)$

Proposition 1.3 (Chen-Stapleton[3] 2.3)

 $f: X \to Y \times \mathbb{P}^1$: finite étale, Y: smooth/k. $\exists L \hookrightarrow \Omega_X^i, L$ separates 2l points. Then $\deg(f) > l$.

Proof.

Assume $d := \deg(f) \le I$. $y_1, y_2 \in Y \times \mathbb{P}^1$: in a same fiber of $Y \times \mathbb{P}^1 \to Y$ s.t. $f^{-1}(\{y_1, y_2\})$ are distinct 2d points. By the separateness of L, $\exists \alpha \in \Gamma(X, \Omega_X^i)$ s.t. $\mathrm{Tr}_f^i(\alpha)$ vanishes at y_1 but not at y_2 . However, $\Gamma(Y \times \mathbb{P}^1, \Omega_{Y \times \mathbb{P}^1}^i) \cong \Gamma(Y, \Omega_Y^i)$, Contradiction. \square

$$f:X \to Y$$
, $f_*(\Omega_X^i) \to \Omega_Y^i$

$$f_*(\Omega^i_{K(X)/k}) \xrightarrow{\varphi} \Omega^i_{K(Y)/k}$$

$$\uparrow \qquad \qquad \uparrow$$

$$f_*(\Omega^i_{X/k}) \xrightarrow{\psi} \Omega^i_{Y/k}$$

the following diagram where φ is the trace map of the function fields is commutative.

<ロ> →□ → →□ → → = → → ■ りへで

Taro YOSHINO (Graduate School of Mathm: The degree of the irrationality of Eano comp

October 27, 20

9 / 1/

Corollary 6 (Y.)

k: a field, X: normal integral variety/k. Y: smooth variety/k. $f: X \to Y$: a dominant, gen. fin., separated, proper morphism over k. Then $^\exists$ a morphism $\psi: f_*(\Omega^i_{X/k}/(\Omega^i_{X/k})_{tor}) \to \Omega^i_{Y/k}$ s.t.

$$f_*(\Omega^i_{K(X)/k}) \xrightarrow{\varphi} \Omega^i_{K(Y)/k}$$

$$\uparrow \qquad \qquad \uparrow$$

$$f_*(\Omega^i_{X/k}/(\Omega^i_{X/k})_{tor}) \xrightarrow{\psi} \Omega^i_{Y/k}$$

the following diagram where φ is the trace map of the function fields is commutative.

4□ > 4□ > 4를 > 4를 > 를 ∽9

Sketch of proof of the corollary

Proof.

There exists a \mathscr{O}_Y -hom $f_*(\Omega^i_{X/k}/(\Omega^i_{X/k})_{tor}) o \Omega^i_{K(Y)/k}.$

ETS: For any $y \in Y$ s.t. $\{\bar{y}\}$ is a divisor, the image of this map at y is in $\Omega^i_{Y/k,y}$.

Fix such $y \in Y$. There exists an affine nbd. V of y s.t. $f|_{f^{-1}(V)}$ is finite. By [Garel, Theorem, [5]], there exists following the diagram of \mathcal{O}_V -mod.

$$f_*(\Omega^i_{K(X)/k}) \longrightarrow \Omega^i_{K(Y)/k}$$

$$\uparrow \qquad \qquad \uparrow$$

$$f_*(\Omega^i_{f^{-1}(V)/k}) \longrightarrow \Omega^i_{V/k}$$

Taro YOSHINO (Graduate School of MathmiThe degree of the irrationality of Fano complete

October 27, 2021

11 / :

Sketch of proof of the corollary

Proof.

There exists a \mathscr{O}_Y -hom $f_*(\Omega^i_{X/k}/(\Omega^i_{X/k})_{tor}) o \Omega^i_{K(Y)/k}$

ETS: For any $y \in Y$ s.t. $\{\bar{y}\}$ is a divisor, the image of this map at y is in $\Omega^i_{Y/k,y}$.

Fix such $y\in Y$. There exists an affine nbd. V of y s.t. $f|_{f^{-1}(V)}$ is finite. By [[5] Theorem], there exists following the diagram of \mathscr{O}_V -mod.

- F. Bastianelli, P. De Poi, L. Ein, R. Lazarsfeld & B. Ullery, *Measures of irrationality for hypersurfaces of large degree*, Compos. Math. 153, 2017, 2368 2393.
- L. Braune, Irrational Complete Intersection, arXiv:1909.05723v1, 2019.
- N. Chen & D.Stapleton, Fano hypersurfaces with arbitrarily large degrees of irrationality, Forum of Mathematics, Sigma, 2020.
- J. Kollár, *Rational curves on algebraic varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete 32, Springer Verlag, Berlin, 1996.
- E. Garel, *An extension of the trace map*, Journal of Pure and Applied Algebra, Volume 32, Issue 3, (1984), 301-313,
- A. J. de Jong & J. M. Starr, *Cubic fourfolds and spaces of rational curves*, Illinois J. Math. 52 (2008), no. 1, 345 346

<ロ > → □

Taro YOSHINO (Graduate School of Mathm:The degree of the irrationality of Fano comple

October 27, 202

13 / 1

Thank you for listening.