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Abstract: Treatment of benzotrifluorides with sodium dispersion in 

the presence of bis(pinacolato)diboron results in diborative reduction 

to yield the corresponding diborylbenzylsodium species.  The anionic 

species react not only with reactive organic halides but also with 

aromatic carbonyl compounds to yield the corresponding 

alkenylboron compounds via Peterson-type olefination. The success 

of the generation of the diborylbenzylsodium species lies in immediate 

capture of initially formed unstable difluorobenzylsodium with co-

existing reduction-resistant bis(pinacolato)diboron. 

Organofluorine compounds are useful as biologically active 

agents as well as key components of functional materials.[1]  

Among fluorine-containing substituents, a trifluoromethyl group 

endows organic molecules with polarization and lipophilicity, thus 

occupying a unique position.  Because methods to introduce a 

trifluoromethyl group have been actively studied, trifluoromethyl-

containing compounds have nowadays become readily 

available.[2]  

While trifluoromethyl-containing compounds are useful on their 

own, increasing attention has been paid to methods to transform 

the strong C–F bonds in a trifluoromethyl group.[3,4]  Among such 

transformations, reductive metalation to generate the 

corresponding carbanion has been expected to be promising in 

organic synthesis.  However, the generated carbanions are 

unstable and decompose rapidly via α-defluorination (Scheme 

1a).[5]  To avoid the rapid decomposition, the carbanion should be 

promptly trapped with an electrophile that is placed in the same 

reaction flask.  However, co-existing electrophiles are generally 

subjected to single electron reduction under the reductive 

conditions and do not afford the desired products but by-products 

such as the dimers of electrophiles via reductive homo-coupling 

(Scheme 1b).  Actually, reductive metalation of benzotrifluorides 

is applied limitedly to protonation,[6] silylation with chlorosilanes,[7] 

and hydroxyalkylation with carbonyls[8] (Scheme 1c).[9] 

Recently we have become interested in the use of reduction-

resistant electrophiles in order to trap unstable anionic 

intermediates generated through a reductive process.[10]  Among 

the reduction-resistant electrophiles, alkoxyboranes have shown 

high performance in the efficiency of the trapping as well as the 

usefulness of the borylated products in organic synthesis.  Here 

we report that bis(pinacolato)diboron B2pin2 efficiently traps the 

corresponding carbanions that are reductively generated from 

benzotrifluorides to eventually generate diborylbenzylic anion 

species.   

The mechanistic design of this new reductive diborylation is 

shown in Scheme 2.  Efficient two-electron injection from sodium 

dispersion[10,11] to benzotrifluorides 1 provides the corresponding 

difluorobenzylic anion 2.  The anion would be expected to react 

instantly with B2pin2 in the same pot before the undesired α-

elimination.  The generated borate 3 then undergoes 1,2-shift of 

the pinacolatoboryl group to yield gem-diborylfluoro species 4.[12]  

Further reduction by the remaining sodium proceeds smoothly to 

yield doubly boron-stabilized benzylic anion 5.[13] Subsequent 

reaction with an electrophile yields diboryl compounds of 

synthetic use. 

 

Scheme 1. Difficulty in reductive functionalization of benzotrifluorides and 

limited successful examples. 

 

Scheme 2. Mechanistic design of defluorinative diborasodiation. 

Treatment of 4-trifluoromethylbiphenyl (1a) with sodium 

dispersion (4 equiv) in the presence of B2pin2 in THF afforded 

monoborylated product 6a in 68% NMR yield after protonolysis 

with isopropyl alcohol.  None of the expected diborylated product 
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7a was observed because the initial protonation of 5a was 

followed by another protonation of one of the two C–B bonds[14] 

probably promoted by an isopropoxide anion.  Even though the 

formation of 7a was not observed, we screened the solvent to 

improve the yield of 6a.  We finally found a 1.5:1 mixture of THF 

and 1,3-dimethyl-2-imidazolidinone (DMI) as the best solvent 

system (80% NMR yield, 64% isolated yield).[15,16]  

It is worth noting that B2pin2 should be placed during the 

reduction: When B2pin2 was added after the reduction, the 

reaction gave a complex mixture containing none of 6a.  

Regarding the reducing agent, sodium dispersion was the best 

among tested: When the reaction was performed by using lithium 

powder, 6a was obtained in only 16% yield along with a complex 

product mixture.  Interestingly, the use of lithium naphthalenide as 

a homogeneous reducing agent improved the yield up to 64%. 

 

Scheme 3. Defluorinative reaction of 1a and B2pin2 followed by protonolysis. 

With the results in Scheme 3, we then examined the scope of this 

reaction by using iodomethane as the reaction-terminating 

electrophile (Table 1).  The methylation afforded the gem-diboryl 

products 8 without protodeborylation occurring upon aqueous 

workup.  The reductive transformation of biphenyl derivatives 1a–

f proceeded smoothly to yield the corresponding products 8a–f.  

The transformation of 1b proceeded with the fluoro group on the 

benzene ring untouched.  The methoxy group in 8c and the 

trimethylsilyl group in 8e were compatible under the reaction 

conditions.  Pristine benzotrifluoride (1g) bearing only one 

benzene ring required naphthalene as an electron-transfer 

catalyst to yield 8g.  This was also the case for the reactions of 

1h–j, even though their substituents might facilitate electron 

transfer to the substrates.  Of note is that no diborylation at the 

acetylenic carbons[10a] took place to yield 8i selectively.  

Treatment of 1,4-bis(trifluoromethyl)benzene resulted in the 

formation of a complex mixture of products.[17] 

Table 1. Defluorinative diborasodiation of 1 followed by methylation. 

 

Entry R 8 Isolated yield /% 

1 4-Ph 8a 67 (56[a]) 

2 4-(4-FC6H4) 8b 52[b,c] 

3 4-(4-MeOC6H4) 8c 53 

4 4-(4-MeC6H4) 8d 40 

5 4-(4-Me3SiC6H4) 8e 43 

6 3-Ph 8f 61 

7 H 8g 39[d] 

8 3-MeO 8h 38[d] 

9 4-C4H9C≡C 8i 48[b,c,d] 

10 4-pinB 8j 48[b,d] 

[a] 5-mmol scale. [b] 6.0 equiv MeI. [c] 60 °C for the methylation. [d] 0.4 equiv 

naphthalene was used as an additive. 

Not only the methylation but also benzylation and silylation 

occurred to yield 9 and 10 (Scheme 4).  However, simple alkyl 

halides were not suitable as electrophiles, probably because the 

anionic intermediate 5a is bulky and is stabilized by the two boryl 

and the biphenylyl groups.  Instead of the alkylation, we found that 

Peterson-type olefination reaction of carbonyl compounds with 5a 

proceeds smoothly to yield alkenylborons 11–13.[18]  Although the 

stereoselectivity in the reaction of benzaldehyde was low, the 

olefination represents an interesting transformation from 

benzotrifluorides to alkenylboron compounds in one-pot. 

 

Scheme 4. Reactions of anion 5a with other electrophiles. 

gem-Diboryl product 8a underwent selective activation of one of 

the two boryl groups with methyllithium, which was followed 

sequentially by trapping with allyl bromide and by oxidation to 

yield 14[19] (Scheme 5).  The Suzuki-Miyaura cross-coupling 

reaction of olefinated product 13 proceeded smoothly[20] to yield 

tetraarylethene 15 in high yield.  
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Scheme 5. Transformations of diborylated product 8a and alkenylboron 13. 

In summary, we have developed a transformation of 

benzotrifluorides into the corresponding diborylbenzylsodium 

species, which will find applications as interesting reagents in 

organic synthesis.  The generation of the anion would be achieved 

by the following reaction sequence: 1) reduction of 

benzotrifluorides with sodium to yield unstable 

difluorobenzylsodium, 2) instant capture of the anion with 

bis(pinacolato)diboron as a reduction-resistant electrophile, 3) 

1,2-boryl shift from the resulting borylborate, and 4) reduction of 

the resulting diborylfluorotoluene. The key to the success is the 

use of the reduction-resistant electrophile.  Further investigation 

about combined use of alkali-metal reduction and reduction-

resistant electrophiles are ongoing in our laboratory.  
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