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ABSTRACT: Sodium dispersion promotes reductive borylation of polycyclic aromatic hydrocarbons with MeOBpin. Anthra-
cenes and phenanthrenes are converted to the corresponding dearomatized diborylated products.  The reductive diborylation 
of naphthalene-based small π systems yields similar yet unstable products, which are oxidized into formal C-H borylation 
products with unique regioselectivity.  Pyrene is converted to 1-borylpyrene without adding an oxidant.  The latter two reac-
tions represent a new route to useful borylated PAHs that rivals C-X borylation and catalytic C-H borylation. 

Polycyclic aromatic hydrocarbons (PAHs) represent an 
important class of aromatic compounds that find numerous 
applications in material sciences.1  Peripheral functionaliza-
tions of PAHs are therefore very important to extend their 
π-conjugations and to endow PAH-based molecules with in-
triguing properties.  For the functionalization, electrophilic 
aromatic substitutions have been used as classical and reli-
able methods.2  Recently, iridium-catalyzed C-H borylation 
has occupied an alternative central position3 because one 
can apply a diverse range of transformations of arylboron 
compounds such as oxidation and Suzuki-Miyaura cross-
coupling reaction to borylated PAHs.  As the importance of 
borylated PAHs has been increasing, there should be a po-
tential high demand for new methods that rival the Ir-cata-
lyzed C-H borylation and Pd-catalyzed Miyaura-Ishiyama 
borylation4 or metalation-borylation5 that follows electro-
philic halogenation of PAHs.   

Reduction of unsaturated hydrocarbons with alkali metal 
provides an interesting series of irreplaceable transfor-
mations in organic synthesis. The Birch reduction of aro-
matic rings is a representative and yields 1,4-cyclohexadi-
enes by means of sodium metal in liquid ammonia.6  We en-
visioned that the Birch-type reduction is applicable to 
borylation of PAHs as illustrated in Scheme 1.  We have been 
interested in the combined use of sodium dispersion for ef-
ficient reduction7,8 and reduction-resistant electrophiles for 
efficient trapping of the resulting unstable anionic species.9 
Given that the reduction of a PAH with sodium dispersion 
proceeds in the presence of a reduction-resistant alkoxy-
borane, the anionic species thus generated would be 
trapped with the boron-based electrophile to yield a 
borylated dearomatized product.  The initial product is ex-
pected to be a diborylated one of synthetic use on its own, 

while it can undergo deborylative rearomatization to yield 
a monoborylated PAH.   

Scheme 1. Reductive Borylation of PAHs  

  

In the arena of Birch-type reductive transformations of ar-
omatic compounds, it is very difficult to trap the resulting 
anionic species with electrophiles other than proton 
(Scheme 1).10  Firstly, the initially formed radical anions of 
arenes are generally very unstable and hence require imme-
diate trapping with an electrophile (Case 1).  However, co-
existing electrophiles are generally prone to be readily re-
duced under Birch-type reductive conditions.  Secondly, 
even though some of the radical anions of PAHs are reason-
ably stable to allow us to add an electrophile after their gen-
eration, the electron-rich radical anions and/or dianions 
have a high potential to evoke single electron transfer to the 
electrophile (Case 2). In considering the issues raised above, 
our reduction-resistant alkoxyborane perfectly meets the 
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requirements for the Birch-type difunctionalization. We re-
port here reduction of PAHs with sodium dispersion in the 
presence of a trialkoxyborane and the behaviors of the ini-
tially formed diborylated dearomatized products. 

We started our investigation by using anthracene as a 
model substrate (Table 1).  A mixture of anthracene and 
methoxypinacolborane (MeOBpin, 6.0 equiv) was treated 
with sodium dispersion (2.5 equiv) in DME at −40 °C for 2 h.  
The reaction was terminated with an addition of isopropyl 
alcohol to yield 9,10-diborylated dihydroanthracene 1 in 
46% NMR yield with high anti selectivity (entry 1).  A major 
byproduct was found to be 9,10-dihydroanthracene, which 
indicate either that the borylation is inefficient or that 
borylated intermediates, probably borates, in the reaction 
flask are unstable to undergo protodeborylation upon 
quenching the reaction.  We found that the latter is the case 
and that a quenching agent plays an important role: Instead 
of iPrOH, additions of acetic acid and of hydrochloric acid in 
ether afforded 1 in 74% and 81% yields, respectively (en-
tries 2 and 3).  The more stable conjugate bases, acetate and 
chloride, are supposed not to form reactive borate species 
efficiently.  The diborylation at a lower temperature of 
−60 °C improved the anti selectivity up to 93:7 (entry 4).   

Table 1. Reductive Diborylation of Anthracene 

 

entry temp., time quenching 

agent 

NMR 

yield /% 

anti/syn 

1 −40 °C, 2 h iPrOH 46a 89:11 

2 −40 °C, 2 h AcOH 74 76:24 

3 −40 °C, 2 h HCl/ether 81 74:26 

4 −60 °C, 12 h HCl/ether 82 93:7 

a 9,10-dihydroanthracene was obtained in 19% yield. 

We then investigated the scope of this diborylation with 
respect to PAHs (Scheme 2).  Chromatographic purification 
of the anti/syn mixture of 1 on silica gel resulted in isolation 
of anti-1 in 73% yield.  Benz[a]anthracene was similarly 
converted to the diborylated product 2 as a mixture of dia-
stereomers, where the predominance of the anti isomer is 
supposed by analogy with the preferable formation of anti-
1.  Phenanthrene, chrysene, and acenaphthylene were di-
borylated at the most reactive double bonds to yield anti-3, 
4, and 5, respectively, without formation of their syn iso-
mers.  The stereochemistry of anti-1 and anti-3 was unam-
biguously assigned on the basis of XRD analysis.11  It is 
worth noting that these diborylation took place at the posi-
tions to which the conventional Birch reduction adds the 
two hydrogens.12 

Scheme 2. Reductive Diborylation of PAHs 

 

Naphthalene was diborylated to yield anti-6 in moderate 
yield according to NMR analysis.  However, we failed to iso-
late anti-6 because of its instability during work-up and pu-
rification (Scheme 2).  Instead of quenching the reaction 
with an acid to obtain diborylated anti-6, 2,3-dichloro-5,6-
dicyanobenzoquinone (DDQ) was added as an oxidant to 
the reaction mixture.  The addition successfully resulted in 
oxidative monodeborylation selectively to yield 1-
borylnaphthalene 7 (Scheme 3). This sequence of reductive 
diborylation and oxidative monodeborylation is regarded 
as formal C–H borylation of naphthalene.   

This transformation was applicable to fluoranthene and 
perylene that have a naphthalene motif to regioselectively 
give 8 and 9, respectively.  In these cases, 2,2,6,6-tetra-
methylpiperidine 1-oxyl (TEMPO) was found to be superior 
to DDQ as the oxidant in these cases.  The products 7–9 are 
inaccessible through the conventional Ir-catalyzed C-H 
borylation and are typically synthesized via the correspond-
ing halogenated PAHs.13 

More interestingly, the formal C-H borylation is applicable 
to azulene, a constitutional isomer of naphthalene, to yield 
6-borylazulene 10 with exclusive regioselectivity.  Notably, 
the Ir-catalyzed borylation of azulene usually occurs at the 
least hindered 2 position to yield 2-borylazulene14,15 and the 
electrophilic aromatic halogenation of azulene occurs at the 
most electron-rich 1 position.16 There are no reports on the 
direct functionalization of azulene at the 6 position, while a 
very lengthy, 6-step synthesis of 10 from 2-chlorotropone 
was reported.17,18 Our formal C-H borylation of azulene will 
find applications in the chemistry of azulene-based func-
tional molecules.19 

The regioselectivity of the monoborylation in Scheme 3 
would depend on the following two factors: 1) the regiose-
lectivity of the initial diborylation, which obeys that of the 
conventional Birch reduction12 and 2) the regioselectivity of 
the oxidative deborylation.  Although the exact reaction 
mechanism for the oxidative deborylation is unclear, the 
deborylation is likely to involve the more crowded, more 
electron-rich, and thus less stable boryl group in each inter-
mediate 11 or 12.  The situation is more complex in the case 
of azulene derivative 13.  We speculate that the oxidation 
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event takes place at the more conformationally constrained 
cyclopentadienylboryl group.  

Scheme 3. Reductive Diborylation and Oxidation to 
Yield C-H-Borylated PAHs 

 

Treatment of pyrene under the standard conditions (entry 
4 in Table 1) did not afford any conceivable diborylated 
products but 1-borylpyrene 14 in 64% yield without expo-
sure to DDQ or TEMPO (Scheme 4).  Wondering the unex-
pectedly smooth formation of monoborylated 14, we per-
formed mechanistic study by monitoring the reaction of py-
rene by 11B NMR spectroscopy (Figure 1).  Along with the 
expected signals for the remaining MeOBpin (22 ppm) and 
its borate [(RO)4B]– (3 ppm), the borylated pyrene was ob-
served as its neutral form 14 (33 ppm) and its methoxy-
borate 19 (8 ppm, vide infra) even under inert atmosphere.  
More importantly, two unexpected signals appeared at −9 
ppm as a broad quartet and at −28 ppm as a sharp quartet,  
respectively.  The broad quartet was assigned to be meth-
oxyborohydride [MeOBH3]– according to the literature.20 
Thomas reported that treatment of pinacolborane (HBpin) 
with sodium methoxide induces multiple hydride-alkoxide 
exchanges and results in the formation of [MeOBH3]– and 
[BH4]–.  We thus conclude that HBpin was formed together 
with 14 in situ before work-up.  The sharp quartet at −28 
ppm is assignable to [pyrenylBH3]– according to the litera-
ture.21 

On the basis of these experiments, Scheme 4 shows a pos-
sible reaction mechanism for the borylation of pyrene.  The 
first one electron reduction generates the radical anion of 
pyrene, which reacts with MeOBpin followed by another 
one electron reduction to yield monoborylated anion 15.  
From 15, we are tempted to propose two pathways.  Path A 
includes a process similar to the reactions in Scheme 3 and 
4: the second borylation of 15 affords 16.  The subsequent 
hydride shift followed by retro-hydroboration to generate 
14 with concomitant formation of HBpin and with recovery 
of aromaticity.  We performed DFT calculations11 on the 
retro-hydroboration from 17 to 14 to reveal the computed 

activation barrier is more than 50 kcal/mol.  We hence deny 
the possibility of path A.  Path B does not include the second 
borylation:  The anion 15 has a highly conjugated π-system 
and delocalized electron density.  MeOBpin could not react 
with 15 efficiently, and, instead, a 1,2-hydride shift from the 
borylated carbon to the boron center would occur to yield 
aromatized borate 18.  The shifted hydride would be re-
moved by the action of Lewis acidic MeOBpin to eventually 
provide 14, which is in equilibrium with its methoxy borate 
19.  The activation energy of the 1,2-hydride shift was cal-
culated to be 26.6 kcal/mol, which indicates the shift is 
much more likely to occur.  

Scheme 4. Borylation of Pyrene 

 

 

 

Figure 1. 11B NMR spectrum of the reaction mixture 

We have examined the reaction of polycyclic aromatic hy-
drocarbons with MeOBpin promoted by sodium and have 
found three different types of borylation. 1) Anthracene and 
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phenanthrene derivatives: The corresponding dearoma-
tized diborylated products were obtained as stable primary 
products.  The remaining aromatic systems would endow 
the diborylated products with sufficient stability even after 
the dearomatization. 2) Naphthalene-based smaller π sys-
tems: The initial dearomatized diborylated products are un-
stable to handle because of the significant loss of aromatic-
ity and are subjected to oxidation before work-up to afford 
formal C-H borylation products regioselectively. The prod-
ucts represent isomers that are not accessible via the Ir-cat-
alyzed C-H borylation.  This method provides by far the 
most concise approach to synthetically useful 6-borylazu-
lene.  3) Treatment of pyrene under the conditions for the 
reductive borylation affords 1-borylpyrene without adding 
an oxidant.  This type of borylation is expected to occur in 
the reactions of larger PAHs.  The borylation of type 2) and 
3) offers a new approach to useful borylated PAHs, being a 
protocol that is mechanistically different from the Ir-cata-
lyzed direct C-H borylation and the stepwise borylation via 
halogenated PAHs.  Further investigation on our synthetic 
strategy based on the combined use of alkali metal and re-
duction-resistant electrophiles is underway in our labora-
tory. 
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