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ABSTRACT: Treatment of arylcyclopropanecarboxamides with sodium dispersion in the presence of methoxypinacolborane as a 

reduction-resistant electrophile leads to reductive cleavage of the cyclopropane ring followed by instant trapping with the boron 
electrophile to yield the enolates of γ-aryl-γ-borylalkanamides.  The enolates react further with a different electrophile to yield the 

corresponding α-substituted amides with anti selectivity.  

Cyclopropyl carbonyl compounds do not only provide unique 

chemical space for biologically active compounds1 but serve as 
useful building blocks in organic synthesis.2  The cyclopropane 

rings are prone to release their ring strain to engage in unique 

ring-opening transformations that lead to a variety of 1,3-di-
functionalizations.  Most of previous research on the ring-open-

ing of cyclopropyl carbonyls rely on the use of vicinal donor-
acceptor-type cyclopropanes for Lewis-acid-mediated hetero-

lytic cleavage (Scheme 1a).2d–h  The heterolytic cleavage can be 
reversible, and the zwitterionic ring-opening intermediates can 

be efficiently trapped by polar compounds and eventually con-

verted to a variety of products such as heterocycles.  As a dif-
ferent mode, reductive ring-opening via radical anion interme-

diates generated by single-electron reductions would be a useful 
strategy (Scheme 1b) yet has been underdeveloped.3–6  The im-

maturity would mainly originate from reaction conditions that 
require specially reactive substrates such as cyclopropyl dicar-

bonyls and/or strongly reducing agents such as alkali metals and 
SmI2. Moreover, the peculiar reduction conditions irreversibly 

generate highly unstable anionic species, which are difficult to 

trap with suitable electrophiles7 other than proton sources that 
can co-exist under the conditions.  The protonation naturally 

limits the variety of products and the usefulness of the ring-
opening reaction.  Undesired over-reduction of the carbonyl 

moieties into alcohols is another issue of difficulty that one has 
to avoid contradictorily under strong reduction conditions in a 

protic medium. 3f-i,4j ,k  

 

Scheme 1. Ring-opening Reactions of Cyclopropyl Carbon-

yls  

 

Recently, we have been interested in the combined use of al-

kali metals and reduction-resistant electrophiles to develop new 

reductive transformations for organic synthesis.8  Reduction-re-
sistant electrophiles other than proton sources have realized 

trapping of reductively generated unstable carbanion species to 
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synthesize versatile products.  Here we report that our strategy 
is applicable to reductive ring-opening of arylcyclopropanecar-

boxamides (Scheme 1c).  Sodium-mediated reduction in the 
presence of methoxypinacolborane as a reduction-resistant 

electrophile efficiently affords the enolates of γ-aryl-γ-borylal-
kanamides.  The enolates show good reactivity toward a differ-

ent electrophile to result in anti-selective α-functionalization.  

Although we previously developed reductive ring-opening di-
borylation of 1,2-diarylcyclopropanes (Scheme 1d),8d the scope 

with respect to substrates was limited and the yields of the prod-
ucts were moderate.  More importantly, while the 1,2-diarylcy-

clopropanes were converted to 1,3-syn diborylated products, ar-
ylcyclopropanecarboxamides are converted to 1,3-anti difunc-

tionalized products.  The products, γ-borylalkanamides, are ex-

pected to represent a useful building block for organic synthesis. 

Phenylcyclopropanecarboxamide 1a was treated with sodium 

dispersion9 (3.0 equiv) in THF at 0 °C for 30 min in the presence 
of methoxypinacolborane (3.0 equiv) as a reduction-resistant 

electrophile and 4,4’-di-t-butylbiphenyl (DTBB) as an electron-

transfer catalyst (0.2 equiv) (Scheme 2).10,11  The ring-opening 
reaction proceeded to afford γ-borylated alkanamide 2a, after 

aqueous workup, in 77% isolated yield.  Instead of the aqueous 
workup to terminate the reaction, an addition of methyl iodide 

(3.0 equiv) at –78 °C10 led to α-methylation of the resulting eno-
late to afford 3a with high anti selectivity of 89:11.  It is worth 

noting that none of the reduction of the carbonyl group was de-

tected. 

Scheme 2. Ring-opening Reaction of Amide 1a  

 

 

Scheme 3. Scope of Reductive Ring-opening of Amides 1 and Electrophilic Trapping of Resulting Enolatesa 

 

a syn:anti Ratios are in parentheses. b Butyllithium (1.0 or 2.0 equiv) was added for deprotonation prior to the reductive process and a boron 
electrophile (6.0 equiv) was then added.c B(OMe)3 instead of MeOBpin. d DTBB (0.5 equiv). e 0 ℃ for the methylation. f Starting from 5.0 

mmol of 1k. g Allyl bromide (5.0 equiv). h –40 ℃ for 1 h then 0 ℃ for 1 h for the butylation. i 0 ℃ for the methylsulfanylation. j After 

oxidation, the crude product was treated with conc. HCl aq. in THF/EtOH = 1/1 at room temperature overnight. 



 

The scope of the ring-opening γ-borylation reaction and the 
subsequent electrophilic α-functionalization is shown in 

Scheme 3.  A variety of N-substituents were found to be com-
patible under the reaction conditions and to have little influence 

on the yields of the products.  In the case of N-monosubstituted 
amide 1c, deprotonation by butyllithium in advance improved 

the yield of 2c’ up to 63%. None of amides 1d–g bearing a chi-

ral auxiliary showed meaningful levels of asymmetric induction.  
The aryl group on the cyclopropane is essential, and ring-open-

ing of simple N,N-diisopropylcyclopropanecarboxamide was 

not observed (not shown in Scheme 3).   

Substituents on the nitrogen have influence clearly on the di-
astereoselectivity of the α-functionalization.  While diisopropyl 

and dicyclohexyl endowed with controlling the diastereoselec-
tivity to yield 3a,h–j with high anti selectivities, dibenzylamide 

1b was converted to 3b with no diastereoselectivity.  The for-

mation of piperidine derivative 3l’ with the larger ring size 
showed slightly higher diastereoselectivity than that of pyrroli-

dine derivative 3k’.   

Not only methylation but also other alkylations proceeded 

with high anti selectivity to yield 4a–6a.  Acetylation afforded 
7a with high selectivity although 7a should undergo facile epi-

merization and the relative stereochemistry of the major isomer 

of 7a has not been determined here.  Methylsulfanylation pro-
ceeded to yield 8a with marginal anti selectivity.  The reaction 

with a ketone, fluorenone, proceeded with perfect anti selectiv-
ity to afford 9a’.  The reaction with aldehydes also provided the 

corresponding α,γ-anti products 10a’ and 11a’, whereas the ste-
reocontrol of the additional stereogenic center β’ originating 

from the aldehyde carbonyl was moderate.  The relative α,γ-anti 

stereochemistry of the products in Scheme 3 was deduced from 
the unambiguous X-ray crystallographic analysis of syn-3k’ 

and 9a’.  Notably, carbon dioxide was proved to be a viable 
electrophile to successfully obtain the corresponding lactone 

12a’. 

Scheme 4 illustrates our mechanistic hypothesis and rationale 

of the anti stereoselectivity shown in Scheme 3.  The ring-open-
ing of 1a via one-electron reduction3-6 would proceed to pre-

dominantly generate the more sterically favorable (Z)-13 over 

(E)-13.  The second one-electron reduction followed by the ben-
zylic C–B bond formation would provide cyclic boron enolate 

14.  An electrophile, methyl iodide, is likely to approach the 
cyclic enolate 14 preferably from the side displaying the phenyl 

substituent to yield anti-3a as the major isomer.  Although our 
brief computational analysis of the reaction of 14 with an elec-

trophile did not provide any clear explanation for the anti selec-

tivity, steric environment controlled synergistically by the phe-
nyl, spirocyclic pinacolatoboryl, and diisopropylamino groups 

would determine the diastereoface selectivity.  Further investi-
gation is necessary to understand the stereoselectivity of the re-

action of such cyclic boron enolates.12,13 

Scheme 4. Mechanistic Hypothesis and Origin of anti Selec-

tivity 

 

Thioamide 15 reacted similarly to yield 16 with the thiocar-
bonyl moiety intact at a temperature as low as –78 °C (Scheme 

5).  Carboxylic acid 17 also underwent the borylative ring-open-
ing to eventually yield lactone 18 after the oxidation of the boryl 

group.   

Scheme 5. Ring-opening Reaction of Other Carbonyls  

 

Isobutylene oxide and chlorotrimethylsilane served as coex-
isting electrophiles8b,d instead of MeOBpin although a larger 

amount of the electrophiles (6.0 equiv) and a lower temperature 
(–78 °C or –95 °C) were necessary (Scheme 6).  Unfortunately, 

the diastereoselectivity in the formation of 20 was modest. The 
configuration of the minor isomer of 20 was determined to be 

syn by X-ray diffraction analysis (XRD). 

Scheme 6. Ring-opening Reaction with Other Coexisting 

Electrophiles  

 

We then attempted ring-opening borylation of 2,3-diphenyl-
cyclopropanecarboxamides 2,3-cis-22 and 2,3-trans-22 

(Scheme 7). The reaction of 2,3-cis-22 proceeded similarly re-
gardless of the reaction temperature via the C–C bond cleavage 

at the α position of the carbonyl to yield γ-boryl-β,γ-diphenyl-

butanamide 23 with moderate anti selectivity.  The relative ste-
reochemistry of syn-23 was determined unambiguously by 

XRD.  Interestingly, while the diastereomer, 2,3-trans-22, was 
similarly converted to anti-23 at room temperature, the same 

reaction performed at –78 °C afforded a totally different prod-
uct anti-24 exclusively.  The formation of anti-24 should occur 

via the C–C bond cleavage at the β position of the carbonyl.  
Instead of the aqueous workup to obtain anti-24, an addition of 

methyl iodide yielded the methylated product 25 as a mixture 



 

of diastereomers. The major isomer of 25 was found to have 
anti,syn configuration by XRD.  The 1,3-anti configuration 

along the 1,3-diphenylpropane chain in terms of the boryl and 
methyl groups is opposite to the configuration previously ob-

served in the ring-opening diborylation of 1,2-diphenylcyclo-
propanes.8d  The reversal can be explained by the knowledge 

that methylation takes place with inversion of the stereochem-

istry of such a benzylic anion.8b  The reason for the temperature-
dependent change in the position of C–C bond cleavage in 2,3-

trans-22 is unclear at this stage. At such a low temperature, the 
trans-2,3-diphenylcyclopropyl unit may take a conformation 

that is favorable for the C–C bond cleavage between the phe-

nylated carbons.14 

Scheme 7. Ring-opening Borylation of 2,3-Diphenylcyclo-

propanecarboxamides  

 

In summary, arylcyclopropanecarboxamides were found to 

undergo reductive ring-opening with sodium dispersion in the 

presence of methoxypinacolborane as a reduction-resistant 
electrophile to afford the enolates of γ-aryl-γ-borylalkanamides.  

The enolates react with another electrophile to yield the corre-
sponding α-substituted γ-aryl-γ-borylalkanamides with anti se-

lectivity.  The overall transformation represents unsymmetrical 
and stereoselective ring-opening difunctionalization and pro-

vides potentially useful synthetic intermediates for organic syn-
thesis.  Further investigation on the use of alkali metals for C–

C bond cleavage is underway in our laboratory. 
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(13) To investigate difference in diastereoselectivity of 10a’ by decon-

voluting the cyclic borate enolate 14, 14 was treated with Cy2BOTf at 

0 ℃ and then with benzaldehyde.  Interestingly, we observed reversal 

of the stereochemistry in 10a’ (α/β’ = 14:86), although the yield of the 

desired 10a’ was low (28%) and the protonated by-product 2a’ was 

obtained in 42% yield.  This result somewhat supports the formation 

of the cyclic enolate 14. 

(14) This unusual temperature effect is full of uncertainty.  We found 

two more interesting observations: 1) The “kinetically generated ben-

zylic anion” and the “thermodynamic enolate” are very likely to be in 

equilibrium, even though they are very different skeletal isomers.  2) 

When isobutylene oxide was used instead of MeOBpin, at –78 ℃ the 

“kinetic product” was obtained in 57% yield, and at 0 ℃ a complex 

mixture was obtained. Details of these discoveries are described in 
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