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ON THE PERSISTENCE PAIRS AND STRONG 
CONNECTEDNESS OF DISCRETE MORSE FUNCTIONS ON 

GRAPHS 

CHONG ZHENG 

ABSTRACT. This article is an abstract of my presentation at RIMS, June, 2021. 
We show the relationship between the number of critical simplices, and Betti 
numbers with persistent pairs , which is an improvement to the discrete Morse 
inequalities. Furthermore, we prove that given two discrete Morse functions ii, h 
on a simple graph, the number of strongly connected number between ii, h is the 
Betti number. This result is also an necessary condition to the problem posed in 
[4] in case of graphs. 

1. INTRODUCTION 

Introduced by R. Forman [2] for the first time, discrete Morse theory also known 
as Forman theory is a combinatorial version of normal Morse theory. The idea of 
discrete Morse theory is to collapse pairs of simplices with adjacent dimensions. 
In the process of collapsing, the homotopy type of given space remains consistent. 
Similar to elementary collapse theory invented by J. Whitehead [8], discrete Morse 
theory establishs a rule, which is called discrete Morse function, to accomplish the 
goal. Since discrete Morse theory allows us to reduce the number of simplices in space 
by collapsing the pairs in the gradient vector field induced by a given discrete Morse 
function, it is widely used for the computation of homology of spaces. An element 
of a gradient vector field consists of two non-critical simplices with codimension one. 
Main theorems of discrete Morse theory were established on general CW complexes 
at first. This approach has proven to be useful to study the topology of spaces. 
Applications of discrete Morse theory are miscellaneous in many areas, such as 
calculating the persistent homology [ 6]. 

King-Knudson-Kostoc [4] introduced the birth and death theory of discrete Morse 
theory and showed some interesting applications in data analysis. Given a CW com
plex and a series of discrete Morse functions on it, they defined a "connectedness" 
relationship between two critical simplices in two different gradient vector fields. A 
series of organized discrete Morse functions on the same cellulation cut space into 
slices in which critical simplices appear and disappear. Connecting critical simplices 
in different slides by their "connectedness", one can glue those fragments to recon
struct given space. As time t varies, they traced critical points via a discrete version 
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of bifurcation diagram. In this diagram one can obtain the birth and death informa
tion of each critical simplex. The "persistent time" of each critical simplex reflects 
the geometric information of the space under the given discrete Morse functions. 

In this paper, we use another kind of pair of simplices to describe the birth and 
death of homology group generators. Let X be a simplicial complex and f a discrete 
Morse function on it. We first build a natural filtration of X by a sequence of 
ascending real number values of f. Then given a homology class [h] of the filtration, 
we use a pair of simplices ( a, T), which is called a persistence pair, to describe 
the birth and death of [h]. Different from the pairs in a gradient vector field, a 
persistence pair consists of two critical simplices or infinity in some case. We will 
show some fundamental facts about persistent pairs which can be used in discrete 
Morse theory. Furthermore, in response to the problem 

Problem. "Are there conditions that guarantee that a critical cell in one slice is 
strongly connected to at most one critical cell in the next slice?" 

in [4], we use persistence pairs to give a positive solution when X is a finite simple 
graph. Also, the number of q-dimensional strong connection pairs is the q-th Betti 
number of the graph. 

2. DEFINITIONS AND RESULTS 

We first introduce basic definitions of discrete Morse theory. One can refer [7] 
and [5] for more details and theorems. 

Definition 2.1. A discrete Morse function on Mis a real-valued function 

f : K ---+ "SR 

satisfying for all a E Kv 

(1) #{T(v+l)--< alf(T) :S J(a)} :S 1, 
(2) #{v(v-i) >-- alf(a) :S f(v)} :S 1. 

Definition 2.2. Given a discrete Morse function f on M, we say that a E Kv is a 
critical p-dimensional simplex ( of J) if 

(1) #{T(v+l)--< a I j(T) '.S J(a)} = O; 
(2) #{v(v-l) >-- a I J(a) :S J(v)} = 0. 

Definition 2.3. For c E "SR, we define the sub-level complex 

K(c) = 

K ( c) is the sub-complex of M consisting of all simplices T with f ( T) :S c and their 
faces. 

Given a discrete Morse function f and its corresponding gradient vector field V, 
we have a natural filtration consisting of subcomplexes of K. 
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Definition 2.4. Let c1 < c2 < · · · < Cn be a sequence of real numbers and K(ci) be 
the sub-level complex at value ci. We say that 

K(c1) C K(c2) C · · · C K(cn) 

is a filtration of K. For convenience, if f ( O") = c, we both use K ( c) and K ( O") 
to represent the sub-level complex at value c or j(O"). It is easy to see that when 
C1 < min{j(O") I O" EK}, K(c1) = 0 and when Cn ;:=: max{j(O") I O" EK}, K(cn) = K. 

We always take the filtration ending at the whole space as following 

K(c1) C K(c2) C · · · C K(cn) = K. 

Definition 2.5. A pair of simplices (O", T) is said to be a persistence pair if there is 
a homology class [h] that is born at O" and dies at T. If [h] is born at O" and does not 
die eventually, we say that O" is paired with infinity, denoted ( O", oo). 

Let [h] be a homology class, we say the dimension of [h] is the dimension of 
simplices of its representative chain Ei niO"i- It is not hard to find the birth simplex 
of a cycle if we arrange the real number in ascending order. The death simplex of a 
cycle, however, may be tricky sometimes because a cycle may split into more than 
one cycles. Note that the birth simplex has not to be a face of the death simplex, 
unless the dimension of the birth simplex is 0. Hence, we use the elder rule to 
describe the persistence of a cycle precisely. 

The elder rule is that the death simplex is always paired with the youngest birth 
simplex. 

The following statements about persistent pairs hold under the conditions of dis
crete Morse function and the elder rule. 

Lemma 2.6. Let f be a discrete Morse function on K. Suppose that [h] zs a q
dimensional homology class with persistent pair ( O", T). Then 

(1) dimO" = q; 
(2) dim T = q + l; 
(3) [h] is represented by a cycle z = Ei O"ini such that O" = O"j for some j. 

Lemma 2. 7. Let f be a discrete Morse function on K. If (O"(q), T) is a persistence 
pair of K then both O" and T are !-critical. 

Hence we can classify critical simplices by the structure of their persistence pairs. 
Let O"(q) be a critical simplex, then O"(q) is in exactly one of the three following 

persistence pairs 

( 1) a q-dimensional persistence pair ( O"( q), T( q+ 1 l); 
(2) a (q - 1)-dimensional persistence pair (o/q-1), O"(q)); 
(3) a q-dimensional persistence pair consisting of infinity (O"(ql,oo). 

Let Pq be the set of persistence pairs whose birth simplices have dimension q. 

Let Pq be the set of persistence pairs whose birth simplices have dimension q and 

death simplices are not infinity. Then Pq C Pq. Note that the q-th Betti number 

f]q = #Pq - #Pq. 
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Theorem 2.8. The Morse inequality can be re-written as an equation 

Cq = (3q + #Pq-l + #Pq. 

Moreover, the strong and weak Morse inequalities become more explicit as well. 

Theorem 2.9. Let dim(X) = K. Then 

Co - C1 + C2 - · · · ± ck = f3o - /31 + · · · + f3k
Also, for i = 0, 1, • • • , dim(X), 

The definition of connectedness between the critical simplices in different gradi
ent vector field is introduced by King-Knudson-Kostoc [4]. We fix it slightly and 
introduce it as followings. 

Definition 2.10. Suppose that a and f3 are k-simplices of Mand a is critical for v; 
and f3 is critical for ½, j -=/=- i. We say that a is connected to f3 if there is a k-simplex 
'Y and a v; path a,••• , 'Y of k- and (k - 1)-cells and a ½ path 'Y, • • • , T(k-I) of k
and (k + 1)-cells to a face T(k-I) ---< (3, denoted a--+ (3. 

We say that a is strongly connected to f3 if a is connected to f3 and f3 is connected 
to a, denoted a+--------+ (3. 

Recall the problem posed in [4], we give the following theorem as a solution in 
the case of graph. 

Theorem 2.11. Let G = (V, £) be a graph, and 

fi,h:VUf----+lR 

be discrete Morse functions, q = 0, 1. Then for any Ji - critical uiq), there is at most 
one h-critical simplex u~q) that is strongly connected to Uiq). 

Also, let At1 ,h ( G) be the number of q-dimensional strongly connection pairs of Ji 
and h critical simplices in G. Then 

At1 •12 (G) 2 /3q(G). 

For a graph, we mean a finite graph G = (V, £) with no multi-edges and loops. 
M. Chari and M. Joswig [1] introduced a method to represent the set of discrete 

Morse functions as a simplicial complex. 

Definition 2.12. Let G be a graph. Construct a simplicial complex ~(G) as follows: 
the vertices of ~( G) are given by the edges of G and faces are all directed forests 
which are subgraphs of G. 

Lemma 2.13. [1] The set of discrete Morse functions on a graph Gisin one-to-one 
correspondence with the set of rooted forests of G. 

We show the relationship between the path-connectedness on the simplicial com
plex above and connectedness of discrete Morse functions defined above. This is 
also an approach to represent the relationship among all discrete Morse functions of 
a given space. 
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Definition 2.14. Let X be a simplicial complex. We say that one-dimensional 
simplices 0"1 and 0"2 of X are one-dimensional simplicial path-connected in X 
if there is a path consisting of one-dimensional simplicial simplices of X that joins 
0"1 and 0"2. 

Theorem 2.15. Let G = (V, £) be a graph, and 

f 1, h : V LJ £ --+ JR 

be discrete Morse functions. Suppose that 0"1 is Ji -critical and 0"2 is h-critical, then 
the followings hold. 

(1) 0"1 +-------+ 0"1 if and only if 0"1 (/. b..h(G). 
(2) Assume that 0"1,0"2 E b..1i(G) Ub..h(G), then 0"1 +-------+ 0"2 if and only if 0"1 and 

0"2 are one-dimensional simplicial path-connected in b.. Ji ( G) U b.. h ( G). 
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