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1. INTRODUCTION 

This article summarizes a combinatorial approach for the computation of 
topological complexity based on the existing study [Tan18]. 

The robot motion planning problem considers the assignment of a path 
from an initial position to a final position. In the context of topology, this 
problem can be represented as follows: For a space X, the (free) path space 

x1 = {y: 1 = [0, 11 ➔ X} 

consists of paths in X equipped with the compact-open topology. The path 
fibration rr: X1 ➔ X x X is defined by rr(y) = (y(0), y(l)). The motion 
planning algorithm in X is a continuous section of rr, that is, a continuous 
map 

s: xxx ➔ X1 

such that rr o s agrees with the identity map idxxx• For each pair (x,y) of 
points (initial position x and final position y) in X, a motion planning algo
rithm presents a path connecting x and y. The topological motion planning 
problem questions whether we can construct a motion planning algorithm. 

Theorem 1.1 ([Far03]). A space X admits a motion planning algorithm if 
and only if X is contractible. 

The above theorem indicates that motion planning algorithms cannot be 
constructed globally in a non-contractible space. However, we may have 
local motion planning algorithms, that is, sections of the path fibration rr on 
a subset of X x X. If we have motion planning algorithms si: Ui ➔ X1, 

i = 0, · · · , n such that U0 U U1 U · · · U Un = X X X, a robot can move from 
x toy following algorithm si with (x,y) E Ui. 

Farber introduced a numerical invariant TC(X), which is one less than the 
minimum number of local motion planning algorithms for robotic motion 
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design in X [Far03]. However, TC(X) is not easy to compute. Indeed, the 
topological complexity of a Klein bottle has been computed in recent years 
[CV17, Dra17, IST19]. 

In this paper, we introduce a discrete method for calculating the topo
logical complexity for finite simplicial complexes using finite T0-spaces or 
posets. Because a finite space has only a finite number of open sets, the 
topological complexity of a finite space can be theoretically computed in 
finite steps of discrete operations. 

2. TOPOLOGICAL COMPLEXITY 

Throughout this paper, we deal only with path-connected spaces. Let 
rr: X 1 ~ X x X be the path fibration defined by rr(y) = (y(O), y(l)). A 
motion planning algorithm on a subset U is a local section of rr, i.e., a 
continuous map s: U ~ X1 such that 1r o s agrees with the inclusion U ~ 
XxX. 

Definition 2.1. For a space X, the topological complexity TC(X) is defined 
as the minimum number n such that we haven+ l open sets U0 , • • · , Un 
covering X x X, where each Ui admits a local motion planning algorithm. 
If no such number exists, we set TC(X) = oo. 

The above definition adopts one less than the minimal size of open sets 
covering the product space with motion planning algorithms. As another 
option, we can consider arbitrarily subsets covering or separating the prod
uct space instead of open sets. 

Definition 2.2. For a space X, the generalized topological complexity TCg(X) 
is defined as the minimum number n such that we haven+ 1 subsets U0 , • • • , Un 
such that 

X x X = U1 LJ U2 LJ • · • LJ Un, Ui n U1 = 0, i * j, 
where each Ui admits a local motion planning algorithm. If no such number 
exists, we set TCg(X) = oo. 

If TC(X) = n with open sets U0 , • • • , Un covering X X X and motion 
planning algorithms si: Ui ~ X1, we have subsets 

Vi= Ui - (Uo U U1 U · · · U Ui-1) 

in X x X. The product space X x X is decomposed by Vi, and sdv; provides 
a motion planning algorithm on Vi. Hence, the inequality TCg(X) ~ TC(X) 
always holds. The converse inequality also holds for CW complexes. 

Theorem 2.3 ([Gar19]). For a CW complex X, we have TC(X) = TCg(X). 

We can consider the topological complexity for maps. 
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Definition 2.4. Let f: Y ~ X x X be a continuous map. The topological 
complexity TC(f) of f is defined as the minimum number n such that we 
haven+ I open sets U0 , · · · , Un covering Y, where each Ui admits a con
tinuous map s: Ui ~ X1 with 1r o s = JI u;. If no such number exists, we set 
TC(f) = oo. 

For the identity map idxxx: X x X ~ X x X, the topological complexity 
TC(idxxx) agrees with TC(X). 

Proposition 2.5 ([Far03]). The topological complexity for spaces has the 
following properties: 

( 1) TC is a homotopy invariant, i.e., X ::c Y implies TC(X) = TC(Y). 
(2) TC(X) = 0 if and only if X is contractible. 
( 3) cat(X) s TC(X) s cat(X x X), where cat denotes the LS-category. 
(4) TC(X x Y) s TC(X) + TC(Y)for ANR spaces X, Y. 

A useful cohomological lower bound for TC is well-known. A zero
divisor of the cup product is an element in the kernel of the cup-product 
u: H*(X) ® H*(X) ~ H*(X). The zero-divisor-cup-length zcl(X) is the 
maximal number n of zero-divisors a 1, · · · , an such that TI ai * 0 in H*(X)® 
H*(X). 

Theorem 2.6 ([Far03]). zcl(X) s TC(X). 

Example 2. 7. The following are fundamental examples of topological com
plexity. 

{
l if n is odd, 

(1) TC(Sn) = . . for an n-sphere sn ([Far03]). 
2 1f n 1s even, 

(2) TC(Tn) = n for the product Tn = Tin S 1 of circles ([Far03]). 
(3) TC(Bk) = 2 for the wedge Bk = vkS 1 of circles when k ~ 2 

([Far04]). 
(4) TC(CPn) = 2n for an n-dimension complex projective space (Cpn 

([FTY03]). 

{
2 if g < 1, 

(5) TC(Lg) = . - for a compact orientable surface Lg with 
4 1f g ~ 2, 

genus g ([Far03]). 
(6) TC(K) = 4 for a Klein bottle K ([CV17, Dral7, IST19]). 

The calculations of topological complexity tend to be difficult. For exam
ple, although TC(RPn) = n for a real projective space RPn with n = 1, 3, 7, 
it is difficult to find out a general formula for TC(RPn). For n * 1, 3, 7, 
the topological complexity TC(RPn) is equal to the immersion dimension 
of RPn ([FTY03]). 
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3. SIMPLICIAL COMPLEXES AND FINITE SPACES 

In this section, we study combinatorial homotopy theories on simplicial 
complexes and finite spaces. 

3.1. Simplicial complexes. A simplicial complex K consists of the set V(K) 
of vertices and the set L(K) of simplices as a subset of the power set 2v(K) 

satisfying the following face relation: 

(1) The singleton {v} is contained in L(K) for any v E V(K). 
(2) If r c er and er E L(K), then r E L(K). 

This study deals only with connected finite simplicial complexes (where 
V(K) is finite). 

For a simplicial complex K, let IKI denote the geometric realization of 
K. This space is constructed by gluing the simplices along their boundaries. 
The geometric realization IKI of a finite simplicial space K with n+ 1 vertices 
can be realized as a subcomplex of the standard n-simplex /j_n c R,_n+l: For 
V(K) = {v0, v1, · · · , Vn}, we identify vi with the i-th vertex of /j_n_ The space 
IKI is constructed by taking the convex hull lcrl of er = {vi0 , vi1 , • • • , viJ if er 
is a simplex in K. 

For two simplicial complexes K and L, a simplicial map f: K ➔ L is 
a map on vertices f: V(K) ➔ V(L) sending a simplex er of K to a sim
plex f(cr) of L. A simplicial map f: K ➔ L induces a continuous map 
lfl: IKI ➔ ILi defined by lfl(Li tivJ = L tJ(vJ for ti E / and vi E V(K). 

3.2. Homotopy theory of simplicial complexes. 

Definition 3.1 (Simplicial approximation). Let f: IKI ➔ ILi be a continu
ous map. A simplicial map cp: K ➔ L is called a simplicial approximation 
to f if f(x) E lcrl implies lcpl(x) E lcrl for any x E IKI and er E L(L). 

The realization lcpl of a simplicial approximation to f is homotopic to f 
because we have a homotopy H(x, t) = tlcpl(x) + (1 - t)f(x). 

Definition 3.2. Let K be a simplicial complex. The barycentric subdivision 
sd(K) consists of barycenters of (realized) simplices of K as vertices. A sim
plex of sd(K) consists of barycenters {ba-0 , • • • , ba-J of simplices cr0 , • • • , <rn 

satisfying cr0 c · · · c <rn. For r ~ l, the r-iterated barycentric subdivision 
sdr(K) is defined inductively by sd(sdr-1(K)), where sd°(K) = K. 

It should be noted that lsdr(K)I = IKI for any r ~ 0, which we identify. 
From this viewpoint, we can choose a simplicial approximation ,l: sdr (K) ➔ 
K to the identity on IKI. 

Theorem 3.3 (Simplicial approximation theorem ([Spa95])). Let f: IKI ➔ 
ILi be a continuous map. There exist sufficiently large r ~ 0 such that we 
have a simplicial approximation cp: sdr(K) ➔ L to f. 
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Definition 3.4. Two simplicial maps f, g : K ➔ L are called contiguous 
and are denoted by f ~ g if f(<r) u g(<r) constitutes a simplex of L for 
each simplex <T of K. The contiguous relation on simplicial maps from K 
to L is reflexive and symmetric, but not transitive. The equivalence relation 
generated from ~ is denoted by ~, i.e., f ~ g if we have a finite number 
of simplicial maps h1, • • • , hn: K ➔ L such that h1 = f and hn = g and 
hi ~ hi+ 1 for each i. In this case, we say that f and g are in the same 
contiguity class. 

Theorem 3.5 ([Spa95]). Let f, g: IKI ➔ ILi be homotopic maps. There 
exist sufficiently large r ~ 0 such that we have simplicial approximations 
<.p, ,fr: sdr (K) ➔ L to f and g, respectively, in the same contiguity class. 

3.3. Finite spaces. In topology, spaces consisting of finite points are often 
regarded as pathological examples because such spaces are discrete under 
usual situations. 

Proposition 3.6. Any finite T1-space must be discrete. 

For example, finite subspaces in a Hausdorff space must be discrete. 
However, finite T0-spaces have fascinating combinatorial structures. For 
a point x in a finite T0-space X, we have the minimal open neighborhood 

defined as the intersection of all open sets x E U. A partial order x :s; y on 
X is defined as Ux c Uy. 

By contrast, a poset (partially ordered set) P is equipped with a topology 
called the Alexandroff topology. A subset Q c P is an open set in P if Q is 
an ideal (a down-set) closed under the lower order. 

From this perspective, finite T0-spaces can be regarded as finite posets. 
Throughout this paper, finite T0-spaces are simply called finite spaces. 

3.4. Homotopy theory of finite spaces. The homotopy theory of finite 
spaces was developed by Strong [Sto66] and Barmak-Minian [BM12]. A 
map f: P ➔ Q between finite spaces P and Q is continuous if and only 
if f is an order-preserving map. For two continuous maps f, g: P ➔ Q, a 
partial order f :s; g on the mapping space QP is defined by f(x) :s; g(x) in Q 
for any x E P. 

Theorem 3.7 ([Sto66]). Two continuous maps f,g: P ➔ Q between.finite 
spaces P and Q are homotopic if and only if we have a finite number of 
continuous maps f = ho,··· , hn = g from P to Q such that hi :s; hi+I or 
hi ~ hi+I for each i. 
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Definition 3.8. A point x in a finite space P is called an up beat point if 
there exists a unique maximal element in P <x = {y E P I y < x}. Conversely, 
x is called a down beat point if there exists a unique minimal element in 
P>x = {y E P I y > x}. A point x is simply called a beat point if it is either 
an up beat point or a down beat point. 

For a beat point x E P, we have a deformation retraction r: P ➔ P\{x} 
defined by r(x) = y, where y is the maximal (minimal) element in P <x 

(P>x). An arbitrarily deformation retraction in finite spaces is described as 
removing beat points. 

Definition 3.9. For a beat point x in a finite space P, we say that there is 
an elementary strong collapse from P to P\{x}. For a subspace Q of P, if 
there exists a finite sequence of elementary strong collapses starting in P 
and ending in Q, we say that there is a strong collapse from P to Q, and use 
the notation P'\.'\.Q. 

For two finite spaces P and Q, we say that P and Q have the same strong 
equivalence type if there exists a finite sequence of finite spaces 

p = Ro,R1, ... ,Rn= Q 

such that Ri '\.'\.Ri+ 1 or Ri+ 1 '\.'\.Ri for each i. 

Proposition 3.10 ([Sto66, BM12]). A subspace Q is a deformation retract 
of a finite space P if and only if P'\.'\. Q. 

Theorem 3.11 ([Sto66, BM12]). Two finite spaces P and Q are homotopy 
equivalent if and only if they have the same strong equivalence type. 

Definition 3.12. A finite space is called minimal if it has no beat point. 

Proposition 3.13 ([Sto66]). Let f: P ➔ P be a map homotopic to the 
identity idp. If P is minimal, then f = idp. 

The above proposition implies that if two minimal finite spaces P and Q 
are homotopy equivalent, then they are homeomorphic. 

Definition 3.14. A subspace Q of a finite space P is called a core if it 
satisfies the following two conditions: 

( 1) Q is minimal. 
(2) Q is a deformation retract of P. 

The homotopy type of finite spaces is completely classified by cores. The 
core of a finite space is uniquely determined up to homeomorphism. 

Theorem 3.15 ([Sto66, BM12]). Two finite spaces are homotopy equivalent 
if and only if they have homeomorphic cores. 

In particular, a finite space is contractible if and only if it has a single
point core. 
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3.5. Classifying space and barycentric subdivision. 

Definition 3.16. Let P be a finite space. The order complex <J<(P) is a 
simplicial complex defined as follows: The set of vertices V(<J<(P)) = P, 
and the set of simplices "£,(<J((P)) consists of totally ordered subsets in P: 

Po < PI < · · · < Pn· 

The geometric realization l<J<(P)I is called the classifying space of P. 

Let K be a simplicial complex. The face poset <f(K) consists of all sim
plices of K with the inclusion order. 

Definition 3.17. For a finite space P, the barycentric subdivision sd(P) = 
<f(<J<(P)) is defined as the face poset of the classifying space of P. That is, 
sd(P) consists of totally ordered subsets of P with the inclusion order. We 
inductively define the k-iterated barycentric subdivision as follows: 

sd\P) = sd(sdk-1(P)). 

For convenience, we set sd0(P) = P. 

We have a natural continuous map Tp: sd(P) ➔ P defined by r(p0 < 
· · · < Pn) = Pn• Moreover, ~: sd\P) ➔ P is defined as follows: 

T,dk-l(P) Tp 

sd\P) ~ sdk-1(P) ~ · · · ~ sd(P) ~ P. 

Theorem 3.18 ([McC66]). For any finite space P, the map T: sd(P) ➔ P 
is a weak homotopy equivalence. 

Theorem 3.19 ([BM12]). Let K, L be simplicial complexes, and let P, Q be 
finite spaces. 

( 1) If two simplicial maps f, g : K ➔ L are in the same contiguity class, 
then the induced maps <f(f), <f(g): <f(K) ➔ <f(L) are homotopic. 

(2) If two continuous maps f, g: P ➔ Q are homotopic, then the in
duced simplicial maps <J<(f), <J<(g): <J<(P) ➔ <J<(Q) are in the same 
contiguity class. 

Theorem 3.20 ([BM12]). A.finite space P is contractible if and only if sd(P) 
is contractible. 

4. TOPOLOGICAL COMPLEXITY OF SIMPLICIAL COMPLEXES AND FINITE SPACES 

The topological complexity TC(X) is defined as one less than the mini
mal number of open sets covering X x X with motion planning algorithm. 
Here a motion planning algorithm is a continuous local section s: U ➔ X1 

of the path fibration. We notice that s provides a homotopy between the 
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projections pr1,pr2 : U ~ X. Hence, a subset Uc X x X admits a mo
tion planning algorithm if and only if the projections pr1, pr2 : U ~ X are 
homotopic on U. 

From this perspective, Gonzalez introduced a simplicial version of topo
logical complexity for simplicial complexes [Gon18]. 

4.1. Simplicial complexity. The product of simplicial complexes is not 
naturally determined because the Cartesian product 11n x 11m of geometric 
simplices is no longer a simplex. To define the Cartesian product of simpli
cial complexes, we consider ordered simplicial complexes. 

An ordered simplicial complex is a simplicial complex with a total order 
on the vertices in each simplex compatible with the face relation. For an 
ordered simplicial complex K, the Cartesian product K x K is a simplicial 
complex with the vertex set V(K) x V(K). A binary relation on V(K) x 
V(K) is defined by (v, w) s (v', w') if and only if v s v' and w s w' in 
V(K). A simplex of K x K is a totally ordered subset S of V(K) x V(K) 
with respect to the relation s such that n/S) constitutes a simplex in K, 
where ni is the projection to the i-th coordinate for each i = 1, 2. In this 
setting, the projections ni : K x K ~ K become simplicial maps and induce 
a homeomorphism IK x Kl = IKI x IKI. We note that for any finite simplicial 
complex K, we can always choose a total order on the vertices, and it makes 
K an ordered simplicial complex. 

Definition 4.1. Let K be a (an ordered) simplicial complex K, and r 2:'.: 0 
be a nonnegative integer. We say that a subcomplex L of sdr (K x K) admits 
a motion planning algorithm if the two simplicial maps n1 o ,l and n2 o 

,l: L ~ K are in the same contiguity class for a simplicial approximation 
,l: L ~ K x K to the inclusion ILi ~ IKI x IKI. 

The simplicial complexity SCr(K) is defined as one less than the smallest 
size of subcomplexes covering sdr(K x K), where each subcomplex admits 
a motion planning algorithm. 

It should be noted that SC(K) does not depend on the choice of ordering 
on K, and hence, the simplicial complexity is defined purely for simplicial 
complexes [Gonl8, Remark 3.2]. The inequality TC(IKI) s SCr(K) always 
holds for any r 2:'.: 0, and SC(K) decreases as r increases: 

SC0(K) 2:'.: SC1 (K) 2:'.: • • • 2:'.: SCr(K) 2:'.: • • • 2:'.: 0. 

Gonzalez showed that the above monotone sequence converges to TC(IKI). 

Theorem 4.2 ([Gon18]). For any simplicial complex K, the equality SC(K) = 
TC(IKI) holds for sufficiently large r 2:'.: 0. 
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4.2. Topological complexity for finite spaces. The reminder of this paper 
is an overview of [Tan18] regarding topological complexity for finite spaces 
and the classifying spaces. 

The finite interval Im of length m is a finite space consisting of m + l 
points {0, 1 · · · , m} with the zigzag order as follows: 

0 < 1 > 2 < 3 > · · · < (> )m. 

For a finite space P, the mapping space P1m consists of continuous (order
preserving) maps Im ➔ P. This is a finite space with the partial order f s g 
given by f(i) s g(i) for any i E Im. 

An element in P1m can be regarded as a zigzag-ordered (m + 1)-tuple of 
elements in P: 

Po S P1 ~ P2 S · · · S (~)Pm· 
We have a continuous map 1l"m: P1m ➔ PxP defined by 1l"m(Y) = (y(O), y(m)). 

Definition 4.3. For a nonnegative integer m ~ 0 and a map f: Q ➔ P x P 
between finite spaces Q and P, TCm(f) is defined as the minimum number 
n such that we have (n + 1) open sets U0 , · · · , Un covering Q, where each 
ui admits a map S: ui ➔ plm with 1l"m O S = flu;• In particular, TCm(idPxP) 
is denoted by TCm(P). 

We have a deformation retraction Im+I ➔ Im sending m + l tom. This 
induces a map P1m ➔ P1m+i preserving both ends. This implies that if a 
subset U of P x P admits an m-length motion planning algorithm, then U 
also admits an (m + 1)-length motion planning algorithm. 

Proposition 4.4. For a map f: Q ➔ P X P, we have TCm(f) ~ TCm+ 1 (f). 

Theorem 4.5. For a map f: Q ➔ P x P, we have the following decreasing 
sequence: 

and 
lim TCm(f) = TC(f). 

m---->oo 

4.3. Topological complexity for the classifying space. We focus on the 
relationship between TC(l'KPI) and TC(P) for a finite space P. The follow
ing inequality always holds. 

Proposition 4.6. For a.finite space P, we have TC(P) ~ TC(l'KPI). 

Example 4. 7. Let !Bn be a finite space consisting of (n+ 3)-points { a, b, c0 , • · • , cn} 
for n ~ l. The partial order on !Bn is given by a < c i and b < c i for 
each O s i s n. The space l'K(!Bn)I is a bouquet with n circles. Hence, 
TC(l'K(!Bn)D = 1 for n = l and TC(l'K(!Bn)D = 2 for n ~ 2, whereas 
TC(!Bn) = (n + 1)2 - 1. 
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In the above example, the difference between TC(P) and TC(l1<PI) can 
be significantly large, depending on n. This results from a small number of 
open sets of P x P compared with 11<(P)I x 11<(P)I. One of the ideas to fill 
the gap between them is to consider the barycentric subdivisions. 

Example 4.8. Consider !81 in Example 4.7. This is a finite-space model of 
a circle. The barycentric subdivision sd(!B1) consists of eight points, and we 
have 

TC(sd(!B1)) ~ cat(sd(!B1) x sd(!B1)) = 2 < TC(!B1) = 3. 

The above example provides a case of strict inequality TC(P) > TC(sd(P)). 
We expect that TC(sd\P)) will decrease and converge to TC(l1<PI) ask 4 

oo. However, this is not true in general. 

Example 4.9. Let 'lV be a finite space described as the following Hasse 
diagram. 

'lV is not contractible because it has no beat point, whereas the classify
ing space 11<('lV)I is contractible. We have TC(l1<('lV)I) = 0, whereas 
TC(sdk('lV)) > 0 for any k ~ 0 by Theorem 3.20. 

The topological complexity TC(sd(P)) is based on open sets in the prod
uct sd(P)xsd(P). However, the product sd(P)xsd(P) is not described as the 
face poset of a simplicial complex in general. This is a disadvantage in that 
we cannot use the combinatorial homotopy theory of simplicial complexes, 
including the simplicial approximation theorem. 

We use sd(P x P), which is the face poset of the order complex 1<(P x P), 
instead of sd(P) x sd(P). Let us recall the natural map defined in Section 
3.5: 

~xP: sd(P X P) ~PX P. 

The following is our main result in [Tanl8]. The proof is essentially 
based on the simplicial approximation theorem (Theorems 3.3 and 3.5). 

Theorem 4.10. Let P be a finite space. We have the following monotone 
decreasing sequence 

TC(P) = TC(,ixP) ~ TC(,ixP) ~ · · · ~ 0 

and 
lim TC(~xP) = SC(1<P) = TC(l1<PI). 
k->oo 
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