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Abstract 
The characteristic geometric structures found in disordered matters are discussed from the view
point of general topology. Cantor cube which is a topological space consisting of the infinite 
product space of O and 1 provides specific decomposition spaces representing topologically geo
metric patterns of matters such as graphs, clusterized structures, dendrites. 

1 Introduction: Cantor cube model 

Geometrically patterns of matters in solid and liquid states have been hugely studied from the 
viewpoint of disordered physics[l, 2]. In particular, fascinating characteristic topology struc
tures of matters (the topology structures of matters is abbreviated as TSM hereafter), such as 
the graphic structure of polymers[3], the clusterized structure of molecular liquids[4, 5], or the 
dendritic structure in solidifications[6], have been found. To characterize such TSM, several 
mathematical methods based on topological concept have been studied. For instance, persis
tent homology is the method available for classification of geometric structures of amorphous 
materials[7, 8]. Note that this persistent homological analysis is mathematically based on a 
technique of algebraic topology. 

The mathematical approach by using general topology to TSM has been successfully studied[9, 
10, 11, 12]. In these studies, TSM are investigated based on the mathematical formation of a set 
of equivalence classes for a specific topological space X, independently of the detailed properties 
of each matter. That is, geometric patterns for TSM are discussed by connecting them with the 
decomposition spaces of X (For the details of this approach, see [12]). In the present article, we 
focus on characterizations of TSM by means of the Cantor cube model; in this model the specific 
topological space X is taken as a Cantor cube ( { 0, 1 }A, T6'") and geometric patterns are discussed 
through the decomposition spaces of ( {0, 1 }A, T6'" ), where ( {0, 1 }A, T6'") is the A-product space 
of ( {0, 1 }, To) with an index set A of Card A 2". No and To is a discrete topology for {0, 1 }. 
To begin with, we will show a practical construction of a decomposition space of ( { 0, 1 }A, T6'") 
homeomorphic to a compact metric space. 

It is very known that any compact metric space is represented homeomorphically as a quotient 
space of fibers [13] of 0-dim, perfect, compact Hausdorff-space[14]. Indeed, the representation 
of a compact metric space can be obtained systematically as follows. Let X denote a Cantor 
cube ({0, l}A,T6'") with Card A 2". No, and let Y be a compact metric space. Then, there exists 
a closed cover {Y1 , ... , Yn} (n < oo) of Y, each diameter of which is less than 1/2. To this cover 
there corresponds a partition { X 1, ... , Xn} of { 0, 1 }A such that 

(1) 

where Ai is arbitrarily element of A, (i = l, ... ,n -1) and each {k1h1 x ··· x {kih, x 
{0, 1 }A-{,\,, ... ,,\,} = { x : A ➔ {0, 1 }, x(>.1) = kz E {0, 1 }, l = l, ... , i} stands for a cone. Let 

s1 : X ➔ 's(Y) - {0} be a map defined by s1 (x) = Y; if x E Xi for each i, where 's(Y) is the 
collection of closed sets of Y. Note that Y = UxExs1(x). Since Y; is a compact metric space, 
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for each i, we have a closed cover {Y;,, ... , Y;n) of Y;, each diameter of Y;; being less than 1/22. 
Also, X; has a partition { X;,, ... , X;n;} composed of cones such that 

{ 

X;, = {lh, X .•. X {lh_, X {Oh X {O}µ, X {O, l}A-({.X,, ... ,A;}U{µi}), 

X;; = {lh, x · · · x {lhi-l x {Oh; x {1}µ, x • • • x {1}µ;_, x {O}µ; x {O, l}A-({>-,, ... ,.X;})u({µ,, ... ,µ;}) 

(j=2,3, ... ,n;-1), 
X· = {1}, X ·•· X {1},. X {0},. X {1} X ••. X {1} X {1} X {0 l}A-({A,, ... ,.X;})u({µ,, ... ,µn;- 1}) 

'tni Al Ai-1 Ai /J,l /J,ni-2 /J,ni-1 ' ' 

(2) 
whereµ; is arbitrarily element of A - ( {>.1, ... , >.;} ). Let s2 : X ➔ 's(Y) - {0} be defined by 
s2(x) = Y;; for x E X;;- Then, Y = UxExs2(x) and s2(x) C s1(x) for all x. Continuing the 
procedure we have a sequence of functions { sn} such that for each x and for each n, (i) Sn is 
upper semi-continuous, (ii) Sn+1(x) C sn(x), (iii) Y = UxEXBn(x), and (iv) dia sn(x) ➔ 0 as 
n ➔ oo, where dia stands for diameter of a set. Thus, we obtain a continuous map f from X onto 
Y, x >--+ nngn(x) and the decomposition space ('DJ, T('DJ )) of X relative to f homeomorphic to 
Y, where 'DJ= u-1(y); y E Y} and T('DJ) ={UC 'DJ; uu ET(!} is a decomposition topology. 
Through the homeomorphism, each pointy of Y can be associated with an unique point J- 1(y) 
of 'DJ. For instance, the decomposition space representing [O, 1] is obtained practically as the 
following two cases; letting M = {l/2n;n = 1,2, ... and l = l, ... ,2n -1}, then (i) for y = 
~~1 a;/2i rt M 

r 1 (y) = {a1h, X {a2h2 X ... X {O, 1t-{a,,a2,-·· }, 

and (ii) for y = l/2n E M 

(3) 

r1(y) = [{a1h, X {a2h2 X ... X {an-lhn-1 X {Ohn X {lhn+l X {lhn+2 X ... X {o,1t-{-",,-"2,··}] 

u [ { a1h, X { a2h2 X ... X { an-lhn-1 X {1 hn X {Ohn+l X {Ohn+2 X ... X {O, 1 t-{.\,,.\2,-··}] (4) 

for some a1, ... 'an-1· Here, r 1(O) = {Oh, X {Oh2 X ... X {O, 1 }A-{.\,,.\2,-··} and r 1 (1) = 
{1 h, x {1 }.x2 x • • • x {O, 1 }A-{.\,,.\2,-··}. Note that the decomposition space constructed in the 
above process is not unique. 

2 Topologically representation for TSM 

Here, we focus on several decomposition spaces of the Cantor cube X = ( {O, l}A, T(!) which 
represent geometric models for TSM. 

First let us consider two network patterns Y1 and Yg shown in (a) and (b) of Fig. 1; Y1 is 
a figure composed of three nodes e1, e2, a and two bonds E1 and E2 connecting e1 with a and 
e2 with a, respectively. Y9 is a finite graph[15]. Since Y1 is regarded as an arc, the construction 
of the decomposition space stated in the previous section for Y = [O, 1] can be directly applied 
to Y1. Indeed, letting h be a homeomorphism from Y1 onto [O, 1], each point x of Y1 can be 
represented as the point of a decomposition space 'D1 of {O, 1 }A by the following two types; (i) 
if h(x) rt M(= {l/2n;n = 1,2, ... and l = 1, ... ,2n -1}), then 

(5) 

where k1, k2, ... are points in {O, 1} satisfying h(x) = ~~1 k;/2i, and ~ is the sign of identifica
tion of x with a corresponding point J-1(x) of 'D1, and (ii) if h(x) EM, then 

X ~ [{k1}.x1 X {k2}.x2 X • • • X {kmhm X {Ohm+l X {lhm+2 X {lhm+3 X • • • X {O, 1t-{.\i,-'2,·· }] 

u[{k1h, X {k2h2 X .•• X {kmhm X {lhm+l X {Ohm+2 X {Ohm+3 X ..• X {O, l}A-{.X,,>-2,-· }] (6) 
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for some m, where k1, ... , km are points in { 0, 1} giving h( x) E M. If we introduce a sign Bx 
defined by 

s = { (5), 
X - (6), 

then 

h(x) rfc M 
h(x) EM, 

for x E Yi- Note that assuming h(e1) = 0 and h(e2) = 1, the end points e1 and e2 form 

(7) 

(8) 

e1 ~ {Oh x {Oh2 x · · · x {O, 1 }A-{>,,,>.2 ,-··}, e2 ~ {1 h x {1 h 2 x · · · x {O, 1 }A-{>,,,>.2 ,-··}. (9) 

The relation (8) shows that the geometric feature of Y1 is completely characterized in the de
composition space 'D1 of X. For a finite graph Y9 , we denote the arcs composing of Y9 by 
E 1 , .•• ,Er(r < oo). There exists a partition {X1, ... ,Xr} of X corresponding to these arcs 
where each Xi is defined as well as that in (1) with indexes µ1, ... , µr-1 E A. It is confirmed 
that a decomposition space 1)9 of X represents Y9 ; the representations for a node x with bonds 
Et,, ... , Etq and a point y in a bond Ei are obtained as 

(10) 

respectively. As a practical example of materials with the graphic structure we can consider a 
tree of a dendritic crystal[16]. A tree is a graph that does not contains a space homeomorphic to 
a unit sphere shown in ( c) of Fig. 1. In this case, the representation for a tree by a decomposition 
space 'Dt is the same as the relation (10). 

(b) (c) 

Figure 1: Schematic explanation of three types of geometric patterns with network configuration. (a) 
geometric model Y1 ; two nodes e1 and e2 are connected by edges E 1 and E 2 thorough a node a. (b) a 
finite graph Y9 . ( c) a tree Y;. 

Next, we focus on a cluster pattern Ye for which each cluster is a finite graph, shown in 
Fig. 2 (a). Then, Ye may be defined to be a topological space (E0f=1 Ci, EBf=1 Ti) where 
( EBf=1 Ci, EBf=1 Ti) is a disjoint union of a collection of finite graphs { ( Ci, Ti), i = 1, ... , s}. To 
disjoint clusters C1, ... , Cs, there corresponds a partition { J1, ... , J 8 } of X using new elements 
6, ... , es-1 EA such that 

(11) 

By applying the relation (10) to each finite graph Ci for corresponding cone Ji, i = 1, ... , s, the 
representation of whole space Yc by a decomposition space 'De of X can be obtained as follows; 
for x E Yc contained in a cluster Ci0 , 

(12) 
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The relation (12) shows that x is either a node of Ci0 with bonds E;~, ... , E1: or a point in a 

bond EJ0 where Ef0 , ••• ,E;(io) (tq ::C: r(io)) are arcs composing of a finite graph Cio· Namely, 
the term Jio and the successive terms designate a point x belonging to a graphic cluster Cio and 
a location of x in the graph Cio, respectively . 

This topologically representation by a decomposition space De for a clusterized structure can 
be applied to the tiling issue in material science that a polycrystal can be filled with an arbitrary 
finite number of single crystals characterized by a specific geometric structure, i.e., dendritic, or 
self-similar structure ( according to the mathematical setting and discussion for the issue based 
on general topology, see [11]). Figure 2 (b) shows the roughly sketch of situation for this issue. 
Here, we consider dendritic crystals as single crystals. Then, the situation can be identified with 
the clusterized geometrical pattern in which each cluster is dendritic. Actually, we regard each 
dendritic crystal composing of the polycrystal as a cluster and then the geometric structure 
of the polycrystal is described by a kind of clusterized structure. Based on the representation 
(12) of the clusterized structure, we can obtain the following decomposition space De of X 
representing the geometric structure of the polycrystal: 

(13) 

where 

(14) 

Note that Vi, i = 1, · · · , i are mutually disjoint each other. (13) and (14) show the relationship 
between each single dendritic crystal Vi and a whole polycrystal De for the tiling issue. The 
representation of decomposition spaces for the clusterized structure stated in this section can be 
widely applicable to discuss geometric aggregation structures of matters such as noncrystalline 
and amorphous as well as this tiling issue for a polycrystal. 

z 

(b) 

Figure 2: Geometric models of (a) a clusterized structure Ye where the number of clusters s = 3, and (b) 
schematic explanations of a polycrystal Z filled with dendritic decomposition spaces TJ;. 

Finally, we comment that in this short article a Cantor cube is introduced as a conceptional 
model to obtain several topologically representations of TSM, e.g., the graphic and clusterized 
structures. Indeed, each character of these geometric structures can be connected with decom
position spaces of a Cantor cube. Therefore, by analyzing a mathematical property of a Cantor 
cube model even more, new universal properties of the geometric structures of matters might 
be revealed. 

3 Conclusion 

The mathematical method to characterize geometric patterns for TSM universally based on a 
Cantor cube ({O, l}A,Tif) has been shown. Typical geometric patterns such as graphic and 
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clusterized structures are focused on and their representations by decomposition spaces of the 
Cantor cube are investigated. A practical form of a decomposition space of a polycrystal in 
the tiling issue that a polycrystal filled with an arbitrary finite number of dendritic crystals is 
shown by handling it as a special case of the decomposition representation for the clusterized 
structural geometric model. (More details are shown in [12].) 
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