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1. INTRODUCTION 

In this article, we will consider the following problems of one-sided dy
namical systems: 

Problem 1.1. Is it possible to study arbitrary one-sided dynamical systems 
by use of appropriate 0-dimensional dynamical systems? 

Problem 1.2. Is it possible to reconstruct arbitrary one-sided dynamical 
systems by use of appropriate time series analysis?, i.e., is it possible to 
extend Takens' reconstruction theorem to one-sided dynamical systems? 

In this article, we show that the above problems 1.1 and 1.2 have near
positive answers by using doubly 0-dimensional maps. 

For a space X, dim X means the topological ( covering) dimension of X 
(e.g. see [Eng95], [HW41] and [Nag65]). Let X be compact metric space 
and Y a space with a complete metric dy. Let C(X, Y) denote the space 
consisting of all maps f : X --+ Y. We equip C(X, Y) with the metric d 
defined by 

d(f,g) = sup dy(f(x),g(x)). 
xEX 

Recall that C(X, Y) is a complete metric space and hence Baire's category 
theorem holds in C(X, Y). A map g : X --+ Y of separable metric spaces is 
n-dimensional (n = 0, 1, 2, ... ) if dimg-1(y) s n for each y E Y. Note that a 
closed map g : X --+ Y is 0-dimensional if and only if for any 0-dimensional 
subset D of Y, dimg-1 (D) s O (see [Eng95, Hurewic's theorem (1.12.4)]). 
A map T : X --+ X is doubly 0-dimensional if for each closed set A C X of 
dimension 0, one has dimT-1 (A) SO and dimT(A) = 0. 

We have the following theorem ([Kat21] and [KOU16]) which is the key 
fact in this article. 

Theorem 1.3. Suppose that X is one of the following spaces: compact PL
manifolds, compact PL-manifolds with branched structures, Menger mani
folds, Sierpinski carpet, Sierpinski gasket, dendrites. Then the followings 
hold. 
(1) The set of all doubly 0-dimensional maps on X is dense in the space 
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C(X, X) (see [Kat21]). 
(2) The set of maps T with dim P(T) :S O contains a CJ-dense subset of the 
set C(X, X) (see [KOU16]), where P(T) denotes the set of periodic points 
ofT. 

So if we could study dynamical properties of doubly 0-dimensional maps, 
we can obtain approximate properties of any dynamical systems (X, T) 
and hence it is important to study the dynamical properties of "doubly 
0-dimensional maps". In this article, we show that the above problems 1.1 
and 1.2 have near-positive answers through Theorem 1.3. 

2. FINITE-TO-ONE 0-DIMENSIONAL COVERS OF DOUBLY 0-DIMENSIONAL 

MAPS 

In this section, we consider the problem 1.1. Throughout this article, 
all spaces are separable metric spaces and maps are continuous functions. 
Let N be the set of all nonnegative integers, i.e., N = {O, 1, 2, ... } and let 
Z be the set of all integers and lR the real line. A map h : X --t Y is 
an embedding if h : X --t h(X) is a homeomorphism. A pair (X, T) is 
called a one-sided dynamical system (abbreviated as dynamical system) if 
X is a separable metric space and T : X --t X is any map. Moreover, if 
T : X --t X is a homeomorphism, i.e., invertible, then (X, T) is called a 
two-sided dynamical system. Also if T : X --t X is not a homeomorphism, 
(X, T) called a non-invertible dynamical system. 

A dynamical system (Z, T) covers (X, T) via a map p: Z --t X provided 
that p is an onto map and pT = Tp. We call the map p : Z --t X a factor 
mapping. If Z is 0-dimensional, then we say that the dynamical system 
(Z, T) is a 0-dimensional cover of (X, T). Moreover, if the factor mapping 
is a finite-to-one map, then we say that the dynamical system (Z, T) is a 
finite-to-one 0-dimensional cover of (X, T). 

The following theorem implies that the problem 1.1 has a near-positive 
answer (see [KM20]). 

Theorem 2.1. Suppose that T: X --t X is a doubly 0-dimensional map of 
a compactum X with dimX = n < oo. If dimP(T) :S 0, then there exist a 
dense CJ-set H of X and a zero-dimensional cover (Z, T) of (X, T) via an at 
most 2n-to-one onto map p: Z --t X such that P(T) CH and IP-1 (x)I = 1 
for x EH. Moreover, if X is perfect, then Z can be chosen as a Cantor set. 
In particular, h(T) = h(T), where h(T) denotes the topological entropy of 
T. 

For the special case of positively expansive maps, we have 

Theorem 2.2. Let T : X --t X be a positively expansive map of a com
pactum X with dim X = n < oo. Then there exist k 2: 1 and a closed 
a-invariant set I; of the shift map a : {1, 2, ... , k }N --t {1, 2, ... , k }N such that 
(I:, a) is a zero-dimensional cover (= symbolic extension} of (X, T) via an 
at most 2n -to-one map p : I: --t X. 
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An indexed family (Cs)sES of subsets of a set X will by abuse of notation 
also be denoted by {Cs}sES or {Cs: s ES}. Hence ifC = {Cs}sES is such a 
family then its members Cs and Ct will be considered as different whenever 
s -/=- t. We then put 

ord(C) = sup{ordx(C): x EX}, where ordx(C) = l{s E SI x E Cs}I

Note that ord(C) so defined is by 1 larger than it would be according to the 
usual definition, as e.g. in [Eng95, (1.6.6) Definition]. 

To prove the above theorems, we need the following lemma which is the 
key result to study the dynamical properties of doubly 0-dimensional maps 
(see [KM20]). 

Lemma 2.3. Suppose that T : X --+ X is a doubly 0-dimensional map of a 
compactum X such that dimX = n < oo and dimP(T) :S 0. Let F be an 
Fa-set of X with dim F :S 0. Then, for each j E N, there is a finite open 
cover C(j) = {C(j)i 11 :Si :S mj} of X such that 
(1) mesh(C(j)) < 1/j (j::::: 1), 
(2) ord(Q) :S n, where g = {T-P(bd(C(j)i)) 11 :S i :S mj, j E N and p E 
N}, and 
(3) F n L = 0, where L = LJ{bd(C(j)i)I 1 :Si :S mj,J EN}. 

3. DYNAMICAL DECOMPOSITION THEOREM OF DOUBLY 0-DIMENSIONAL 

MAPS 

In dimension theory, the following decomposition theorem is well-known. 

Theorem 3.1. A separable metric space X is dim X :S n ( n E N) if and 
only if X can be represented as the union of n + 1 subspaces Zo, Z1, ... , Zn 
of X such that dim Zi :SO for each i = 0, 1, ... , n. 

In this section, we study "dynamical decomposition theorem" of doubly 
0-dimensional maps. Let T : X --+ X be a map. A subset Z of X is a bright 
space of T except n times ( n E N) if for any x E X, 

l{P ENI TP(x) tf_ Z}I :Sn. 

Note that for any x E X, the positive orbit O(x) appears in Z except n 
times. Also we say that L = X - Z is a dark space of T except n times. 
Note that for any x EX, the positive orbit O(x) disappears from L except 
n times. Bright spaces Z would be expected to be very large spaces. But 
we can choose very "small" bright spaces. 

Theorem 3.2. [KM20] Suppose that T: X--+ X is a doubly 0-dimensional 
map of a compactum X with dimX = n < oo. Then dimP(T) :SO if and 
only if there is a zero-dimensional bright space Z of T except n times such 
that Z is a dense G0-set of X and the dark space L = X - Z of T is an 
(n - 1)-dimensional Fa-set of X. 
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This theorem implies that the bright space Z is very small like "small 
dots" and the dark space is very large like "dark matters" in physics. Such Z 
as in Theorem 3.2 satisfies the dynamical decomposition theorem of doubly 
0-dimensional maps (see [KM20]). 

Theorem 3.3. Suppose that X is a compactum with dim X = n ( < oo) and 
T : X --+ X is a doubly 0-dimensional onto map. Then dim P(T) ::; 0 if and 
only if there exists a zero-dimensional G0 -dense set Z of X such that for 
any n + 1 integers ko < k1 < · · · < kn (ki E Z), 

X = Tko ( Z) U Tk1 ( Z) U · · · U Tkn ( Z). 

4. TAKENS-TYPE RECONSTRUCTION THEOREM OF ONE-SIDED DYNAMICAL 

SYSTEMS 

In this section, we consider the problem 1.2. Reconstruction of dynam
ical systems from a scalar time series is a topic that has been extensively 
studied. The theoretical basis for methods of recovering dynamical systems 
on compact manifolds from one-dimensional data was studied by Takens 
[Tak81, Tak02]. In 1981, Takens [Tak81], by use of Whitney's embedding 
theorem, proved that under some conditions of (two-sided) diffeomorphisms 
on a manifold, the dynamical system can be reconstructed from the obser
vations made with generic functions. 

Theorem 4.1. (Takens' reconstruction theorem for diffeomorphisms [Tak81] 
and [Noa91]) Suppose that M is a compact smooth manifold of dimen
sion d. Let nr(M) be the space of all er -diffeomorphisms on M and 
cr(M, IR) the set of all er -functions (r 2:: 1) to R If E is the set of 
all pairs (T, f) E nr(M) x cr(M, IR) such that the delay observation map 
4~'/,2, .. ,2d) : M --+ JR2d+l defined by 

x e-+ (JT1(x))J~o 

is an embedding, then Eis open and dense in nr(M) x cr(M,IR). 

Moreover, in 2002 Takens [Tak02], extended his theorem for endomor
phisms on compact smooth manifolds as follows. 

Theorem 4.2. (Takens' reconstruction theorem for endomorphisms [Tak02]) 
Suppose that M is a compact smooth manifold of dimension d. Then there 
is an open dense subsetU c End1 (M) x C 1(M,IR), where End1(M) denotes 
the space of all C 1-endomorphisms on M, such that, whenever (T, f) EU, 
there is a map 1r : 4~/,··,2d) (M) --+ M with 1r. 4~/,··,2d) = T 2d. 

For a space K, we consider the (one-sided) shift er : KN --+ KN which is 
defined by 



96

DYNAMICAL SYSTEMS 

Let (X, T) and (X', T') be dynamical systems. If a map h : X----+ X' satisfies 
the following commutative diagram 

X ___!!___,, X' 
+ T + T' 
X ___!!___,, X' 

then we say that h: (X, T) ----+ (X', T') is a morphism of dynamical systems. 
In this article, we need the following definition from [Kat20]. 

Definition 4.3. Let T : X ----+ X be a map of a compact metric space X. 
(a) Given a set Sc N and a map f: X----+ IR, the map (JTJ)jES: X----+ IR8 

will be denoted by Ii,f. We call this map the delay observation map at times 

j ES. Note that Ir,J := I!j,,f: (X, T)----+ (Rr1, o-) is a morphism of dynamical 
systems. We call !r,J the infinite delay observation map for (T, J). 
(b) We say that If is a trajectory-embedding if If (x) =I- If (y) whenever 

TJ ( x) =I- TJ (y) for all j E S. 

Let (X, T) be a dynamical system of a compact metric space X. For 
n 2: 1, let Pn(T) be the set of all periodic points of T with period S n and 
P(T) the set of all periodic points of T, i.e. 

Pn(T) = {x E XI there is an i such that 1 Si Sn and Ti(x) = x} 

and P(T) = LJ Pn(T). 

Two points x and y of X are trajectory-separated for T if TJ ( x) =I- TJ (y) for 
j EN. A morphism h : (X, T) ----+ (X', T') is a trajectory-monomorphism if 
h(x), h(y) are trajectory-separated for T', whenever x, y EX are trajectory
separated for T. 

For x,y EX, let or(x) = (T\x))iEN and or(Y) = (Ti(y))iEN be two orbits 
of T. We say that the orbit or(x) is eventually equivalent to the orbit or(Y) 
if the orbits will be equal in the future, i.e., there exists an n E N such that 
Ti(x) = Ti(y) for each i 2: n. In this case, we wright or(x) ~e or(y). We 
see that this relation is an equivalence relation. So we have the equivalence 
class 

[or(x)] = {or(Y)I or(x) "'e or(y)} 

containing or(x) and we put 

[O(T)] = {[or(x)]I x EX}. 

Note that if T : X ----+ X is injective, the function o : X ----+ [O(T)] defined 
by x f--t [or(x)] is bijective, i.e., o : X ~ [O(T)]. Also, note that if h : 
(X, T) ----+ (X', T') is a morphism of dynamical systems, then h induces the 
function h: [O(T)] ----+ [O(T')] defined by h([or(x)]) = [or,(h(x))] for x EX. 
A morphism h : (X, T) ----+ (X', T') of dynamical systems is a trajectory
isomorphism if h induces the bijection h : [O(T)] ~ [O(T')]. 
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Proposition 4.4. Suppose that a morphism h : (X, T) ----+ (X', T') is a 
trajectory-monomorphism and h is surjective, i.e., h(X) = X'. Then h is a 
trajectory-isomorphism: 

h : [O(T)] ~ [O(T')] 

We need the definition of topological entropy and we give the definition 
by Bowen [Bow78]. Let T : X ----+ X be any map of a compact metric space 
X. A subset E of X is ( n, E)-separated if for any x, y E E with x # y, there 
is an integer j such that OS j < n and d(Ti(x),Ti(y)) 2 E. If K is any 
nonempty closed subset of X, sn(E; K) denotes the largest cardinality of any 
set E C K which is ( n, E)-separated. Also we define 

. 1 
s(E;K) =hmsup-logsn(E;K), 

n--+oo n 

h(T; K) = lim s(E; K). 
E--+0 

It is well known that the topological entropy h(T) of T is equal to h(T; X) 
(see [Bow78]). 

Let (X, T) and (Y, S) be one-sided dynamical systems of compact metric 
spaces. The inverse limit of T is the space 

~(X, T) = {(xi)~0 I T(xH1) = Xi for each i EN} C xN 

which has the topology inherited as a subspace of the product space xN. If 
h: (X, T)----+ (Y, S) is a morphism of dynamical systems, then the map 

~h: ~(X,T)----+ ~(Y,S) 

is defied by ~h((xi)i) = (h(xi))i for (xi)i E ~(X, T). Note that if Tisa 
homeomorphism, then X ~ ~(X, T). 

By [Kat20, Theorem 3.1], we have the following result. 

Theorem 4.5. Let X be a compact metric space with dimX = d < oo and 
let T : X ----+ X be a doubly 0-dimensional map with dim P(T) S 0. Then 
there is a dense G5-set D of C(X, JR) such that for all f E D, 

lr,1 = T!J,1 : (X, T)----+ (JRN, a) 

satisfies the following conditions: 
(a) Ir,1: [O(T)] ~ [O(ar,1)], 
(b) ~Ir,1: ~(X, T)----+ ~(Ir,1(X), ar,1) is a homeomorphism, 
(c) h(T) = h(ar,1) and 
(d) if x, y EX are trajectory-separated for T, then 

Now, we will introduce the notion of reconstruction space of dynamical 
systems (see [Kat21]). 
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Definition 4.6. A compact metric space X is a reconstruction space of 
dynamical systems if there exists a G0-dense set E of C(X, X) x C(X, IR) 
such that for (T, J) EE, the infinite delay observation map 

lr,1 := I!f,,1: (X, T)---+ (IRN, a) 

satisfies the following conditions (1) and (2): 
(1) Ir,1: [O(T)] ~ [O(ar,1)], where ar,1 = alir,1(X), and 
(2) ~Ir,1: ~(X, T)---+ ~(Ir,1(X), ar,1) is a homeomorphism. 

X 
+T 
X 

Jr,J(X) C 

+ ar,1 

lr,1(X) C 

Finally we obtain Theorem 4.7 by use of Theorem 1.3 (see [Kat21]). The
orem 4.7 implies that the problem 1.2 has a near-positive answer. 

Theorem 4.7. Let X be one of the following spaces: PL-manifold, PL
manifold with branch structures, Menger manifold, Sierpinski carpet, Sierpinski 
gasket and dendrite. Then X is a reconstruction space of dynamical systems. 
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